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Abstract Based on the locations of several unmanned aerial vehicles (UAVs) and their relative distances

from a target, a ground target cooperative geometric localization method that is more effective than a

traditional approach is proposed in this paper. First, an algorithm for determining the location of the target

is described. The effectiveness and suitability of the proposed algorithm are then shown. Next, to investigate

the location accuracy of the proposed method, the influence of three critical factors, namely, the flight

altitude, UAV position errors, and measurement errors, is analyzed. Furthermore, for the required location

accuracy, the feasible regions of these factors are determined based on their influence, and the location

accuracy will satisfy the requirements if all factors are within the feasible regions. Finally, simulation results

from the MATLAB/Simulink toolbox are presented to show the effectiveness of the proposed method and

the availability of the feasible regions.

Keywords unmanned aerial vehicle, UAV, relative distance, cooperative localization, location effectiveness

analysis, feasible regions
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1 Introduction

Locating a ground target using a UAV has attracted considerable attention in many research fields owing

to its prominent advantages [1–3]. A single UAV was used to estimate the location of a target in the

past [4,5], but it cannot satisfy the higher precision requirements. The determination of a target location

through the cooperative use of multiple UAVs has recently appeared, and has rapidly become a high-

precision location method [6, 7].

Cooperative localization is increasingly being used by the military and in scientific research fields [8]. An

increasing number of scholars have conducted studies in this area and have achieved fruitful results. The

constrained total least-squares location algorithm using time-difference-of-arrival (TDOA) measurements,

as proposed by Yang et al. [9], achieves a high level of accuracy; however, it does so by ignoring the location

errors of the observers. Similarly, a method proposed by Niculescu [10] has the same disadvantage. A

TOA localization algorithm proposed by Zhu et al. [11] achieves a high location accuracy when the

sensor location information is precisely known; however, once random location errors occur, its position

performance drops sharply. Moreover, an algorithm proposed by Grewal et al. [12], which estimates the

target location by utilizing the relative distances and position of the observers, also neglects their location
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Figure 1 (Color online) Example of cooperative localization using three UAVs.

errors. The above methods are unable to adapt to situations in which the location errors of the observers

are too large to ignore; in other words, it is necessary to investigate an algorithm that is more effective

and suitable for cooperative localization.

The proposed method ensures high positioning accuracy and resolves the influence of position errors

of the UAVs synchronously, which is inspired by the study in [13]. The main contributions of this paper

are as follows:

(a) A cooperative localization method is proposed, the effectiveness and suitability of which are proven

through simulation results.

(b) Feasible regions of the flight altitude, UAV position errors, and measurement errors are determined

for the specific requirements of the location accuracy, providing a good location window for reference.

2 Location calculation

2.1 Problem formulation

Assume that multiple UAVs, which are equipped with a GPS receiver and a ranging sensor, circle around

the same target. The position coordinates of each UAV can then be obtained using the GPS receiver,

and the relative distances from each UAV to the target can be measured using the ranging sensor. An

example of cooperative localization using three UAVs is shown in Figure 1.

2.2 Location and calculation

The main idea of location algorithm is as follows:

Step 1. The initial location x0 of the target is calculated using the initial location algorithm [12].

Step 2. Localization equations based on measurement errors are expanded in a Taylor series regarding

a certain nominal solution x0, and the expression of the location solution can be deduced through the

proposed algorithm.

Step 3. The λ parameter in the expression of the location can be solved using an approximate solution

for the singular value decomposition, and the target location can be obtained by substituting λ into the

expression.

2.2.1 Initial location x0

In an earth-centered inertial coordinate system, the relative distances ρi from the target to each UAV,

which has known coordinates xi = [xi, yi,zi]
T (where i = 1, 2, 3), and unknown target coordinates
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xt = [xt, yt,zt]
T, are given by

ρi = ‖xi − xt‖ =

√

(xi − xt)
2
+ (yi − yt)

2
+ (zi − zt)

2
, (1)

where i denotes the index of the UAVs, as shown in Figure 1, and at least three UAVs are required. Let

{

r2 = (xt
2 + yt

2 + zt
2),

ri
2 = (xi

2 + yi
2 + zi

2),
(2)

where r is the radius of the earth. Taking the square for both sides of (1) and substituting the relevant

terms with (2), we have the initial location equations

ρi
2 − ri

2 − r2 = −2(xixt + yiyt + zizt). (3)

The equations are expressed as follows:















ρ1
2 − r1

2 − r2 = −2(x1xt + y1yt + z1zt),

ρ2
2 − r2

2 − r2 = −2(x2xt + y2yt + z2zt),

ρ3
2 − r3

2 − r2 = −2(x3xt + y3yt + z3zt).

(4)

Eq. (4) can also be expressed in vector form as

A1xt=B1, (5)

where

B1 =









ρ1
2 − r1

2 − r2

ρ2
2 − r2

2 − r2

ρ3
2 − r3

2 − r2









, A1 =









−2x1 −2y1 −2z1

−2x2 −2y2 −2z2

−2x3 −2y3 −2z3









, xt =









xt

yt

zt









.

To obtain xt, both sides of (5) are multiplied by A1
−1, giving

xt=A1
−1 ·B1. (6)

Now, an approximate estimation of the target location can be calculated. Let x0 = xt, and in the

following algorithm, apply the results in a Taylor series.

2.2.2 Expression of the location solution

The relative distance ρi between the target and UAVi can be expressed as

ρi = ‖xi − xt‖+ ερi, i = 1, 2, 3. (7)

Assume that ερi is the measurement error of UAVi, which has a Gaussian random distribution with zero

mean and variance σ2
ρ. Let us expand the right-hand side of (7) in a Taylor series for x0 = [x0, y0,z0]

T
,

and neglect higher order terms.

ρi = ‖xi − x0‖ −
(xi − x0)(xt − x0)

‖xi − x0‖
−

(yi − y0)(yt − y0)

‖xi − x0‖
−

(zi − z0)(zt − z0)

‖xi − x0‖
+ ερi. (8)

Define

‖xi − x0‖ = ρi ∗ . (9)

From (8) and (9), a location equation in vector format can be obtained as

Ay = B, (10)
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where

A =









x1−x0

ρ∗

1

y1−y0

ρ∗

1

z1−z0
ρ∗

1

x2−x0

ρ∗

2

y2−y0

ρ∗

2

z2−z0
ρ∗

2

x3−x0

ρ∗

3

y3−y0

ρ∗

3

z3−z0
ρ∗

3









, y =









xt − x0

yt − y0

zt − z0









, B =









ρ∗1 − ρ1 + ερ1

ρ∗2 − ρ2 + ερ2

ρ∗3 − ρ3 + ερ3









.

To reckon ỹ, similar to (6), we have

ỹ =A−1B. (11)

Now, the solution to the location equation is calculated, the data preparation for which applies the

following algorithm.

Then, a complete location equation is obtained by introducing the UAV position errors into the location

equation (10). Assuming that the UAV position errors ∆xi have an uncorrelated Gaussian random

distribution with zero mean and variance σ2
i , it is thus clear that a noise disturbance occurs in vectors

A and B of (11). Let ∆xi = [ ∆xi ∆yi ∆zi ]
T, leading into (10), and then the equation is expressed as

[

xi − x0

ρi∗
− ai ·∆xi

yi − y0

ρi∗
− bi ·∆xi

zi − z0

ρi∗
− ci ·∆xi

]









xt − x0

yt − y0

zt − z0









= ρi ∗ −di∆xi − ρi + ερi, (12)

where

ai =
∂(xi−x0

ρi∗
)

∂∆xi

=

[

1

ρi∗
−

(xi − x0)
2

(ρi∗)
3 −

(xi − x0)(yi − y0)

(ρi∗)
3 −

(xi − x0)(zi − z0)

(ρi∗)
3

]

, (13)

bi =
∂(yi−y0

ρi∗
)

∂∆xi

=

[

−
(xi − x0)(yi − y0)

(ρi∗)
3

1

ρi∗
−

(yi − y0)
2

(ρi∗)
3 −

(yi − y0)(zi − z0)

(ρi∗)
3

]

, (14)

ci =
∂( zi−z0

ρi∗
)

∂∆xi

=

[

−
(xi − x0)(zi − z0)

(ρi∗)
3 −

(yi − y0)(zi − z0)

(ρi∗)
3

1

ρi∗
−

(zi − z0)
2

(ρi∗)
3

]

, (15)

di =
∂ρi∗

∂∆xi

=

[

xi − x0

ρi∗

yi − y0

ρi∗

zi − z0

ρi∗

]

. (16)

From the equations above, an error equation in symbolic form is

(A−∆A)y = (B −∆B) . (17)

Let


























































∆x = [ ∆x1 ∆x2 ∆x3 ]
T,

G1 = diag[ a1 a2 a3 ],

G2 = diag[ b1 b2 b3 ],

G3 = diag[ c1 c2 c3 ],

G4 = diag[ d1 d2 d3 ],

A∗= A−∆A,

B∗= B −∆B.

(18)

Then, ∆A and ∆B of (17) can be expressed as

{

∆A = [ ai ·∆xi bi ·∆xi ci ·∆xi ] = [G1 ·∆x G2 ·∆x G3 ·∆x ],

∆B = [di ·∆xi] = [G4 ·∆x] .
(19)

Eqs. (18)–(20) can infer the following:

A∗y =B∗. (20)
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To reckon y, let Hy = xG1 + yG2 + zG3 −G4, where (x, y, z) indicates the data preparation in (11),

and the solution to the proposed algorithm is therefore

{

min(‖∆x‖
2
2 + λ ‖y‖

2
2),

s.t. Ay −B +Hy∆x = 0.
(21)

It is clear that Hy must be a diagonal matrix, and that its diagonal elements are not 0, and thus Hy
−1

can be calculated. Then, Eq. (22) will lead to

{

∆x = −H−1
y (Ay −B),

‖∆x‖
2
2 = ∆xT ·∆x = (Ay −B)

T
H−2

y (Ay −B).
(22)

By substituting the relevant terms in (21) with (22), the solution vector of (21) can be expressed as

yTLS = argmin
(

‖∆x‖
2
2 + λ ‖y‖

2
2

)

= argmin
[

(Ay −B)
T
H−2

y (Ay −B) + λyTy
]

. (23)

To calculate yTLS, a derivation is taken as

∂
(

‖∆x‖
2
2 + λ ‖y‖

2
2

)

∂y
=

[

2ATH−2
y (Ay −B) + (Ay −B)T

∂H−2
y

∂y
(Ay −B) + 2λy

]

= 0, (24)

for which

(Ay −B)T
∂H−2

y

∂y
(Ay −B)

= (Ay −B)T
∂H−2

y

∂(x− x0)
(Ay −B) + (Ay −B)T

∂H−2
y

∂(y − y0)
(Ay −B) + (Ay −B)T

∂H−2
y

∂(z − z0)
(Ay −B).

(25)

Neglecting the cross terms and small quantities of (25), Eq. (24) becomes

ATH−2
y Ay + λy = ATH−2

y B. (26)

The expression of the location solution can be inferred as follows:

yTLS =
(

ATH−2
y A+ λI

)−1
ATH−2

y B, (27)

where A,B, and Hy are known from the relative distance, position of the UAVs, and data preparation

in (11). However, the value of λ is still unknown.

2.2.3 Solving the value of λ

Let

yTLS = y∗ + δy, (28)

where y∗ is the true value of y, and δy is the deviation of yTLS and y∗; thus, substituting (26) into (24)

gives

ATH−2
y (Ay∗ +Aδy −B) + λ (y∗ + δy) = 0. (29)

From (18), (20) and (29), Eqs. (30) and (31) can be obtained as

ATH−2
y (∆Ay∗ +A∗δy −∆B) + λ (y∗ + δy) = 0, (30)

−Hy∆x = (A∗ +∆A)y − (B∗ +∆B) = (A∗y −B∗) + ∆Ay −∆B = ∆Ay∗ −∆B . (31)

Substituting (31) into (30) will be expressed as

A∗TA−2
y (A∗δy −Hy∆x) + λ (y∗ + δy) = 0. (32)
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Eq. (32) can be deformed as

δy =
(

A∗TH−2
y A∗ + λI

)−1 (
A∗TH−1

y ∆x− λy∗
)

. (33)

The mean square error δy is as follows:

MSE (δy) = E
(

δyTδy
)

= E

[

(

A∗TH−1
y ∆x− λy∗

)T
(

(

A∗TH−2
y A∗ + λI

)−1
)T
(

A∗TH−2
y A∗ + λI

)−1 (
A∗TH−1

y ∆x− λy∗
)

]

.

(34)

It is obvious that this is a symmetric matrix, and the following equation can be obtained

(

A∗TH−2
y A∗ + λI

)−1
=
(

(

A∗TH−2
y A∗ + λI

)−1
)T

. (35)

Substituting (35) into (34) gives a reduction of (34):

MSE (δy) =λ2y∗T
(

A∗TH−2
y A∗ + λI

)−2
y∗

+ E
[

∆xTH−1
y A∗

(

A∗TH−2
y A∗ + λI

)−2
A∗TH−1

y ∆x
]

. (36)

Because it is virtually impossible to obtain the real values (A∗), the measured values (A) can be used

instead. Moreover, the value of λ can be calculated as follows:

λ̂ = argmin
λ

[MSE(δy)]

= argmin
λ

{[λ2yT(ATH−2
y A+ λI)−2y] + E[∆xTH−1

y A(ATH−2
y A+ λI)−2ATH−1

y ∆x]}.
(37)

Define






p = λ2yT(ATH−2
y A+ λI)

−2
y,

q = E[∆xTH−1
y A(ATH−2

y A+ λI)
−2

ATH−1
y ∆x].

(38)

Obtaining the diagonalization of ATH−2
y A gives

ATH−2
y A = QTΛQ = QTdiag (µ1, µ2, µ3)Q, (39)

and (ATH−2
y A+ λI)−2 can be expressed as

(ATH−2
y A+ λI)−2 = QTdiag

[

(µ1 + λ)−2
, (µ2 + λ)−2

, (µ3 + λ)−2
]

Q = QTDQ , (40)

where

D = diag
[

(µ1 + λ)
−2

, (µ2 + λ)
−2

, (µ3 + λ)
−2
]

. (41)

Finally, substituting (40) into (38) gives

{

p = λ2yTQTDQy = λ2(Qy)
T
DQy,

q = E[∆xTH−1
y AQTDQATH−1

y ∆x] = E[(QATH−1
y ∆x)

T
DQATH−1

y ∆x].
(42)

Let C1 and C2 be two column vectors that satisfy the following expressions, C1 = Qy and C2 =

QATH−1
y ∆x, where











C1 =
(

c11 c12 c13

)T

,

C2 =
(

c21 c22 c23

)T

.
(43)

According to [14], the MSE(δy) has a unique minimum in this interval, namely,
[

min
E
{

c21i
}

c22iµi

,max
E
{

c21i
}

c22iµi

]

, i = 1, 2, 3. (44)
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In addition, in the present paper, the value of λ is chosen as

λ̂ =
1

2
min

E
{

c21i
}

c22iµi

+
1

2
max

E
{

c21i
}

c22iµi

. (45)

Substituting the value of λ into (27), the location solution of the target can be calculated.

As a summary, the solution of the location is listed as

yTLS =

(

ATH−2
y A+

(

1

2
min

E
{

c21i
}

c22iµi

+
1

2
max

E
{

c21i
}

c22iµi

)

I

)−1

ATH−2
y B. (46)

Thus far, the solution of the target has been calculated through the proposed method; its performance

will be analyzed in the following sections.

3 Simulation and analysis

From the location algorithm above, the cooperative location accuracy is impacted through three factors,

namely, the UAV position errors, measurement errors, and the flight altitude. The influences of these

factors are thus analyzed successively, and feasible regions of these factors can be determined for the

location accuracy requirement.

3.1 Assumption

To validate the proposed method through a simulation, the following assumptions are made.

Assumption 1. Three UAVs fly around the target and maintain the formation of the UAVs.

Assumption 2. The position measurement and measurement errors of each UAV have the same mea-

surement covariance:
{

σi
2 = σ2

1 ,

σρ
2 = σ2

2 ,
(i = 1, 2, 3).

Assumption 3. The coordinate system is defined as the geocentric coordinate system, namely, the

coordinate origin at the center of the earth, and we assume that the earth is a homogeneous sphere whose

radius is the average radius:

r = 6371.004 km.

Assumption 4. The setting requirement of the location accuracy is less than 10 m.

3.2 Simulation results

3.2.1 Analysis of effectiveness and suitability of the proposed method

The proposed method described herein is implemented using the location algorithm above, and the Grewal

MS method, which was introduced in Subsection 2.2. Then, assume that the real location of the target

is x = (6371, 20, 0.02) and that the initial locations of three UAVs are as listed in Table 1. Comparisons

of the location accuracy between the proposed and Grewal MS methods are conducted based on two

aspects: the UAV position errors can be ignored, the result of which is shown in Figure 2, or the UAV

position errors are too large to ignore, the result of which is shown in Figure 3.

Figure 2 shows the simulation results when the measurement errors are uniformly distributed on [0, 0.01]

during each trial. Again, the proposed technique is more accurate at medium to high measurement errors,

and close to the Grewal MS method at low to medium measurement errors. Thus it is obvious that the

proposed method behaves better when the UAV position errors are zero. It can be clearly seen that

the location accuracy of the Grewal MS method is limited by the precision of the earth’s radius, which

introduces errors in the processing of the algorithm. In addition, the accuracy of the proposed method

is insensitive to the positioning results of the Grewal MS method; in other words, the accuracy of the
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Table 1 Initial locations of UAVs

UAV Location (km, km, km)

UAV1 (6370.1, 19.5, 1)

UAV2 (6371.9, 19.5, 1)

UAV3 (6371.1, 20.9, 1)

2 10

Measurement errors (km) ×10−3

0.005

0.010

0.020

0.015

L
o
ca

ti
o
n
 e

rr
o
rs

 (
k
m

)

Grewal MS method

Proposed

4 6 8 2 10

UAV position errors (km)

0.005

0.010

0.015

0.020

L
o
ca

ti
o
n
 e

rr
o
rs

 (
k
m

)

Grewal MS method

Proposed

4 6 8

×10−3

Figure 2 (Color online) Location accuracy of the pro-

posed method compared to the Grewal MS method when

the UAV position errors are ignored.

Figure 3 (Color online) Location accuracy of the pro-

posed method compared to the Grewal MS method when

the UAV position errors cannot be ignored.

earth’s radius has little effect on the precision of its solution. Therefore, the proposed method is more

effective than the Grewal MS method.

Then, the UAV position errors are added to the simulation and measurement errors, which are fixed

as σ2 = 0.002. As shown in Figure 3, the difference in location accuracy is significantly increased when

compared with Figure 2, indicating that the Grewal MS method is more sensitive to the increase in the

UAV position errors than the proposed method. Evidently, the proposed method is much more accurate

at low to medium UAV position errors.

3.2.2 Influence of measurement errors and UAV position errors on the accuracy

The main idea here is to analyze such influence as follows:

(a) Set the initial values of the three factors.

(b) Let the covariance of the measurement errors satisfy the following equation, 0.001 6 σ2 6 0.01,

and finish the simulation.

(c) Add 0.001 to σ1 and repeat (b) until σ1 = 0.008.

(d) The initial feasible region of the measurement errors is obtained by combining all of the simulation

results above.

All of the simulation results are shown in Figure 4.

As Figure 4 shows, every curve maps a value of σ1 from 0.001 to 0.008, and with an increase in σ2 from

0.001 to 0.01, the location error also increases in the overall trend. Through an analysis of σ1 = 0.006,

we can see that the location errors slightly decrease initially, and then increase as σ2 increases, and the

value of the location errors will be less than 0.010 km if σ2 < 0.006.

3.2.3 Influence of flight altitude on accuracy

Assuming h is uniformly distributed on [1, 10] and other two factors satisfy σ1 = σ2 = 0.002, the influence

of h on the accuracy can then be expressed.

Figure 5 shows simulation results when h is uniformly distributed on [1, 10] during each trial. Again,

the location errors decrease with the increase in h. More concretely, the higher the UAVs fly, the smaller

the location errors that occur.
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2
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2 10

Measurement errors (km)
×10−3

×10−3
×10−3

Measurement errors (km)
×10−3

4 6 8 2 104 6 8

σ
1
=0.001

σ
1
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σ
1
=0.003

σ
1
=0.004

σ
1
=0.005

σ
1
=0.006
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=0.007

σ
1
=0.008

(a) (b)

Figure 4 (Color online) Location errors mapped with measurement errors. (a) σ1 = 0.001, 0.002, 0.003, 0.004; (b)

σ1 = 0.005, 0.006, 0.007, 0.008.

Flight altitude (km)

9

9.5
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)

2 10

×10−3

4 6 8

Measurement covariance (km)
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 (
k
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)

h=1 km

h=8 km

2 10

×10−3

4 6 8

Figure 5 (Color online) Location errors based on the

flight altitude.

Figure 6 (Color online) Comparison of accuracy between

flight altitude of 1 km and flight altitude of 8 km when σ is

random.

An overall consideration of the influence should be given by adding the UAV position errors and

the measurement errors. Assume that they satisfy σ1 = σ2 = σ, where σ2 indicates the measurement

covariance.

From Figure 6, the location errors decrease with the increase in the measurement covariance. Moreover,

the location errors of h = 8 km are more accurate at medium to high measurement covariance, and are

close to the location errors of h = 1 km at low to medium measurement covariance, which also indicates

that the higher the UAVs fly, the smaller the location errors that occur.

3.3 Results analysis

From Figures 2 and 3, the excellent performance of the proposed method is proved, and regardless of

whether the influence of the UAV position errors is considered, the proposed method is much more

accurate than the Grewal MS method.

As shown in Figure 4, the smaller σ2 is, the smaller the location errors that occur. Moreover, combining

all the simulation results, the location accuracy can satisfy the location accuracy requirement if σ1 6

0.006 km and σ2 6 0.006 km. As a supplement, the simulations are based on h = 1 km, which means

the conclusion is only an initial feasible region.

Figure 5 shows that the location errors decrease with the increase in h. More concretely, the errors

decrease sharply at low to medium elevation but decrease slightly at medium to high elevation. In other

words, the location accuracy of h > 1 km can absolutely satisfy the location accuracy requirement when
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h = 1 km. Thus, the feasible regions can be concluded as follows: σ1 6 0.006 km, σ2 6 0.006 km,

and h > 1 km. Furthermore, Figure 6 verifies the conclusion that the location accuracy will satisfy the

requirement if all factors are within the feasible region.

4 Conclusion

We proposed a ground target cooperative localization method, the effectiveness and benefits of which

were proved through a comparison with a traditional method. As a demonstration illustrating how to

deduce the feasible regions, the value regions of the key factors were determined for the location accuracy

requirement. Once all factors are within the feasible regions, the location accuracy will certainly satisfy

the requirement.
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