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Abstract For maneuvering target tracking with sensor faults, consensus-based distributed state estimation

problems are studied herein. The communication status of the nonlinear system composed of multiple agents

is described using the graph theory. Considering the impacts caused by sensor failures on measurement

equations, a weighted average consensus-based unscented information filter (UIF) algorithm is proposed to

improve tracking accuracy. Moreover, the estimation error for the investigated nonlinear system has been

analyzed based on the stochastic boundedness theory to evaluate the proposed algorithm’s performance and

feasibility. Finally, simulation results are presented to assert the validity of the method.
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1 Introduction

Currently, maneuvering target tracking has been widely studied in both the military and civil fields for bal-

listic missile defense, intercept guidance, maritime surveillance, obstacle avoidance, bionic breakthroughs,

among others [1–4]. Mobile vehicles including unmanned aerial vehicles (UAVs), missiles, robots, among

others, can perform the tasks mentioned above (see example [5–8]). The research results in previous

studies [9–12] indicate that a group of vehicles operating collaboratively exhibits many advantages such

as precision, robustness, energy saving, and scalability, compared with an independent one.

Cooperative tracking aims at collecting and fusing the observations provided by mobile sensor networks,

and designing estimation approaches to help a group of vehicles track the intended target. This tracking

technology can improve the performance of the information fusion system, reduce the system response

time, optimize resource allocation, save cost, and reduce the workload of operators. In the study of

cooperative tracking, the group of mobile vehicles are always treated as a multi-agent system, such that

most algorithms are not required to be specific to particular platforms [13]. An agent may represent a

vehicle, a fixed sensor, a monitoring station, or a combination of them. The treatment can extend the

universality and applicability of cooperative tracking algorithms.

Generally, the performance of the cooperative tracking technique for multi-agent systems is evaluated

based on two criteria: (1) tracking accuracy; (2) node energy consumption. In recent years, international

and domestic researchers have proposed new algorithms and schemes to improve the accuracy and reduce
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the consumption simultaneously using different methods. The fault-tolerant cooperative tracking tech-

nique that is used for solving problems caused by environmental disturbance, sensor faults, poor accuracy

of a single agent, or packet losses during communication, is a popular research topic [14, 15].

Hitherto, many significant results have been achieved by scholars. Focusing on the problem of obser-

vation packet loss, Li et al. [16] proposed a distributed state estimation method combining an optimal

consensus-based filter and a suboptimal filter. Regarding intermittent observations, Tan et al. [17] adopted

the cubature information filter for multiple sensor fusing to reduce the estimation errors. The distributed

cubature information filter (CKF)-based algorithm for nonlinear estimation proposed in [18] proved its

superiority compared with sigma point information filtering, and extended the application fields. By con-

sidering bounded noises, Chen et al. [19] adopted a unified mathematical model to describe the resource

constraints and quantization effect, and designed a novel local estimator for time-varying systems.

Motivated by the achievements above, we herein propose an unscented information filter (UIF)-based

cooperative tracking method for mobile sensor networks. The algorithm can be applied to solve the

target’s state estimation problems for nonlinear multi-agent systems with consideration of sensor failures.

Moreover, the filter performance is evaluated according to the boundedness analysis of the estimation

error. In this study, the sensors are assumed to fail intermittently during the course of tracking; hence, the

systems cannot guarantee the stability and reliability of the measurements. If a sensor has malfunctioned

completely and does not provide any output, the problem can be regarded as one for a new multi-agent

system, whose agents are less than in the original system.

In contrast to the previous work on target tracking, the novelty of this study can be summarized as

follows. (i) Unlike traditional consensus filtering methods, the proposed filtering approach combines the

theory of weighted average consensus with UIF, and can be applied in nonlinear systems with sensor

faults. In [16, 20–22], the systems were required to be linear or time invariant. Our simulation analyses

proved that the filter adopted in this work is better than the other filters in [23–26]. The influence caused

by sensor faults was not considered in [16–24]. (ii) The estimation error is analyzed and guaranteed to

be bounded based on the stochastic stability lemma, which is challenging because of the information

exchange among the group. The discussions about stochastic stability in [17, 18, 24–26] did not include

the unscented information filter for systems with sensor failures.

The remainder of this article is organized as follows. The cooperative tracking problem for mobile

sensor networks is formulated in Section 2. Section 3 provides the proposed cooperative tracking algorithm

combining UIF and the weighted average consensus theory, and the analysis of the stochastic boundedness

of the estimation error. Mathematical simulations in Section 4 indicate the performance of the proposed

method. Conclusion is drawn in the end.

The following notations will be adopted throughout the article. Let R denote the real number field,

and R
n×m be the set of n×m real matrices. IN represents an identity matrix of dimension N , and 1N

represents a column vector all of whose elements are 1. ‖ · ‖ represents the Euclidean norm in R
n. PT

denotes the transpose of the matrix P , and P−1 means inverse.

2 Problem formulation and representation

In this section, a detailed analysis of the cooperative tracking problem for mobile sensor networks with

sensor failures is performed, and the maneuvering target model is constructed according to the assumed

trajectory. Meanwhile, the graph theory is introduced to describe and study this multiple sensor networks.

2.1 Problem statement

For a typical target tracking system, the discrete-time nonlinear dynamic and measurement equations

are as follows:
{

xk = f(xk−1) +wk−1,

zk = h(xk) + vk.
(1)
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Consider a nonlinear multi-agent system composed of N independent mobile vehicles tracking a single

target (shown as a mass point), in which each vehicle is equipped with one sensor and the sensor failure

may occur at odd intervals.

Therefore, the cooperative tracking problem considering the case of sensor failures can be described as

follows:
{

xk = f(xk−1) +wk−1,

zi
k = λi

kh
i(xk) + vi

k, i = 1, 2, . . . , N,
(2)

where xk ∈ R
n represents the state vector, zi

k ∈ R
m represents the observation vector associated with the

i-th agent, and both f(·) and h(·) are continuously differentiable functions that represent the state tran-

sition and measurement, respectively. The covariance matrices of the process noise wk and observation

noise vi
k are given by











Qk = E
[

wk(wk)
T
]

,

Ri
k = E

[

vi
k(v

i
k)

T
]

,
(3)

where both wk and vi
k are white Gaussian sequences with zero mean; Qk and Ri

k are the covariance

matrices of wk and vi
k, respectively.

We introduce the random variable λi
k into the measurement equation to describe the influence of sensor

fault on target tracking. Equation λi
k = 1 means that the sensing device of the i-th agent performs well

at time k; meanwhile, λi
k = 0 means that the malfunctioning of the sensor causes the observer failure

(without useful output). The random variable λi
k obeys the following distribution rules:

{

P (λi
k = 1) = 1− δ,

P (λi
k = 0) = δ,

0 6 δ 6 1. (4)

If {λi
k = 1, i = 1, 2, . . . , N} during the entire movement, the problem discussed herein can be simplified

to the typical cooperative tracking based on the consensus theory. In addition, all the agents are assumed

to be equipped with communication devices to share the observation information (state variables of the

target) within the group.

2.2 Maneuvering target model

Without loss of generality, the typical maneuvering target models are discussed in a two-dimensional case.

The coordinated turn (CT) model is typically used to describe the dynamic model of the maneuvering

target
{

ξ̈ = −ωη̇,

η̈ = ωξ̇,
(5)

where ω represents the angular velocity; ξ and η denote the coordinate components in the X and Y

directions of the rectangular coordinate system, respectively.

The state variable is described as x = [ξ, ξ̇, η, η̇]T, and the state equation is

ẋ(t) =













ξ̇

−ωη̇

η̇

ωξ̇













+Bw(t) = Ax(t) +Bw(t), (6)

where w(t) refers to the process noise,

A =













0 1 0 0

0 0 0 −ω

0 0 0 1

0 −ω 0 0













, B =













0 0

1 0

0 0

0 1













.
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The discrete-time model of the system’s state equation has the following form:

Xk =













ξk

ξ̇k

ηk

η̇k













= FXk−1 +GWk−1, (7)

where

F =

















1
sinωT

ω
0 −

1− cosωT

ω
0 cosωT 0 − sinωT

0
1− cosωT

ω
1

sinωT

ω
0 sinωT 0 cosωT

















, G =























1− cosωT

ω2

sinωT − ωT

ω2

sinωT

ω

cosωT − 1

ω
ωT − sinωT

ω2

1− cosωT

ω2

1− cosωT

ω

sinωT

ω























,

Xk is the state of the target at the discrete time tk, and T represents the sampling period.

Because ωT ≈ 0, one can obtain

G ≈













T 2/2 0

T 0

0 T 2/2

0 T













.

2.3 Communication

Communication is the basis of collaboration for multi-agent systems. In practice, the communication

performance is limited by the capability of the available device, and deeply affected by the platform’s

motion and the complex battlefield environment.

Consider a multi-agent system composed of N independent mobile vehicles, and suppose that each

agent can only exchange information effectively with its neighbors that are moving in its communication

range. Each agent can be shown as a node. Therefore, the set of all the neighboring nodes of the i-th node

can be expressed as V i. Further, a weighted undirected graphG[k] = {V ,E[k]} is adopted to describe the

communication relationships between the agents of the cooperative system. V = {1, 2, . . . , N} represents

the set of all the nodes, and edge E ⊆ {(vi, vj) : vi, vj ∈ V , i 6= j} denotes the set of communication

connections between i and j. The edge of graph G[k] is defined as eij = (vi, vj). An edge eij is undirected

if and only if eij , eji ∈ E[k], and information exchanges between them are completely equivalent.

We define the incidence matrix A[k] as follows:

Aij [k] =

{

1, if i 6= j & (i, j) ⊆ E[k],

0, otherwise.
(8)

Based on (8), let L[k] ∈ R
N×N be the Laplacian matrix of the graph G[k]:

Lij [k] =















−Aij [k], if i 6= j,

N
∑

j=1,j 6=i

Aij [k], if i = j.
(9)

From the analyses of (8) and (9), when graphG[k] is undirected, A[k] and L[k] are symmetric matrices.

To obtain the precise estimation of the target’s state, it is necessary for each node to exchange information

with its neighbors using distributed estimation methods. It is assumed that the graph G[k] discussed

herein is not fully connected.
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The following two problems for the discussed systems (2) are primarily studied in the remainder of the

paper: (i) the method to design a cooperative tracking algorithm to improve the estimation performance

considering the influence of λi
k; (ii) the method to prove the boundedness of the estimation error in mean

square.

3 Primary results

For mobile sensor networks, cooperative tracking implies the collaboration among the nodes for the filter

estimation regarding the target’s state variables. An effective filtering algorithm must be designed to fuse

the observations from different nodes and to obtain the optimal estimation.

3.1 Unscented information filter

We define an augmented state vector x̂a
k|k = [x̂k, ŵk]

T. Similarly, the augmented covariance matrix is

P a
k|k =

[

Pk 0

0 Qk

]

.

We select 2n+ 1 sigma points as follows (i = 1, . . . , n):

χχχa
0,k = x̂a

k|k,

χχχa
i,k = x̂a

k|k +
[√

(n+ θ)P a
k|k

]

i
,

χχχa
i+n,k = x̂a

k|k −
[√

(n+ θ)P a
k|k

]

i
.

(10)

The corresponding weights for the mean and covariance are given by

Wm
0 = θ/(n+ θ),

Wm
i = 1/[2(n+ θ)],

W c
0 = θ/(n+ θ) + (1− α2 + β),

W c
i = 1/[2(n+ θ)], i = 1, . . . , 2n,

(11)

where scalar θ is a scale parameter, α, β, κ are method parameters, and θ = α2(n+ κ)− n.

The prediction equations of UIF are different from unscented Kalman filter (UKF),

Yk+1|k = (Pk+1|k)
−1, (12)

ŷk+1|k = Yk+1|k

2n
∑

i=0

Wm
i χχχx

i,k+1, (13)

where Yk+1|k and ŷk+1|k are the predicted information covariance and state vector, respectively. The

predicted sigma point vector χχχx
i,k+1 = f(χχχx

i,k,χχχ
w
i,k, k); therefore, the predicted state covariance matrix

can be calculated by

Pk+1|k =

2n
∑

i=0

W c
i (χχχ

x
i,k+1 − x̂k+1|k)(χχχ

x
i,k+1 − x̂k+1|k)

T
. (14)

In the error-propagation step, the observation covariance and cross-correlation covariance are

P
z,z
k+1|k = E

[

(zk+1 − ẑk+1|k)(zk+1 − ẑk+1|k)
T
]

≃ Hk+1Pk+1|kH
T
k+1, (15)

P
x,z
k+1|k = E

[

(xk+1 − x̂k+1|k)(zk+1 − ẑk+1|k)
T
]

≃ Pk+1H
T
k+1, (16)
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where zk = h(xk) and Hk+1 denotes the linearized measurement matrix. Based on (15) and (16), the

information state contribution ik+1 and its information matrix Ik+1 are given by

ik+1 = (Pk+1|k)
−1P

x,z
k+1|kR

−1
k+1

[

vk+1 + (P x,z
k+1|k)

T
(Pk+1|k)

−T
x̂k+1|k

]

, (17)

Ik+1 = (Pk+1|k)
−1P

x,z
k+1R

−1
k+1(P

x,z
k+1)

T(Pk+1|k)
−1. (18)

We define the pseudo-measurement matrix ΨΨΨk+1 satisfying ΨΨΨT
k+1 = (Pk+1|k)

−1P
x,z
k+1|k. Hence, the

information contribution equations are

{

ik+1 = ΨΨΨT
k+1R

−1
k+1(vk+1 +ΨΨΨk+1x̂k+1|k),

Ik+1 = ΨΨΨT
k+1R

−1
k+1ΨΨΨk+1.

(19)

Therefore,

zk+1 = h(xk+1, k + 1) ≃ ΨΨΨk+1xk+1 + ũk+1, (20)

x̂k+1|k+1 = Pk+1|k+1ŷk+1|k+1, (21)

where ũk+1 = h(x̂k+1|k)−ΨΨΨk+1x̂k+1|k.

3.2 UIF-based cooperative tracking algorithm

By considering sensor faults, we assume that the sensor of node i fails during the course of tracking. The

update equations for the distributed nonlinear estimation are

Y i
k = Y i

k|k−1 + λi
kI

i
k +

∑

j∈Ni

λj
kI

j
k, (22)

ŷi
k = ŷi

k|k−1 + λi
ki

i
k +

∑

j∈Ni

λj
ki

j
k, (23)

where Ni represents the set of neighbor nodes of the i-th node.

The typical form of the distributed consensus method is:

ζζζi(l + 1) = W i,iζζζi(l) +
∑

j∈Ni

W i,jζζζj(l), (24)

where W i,j denotes the weight of ζζζj to the i-th node, and satisfies W1 = 1 herein based on the weighted

average consensus theory [23].

In the UIF-based cooperative tracking algorithm with sensor faults, each node i must collect the

measurements zi
k from all the neighboring nodes, and exchange the information contribution matrices

Ik and ik with its neighbors j ∈ Ni. We obtained the local estimation based on (22) and (23), and

performed the integration


















ŷi
k,l+1 = ωi,i

k ŷi
k,l +

∑

j∈Ni

ωi,j
k ŷ

j
k,l,

Y i
k,l+1 = ωi,i

k Y i
k,l +

∑

j∈Ni

ωi,j
k Y

j
k,l,

(25)

in which the consensus iteration is initialized by ŷi
k,0 = ŷi

k, Ŷ
i
k,0 = Ŷ i

k , l = 0, 1, . . . , L−1 (L is the number

of consensus step).

Therefore, the state estimation can be expressed as

x̂i
k = (Y i

k )
−1ŷi

k, (26)

where ŷi
k = ŷi

k,L, Y
i
k = Y i

k,L.
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3.3 Stochastic boundedness analysis

As in the previous work, the stochastic boundedness of the filtering estimation error in mean square is

introduced to evaluate the filtering method’s performance. Because sensor faults cause changes in the

estimation equations, the feasibility of the consensus algorithm must also be investigated.

First, we define a pseudo-system matrix F i
k−1 and an observation matrix H i

k as follows:

F i
k−1 = (P i

xk−1xk|k−1
)T(P i

k−1)
−1, (27)

H i
k = (P i

xkzk
)T(P i

k|k−1)
−1. (28)

We introduce the compensation instrumental diagonal matrices αααi
k = diag(αi

k,1, . . . , α
i
k,n) and βββi

k =

diag(βi
k,1, . . . , β

i
k,n) to neutralize the approximation error.

Then nonlinear system’s equations are shown as
{

xk = αααi
k−1F

i
k−1xk−1 +wk−1,

zi
k = λi

kβββ
i
kH

i
kxk + vi

k.
(29)

To demonstrate the stochastic boundedness of the estimation error, the stochastic stability lemma

in [27] is introduced herein.

Lemma 1. It is assumed that ζk denotes the stochastic process, and there exists another process Vk(ζk)

such that for ∀k,

p
−
‖ζk‖

2 6 V (ζk) 6 p̄‖ζk‖
2, (30)

E {Vk+1(ζk+1)|ζk} − Vk(ζk) 6 µ− εVk(ζk), (31)

where p
−
, p̄, µ, ε are positive real numbers and ε 6 1.

Consequently, the stochastic process is exponentially bounded in mean square. Therefore,

E
{

‖ζk‖
2}

6
p̄

p
−

E
{

‖ζ0‖
2}

(1− ε)k +
µ

p
−

k−1
∑

i=1

(1− ε)
i
. (32)

Based on Lemma 1, three assumptions that are standard, reasonable, and typically used in the related

literatures [16,17,25–27], are made for the stability analysis of the unscented information filtering method

before the proof of the stochastic boundedness.

Assumption 1. There are some nonzero real numbers α
−
, ᾱ, f

−
, f̄ , β

−
, β̄, h

−
, h̄ such that the following

inequalities hold for k > 1:

α
−

2I 6 αααi
k(ααα

i
k)

T 6 ᾱ2I, f
−

2
I 6 F i

k(F
i
k)

T 6 f̄2I,

β
−

2I 6 βββi
k(βββ

i
k)

T 6 β̄2I, h
−

2I 6 H i
k(H

i
k)

T 6 h̄2I.

Assumption 2. There are some positive real constants q
−
, q̄, r

−
, r̄ such that the following inequalities

are fulfilled for k > 1:

q
−
I 6 Qk 6 q̄I, r

−
I 6 Ri

k 6 r̄I.

Assumption 3. Suppose that there exist scalars s
−
, s̄ > 0 such that

s
−
I 6 Y i

k 6 s̄I,

when i ∈ N and k > 1.

Based on the assumptions above, the modified predicted error covariance can be described as

P i
k|k−1 = αααi

k−1F
i
k−1P

i
k−1(ααα

i
k−1F

i
k−1)

T +Qk−1. (33)
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Theorem 1. For the mobile sensor networks described by (2) that satisfies all the assumptions above,

the estimation error of the UIF-based cooperative tracking algorithm proposed herein is exponentially

bounded in mean square.

Proof. First, we consider the following definitions: the prediction error x̃i
k+1|k = xk+1 − x̂i

k+1|k, the

estimation error x̃i
k = xk − x̂i

k, x̃k+1|k = col(x̃i
k+1|k) and x̃k = col(x̃i

k). We suppose that the Perron–

Frobenius left eigenvector of WL is given by P = (p1, . . . , pN)T, and satisfies
∑

j∈N pjωi,j
L = pi.

We then discuss the following stochastic process:

V (x̃k+1|k) =
∑

i∈N

pi(x̃i
k+1|k)

T
Y i
k+1|kx̃

i
k+1|k. (34)

The following bounds are fulfilled:

pmins−
∥

∥x̃k+1|k

∥

∥

2
6 V (x̃k+1|k) 6 pmaxs̄

∥

∥x̃k+1|k

∥

∥

2
. (35)

It is known that x̃i
k+1|k = xk+1 − x̂i

k+1|k. Therefore, we obtain

x̃i
k+1|k = αααi

kF
i
k(xk − x̂i

k) +wk

=
∑

j∈N

ωi,j
L αααi

kF
i
k(Y

i
k )

−1
Y

j
k|k−1x̃

j
k|k−1 −

∑

j∈N

ωi,j
L αααi

kF
i
k(Y

i
k )

−1
(λj

kβββ
j
kH

j
k)

T
(Rj

k)
−1

v
j
k +wk

=
∑

j∈N

ΓΓΓi,j
k x̃

j
k|k−1 +

∑

j∈N

ΘΘΘi,j
k v

j
k +wk. (36)

In the formula above,

ΓΓΓi,j
k = ωi,j

L αααi
kF

i
k(Y

i
k )

−1Y
j
k|k−1,

ΘΘΘi,j
k = −ωi,j

L αααi
kF

i
k(Y

i
k )

−1(λj
kβββ

j
kH

j
k)

T(Rj
k)

−1.

Therefore, we obtain

E
{

V (x̃k+1|k)|x̃k|k−1

}

= ΦΦΦx
k+1 +ΦΦΦv

k+1 +ΦΦΦw
k+1, (37)

where

ΦΦΦx
k+1 = E











∑

i∈N

pi





∑

j∈N

ΓΓΓi,j
k x̃

j
k|k−1





T

Y i
k+1|k





∑

j∈N

ΓΓΓi,j
k x̃

j
k|k−1





∣

∣

∣

∣

∣

x̃k|k−1











,

ΦΦΦv
k+1 = E











∑

i∈N

pi





∑

j∈N

ΘΘΘi,j
k v

j
k





T

Y i
k+1|k





∑

j∈N

ΘΘΘi,j
k v

j
k





∣

∣

∣

∣

∣

x̃k|k−1











,

ΦΦΦw
k+1 = E

{

∑

i∈N

piwT
k Y

i
k+1|kwk

∣

∣

∣

∣

x̃k|k−1

}

.

Based on (33) and (37), we obtain (τ < 1)

Y i
k+1|k =

(

αααi
kF

i
k(Y

i
k )

−1
(αααi

kF
i
k)

T
+Qk

)−1

6 τ(αααi
kF

i
k)

−TY i
k (ααα

i
kF

i
k)

−1, (38)

ΦΦΦx
k+1 6 τE











∑

i∈N

pi





∑

j∈N

ωi,j
L Y

j
k|k−1x̃

j
k|k−1





T

Y i
k

∑

j∈N

ωi,j
L Y

j
k|k−1x̃

j
k|k−1











. (39)

Because Y i
k >

∑

j∈{Ni,i}
ωi,j
L Y

j
k|k−1, hence ΦΦΦ

x
k+1 satisfies

ΦΦΦx
k+1 6 τE







∑

i∈N

pi
∑

j∈N

ωi,j
L

(

x̃
j
k|k−1

)T
Y

j
k|k−1x̃

j
k|k−1







6 τE







∑

j∈N

pj
(

x̃
j
k|k−1

)T
Y

j
k|k−1x̃

j
k|k−1






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= (1− ε)E[V (x̃k+1|k)], (40)

in which ε = 1− τ .

Furthermore,

ΦΦΦv
k+1 +ΦΦΦw

k+1

= E











∑

i∈N

pi





∑

j∈N

ΘΘΘi,j
k v

j
k





T

Y i
k+1|k





∑

j∈N

ΘΘΘi,j
k v

j
k



+
∑

i∈N

piwT
k Y

i
k+1|kwk

∣

∣

∣

∣

∣

x̃k|k−1











. (41)

It is noteworthy that Eq. (33) can be rewritten as

Y i
k|k−1 =

(

αααi
k−1F

i
k−1(Y

i
k−1)

−1
(αααi

k−1F
i
k−1)

T
+Qk−1

)−1

. (42)

Suppose that Y i
k+1|k 6 sI. Then

ΦΦΦv
k+1 +ΦΦΦw

k+1 6 s







s
−

−1ᾱ2f̄2β̄2h̄2





∑

i,j∈N

pi(ωi,j
L )

2



m+ q̄

(

∑

i∈N

pi

)

n







, µ, (43)

in which m and n refer to the dimensions of zi
k and xk, respectively.

It follows from (40) and (43) that

E
{

V (x̃k+1|k)|x̃k|k−1

}

− V (x̃k|k−1) 6 µ− εV (x̃k|k−1). (44)

Based on Lemma 1 mentioned previously, we conclude that the stochastic process x̃k+1|k and x̃i
k+1|k

for each node all are exponentially bounded in mean square.

According to (36), one obtains

E
{

‖x̃i
k‖

2
}

6 α
−

−2f
−

−2
(

E
{

‖x̃i
k+1|k‖

2
}

− E
{

‖wi
k‖

2
})

. (45)

In conclusion, for the nonlinear multi-agent systems described in (2) that satisfy all the assumptions

above, the estimation error x̃i
k+1|k of the UIF-based cooperative tracking algorithm proposed herein is

exponentially bounded in mean square. This proof is completed.

Remark 1. The system’s state matrix and observation matrix are approximated to help solve the

problems caused by nonlinearity, and reduce the computational complexity, which refers to the statistical

linear regression method in [17, 23]. Unlike the filtering method in [23], the data fusion is processed

before the consensus iterations in the UIF-based cooperative tracking algorithm, to obtain more precise

estimates.

4 Illustrative example

Two mathematical simulations are provided herein to discuss the problem in the cooperative tracking

method. The performance of the UIF-based cooperative tracking algorithm proposed herein is demon-

strated in Example 1. Example 2 illustrates the interactive multiple model (IMM)-UIF cooperative

tracking method in three dimensions to discuss the further research work in this field.

Example 1. Suppose that a nonlinear multi-agent system is composed of four independent nodes

that are working collaboratively to track a single maneuvering target. The motion of the target can be

described by the turn manoeuver in the two-dimensional plane. The mobile sensor networks are assumed

to include three static nodes and one moving node. Each node provides its measurements regarding
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X (km)

Node 1

Node 2
Node 3
Moving node 4

Y
 (

k
m

)

Figure 1 Communication topology of 4 nodes. Figure 2 (Color online) Tracking trajectory of proposed

method considering sensor faults.

the target (distance rik and heading θik), and shares the information within the group based on the

communication topology illustrated in Figure 1. The observation equation for node i is given by

zi
k = λi

k

[

rik

θik

]

= λi
k







√

(ξk − xi
k)

2
+ (ηk − yik)

2

arctan
ηk − yik
ξk − xi

k






+ vi

k,

where (ξk, ηk) represents the target’s position components in the X and Y directions at time k, respec-

tively; (xi
k, y

i
k) refers to the position of node i; vi

k represents the measurement noise of node i with

covariance Ri
k.

The initial target’s state variable is chosen as x0 = [ξ0, ξ̇0, η0, η̇0]
T = [−0.4 km, 0.08 km/s, 0.1 km,

0.01 km/s]T, while (x1
0, y

1
0) = (0, 10 km), (x2

0, y
2
0) = (10 km, 10 km), (x3

0, y
3
0) = (20 km, 10 km). The

initial position of node 4 is (−5 km, 3 km), and node 4 moves along the X axis with a constant velocity

0.1 km/s. The sampling interval T is 1 s, and the target has moved 300 s in total.

The tracking performance is reflected by the root mean square error (RMSE)

RMSEk =

{

1

S

S
∑

l=1

[

(ξk,l − ξ̂ik,l)
2
+ (ηk,l − η̂ik,l)

2
]

}1/2

,

where (ξk,l, ηk,l) and (ξ̂ik,l, η̂
i
k,l) denote the true values of target’s state and the estimates provided by

node i, respectively; S is the number of Monte Carlo runs.

As illustrated in Figure 2, the green line is the trajectory of the moving sensor, the four dotted yellow

circles represent the communication range of each node, the red line refers to the target’s trajectory, and

the black line represents the tracking trajectory obtained by the UIF-based cooperative tracking method

considering sensor faults (δ = 0.5). Furthermore, Figures 3 and 4 are plotted in the same scenario to

analyze the tracking precision of the algorithm by the RMSE.

The tracking performances of a similar node whose sensor is operating in the normal or failure condition

are compared in Figure 3. The result intuitively shows that sensor faults will cause a remarkable negative

influence on the target state estimation. Figure 4 illustrates the estimation results regarding the UIF

method of each node and the UIF-based cooperative tracking method. We found that the cooperative

tracking method fusing all the neighboring nodes’ measurements exhibits better tracking performance

compared with the filtering algorithm of the single node. Meanwhile, the results indicate that the algo-

rithm can improve the estimation precision for multi-agent systems with sensor failures when tracing the

maneuvering target.

As shown in Figure 5, the estimation errors of three filtering methods based on the weighted average

consensus theory are compared in the sensor faults case with δ = 0.5, and the UIF-based cooperative
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Figure 3 (Color online) Comparison between normal and

fault condition.

Figure 4 (Color online) RMSE of single node and the

proposed method.

K (steps)

R
M

S
E

 (
k
m

)

c

c

c

K (steps)

R
M

S
E

 (
k
m

)

Figure 5 (Color online) Comparison of three filtering

methods (δ = 0.5).

Figure 6 (Color online) Comparison of different fault

conditions.

tracking algorithm is proven to demonstrate better performance in nonlinear target tracking than the

other ones. It is noteworthy that the distributed consensus extend Kalman filter (EKF) and distributed

UKF are typically used by previous researchers (reported in [23, 24], respectively).

As the tracking accuracy of the proposed filter is related to the value of observational probability δ,

which represents the fault situation, several simulation experiments are performed when δ is chosen as

[0, 0.3, 0.5, 0.7]. Figure 6 indicates that with the increase in δ, the tracking performance becomes worse.

Example 2. Suppose that a nonlinear multi-agent system is composed of 10 independent nodes that are

operating collaboratively to track a single maneuvering target. The motion of the target is described by

a simulated ballistic trajectory as a S curve in a three-dimensional case. The mobile sensor networks are

assumed to include five static nodes and five moving nodes, with the communication topology illustrated

in Figure 7. The communication range of each node is set as 850 km. The sampling interval T is 1 s, and

the target has moved 600 s in total. Owing to space limitations herein, the interactive multiple model is

not elaborated. The model set consists of the constant velocity model, constant acceleration model, and

current statistical model.

As shown in Figure 8, the red curve refers to the real target trajectory. The green line represents

the position estimation results of a single node adopting the IMM-UIF method, the sensor of which is

operating in the failure (δ = 0.5) condition. Obviously, the tracking performance is poor owing to the
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Figure 7 Communication topology of 10 nodes. Figure 8 (Color online) Tracking performance of IMM-

UIF.
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Figure 9 (Color online) RMSE of target’s position esti-

mation (X).

Figure 10 (Color online) RMSE of target’s position esti-

mation (Y ).
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Figure 11 (Color online) RMSE of target’s position esti-

mation (Z).

Figure 12 (Color online) RMSE of target’s velocity esti-

mation (vx).

sensor faults. In a same scenario (δ = 0.5), when the information are exchanged between the neighboring

nodes, 10 nodes operate collaboratively for target tracing, and provide a better tracking curve (the blue
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Figure 13 (Color online) RMSE of target’s velocity esti-

mation (vy).

Figure 14 (Color online) RMSE of target’s velocity esti-

mation (vz).

one) that almost coincided with that of the target trajectory. For the multi-agent systems with sensor

faults, Figures 9–14 depicts the comparison of several RMSE results between the IMM-UIF method and

the IMM-UIF cooperative tracking method based on the weighted average consensus theory. For a single

node, the maximum of the estimation error of the position is close to 2.8 km, and the estimation error of

the velocity is up to 1.7 km/s. In contrast, for the IMM-UIF cooperative tracking method, the maximum

of the estimation error of the position is only 0.8 km, and the estimation error of the velocity is less than

0.4 km/s. We conclude that the method elaborated herein can improve the estimation accuracy compared

with the filtering algorithm of a single node for the tracking problem with sensor faults, when the target

model is described by the IMM. The algorithm’s stability is still required to be proven theoretically.

5 Conclusion

A novel cooperative tracking algorithm for nonlinear estimation and multiple sensor fusion was proposed

herein. The proposed information fusion method for multi-agent systems was derived by combining the

advantages of the weighted average consensus theory and UIF, to solve the problem caused by sensor

faults. Moreover, the stochastic boundedness of the estimation error for the discussed nonlinear sys-

tem was analyzed to assess the method performance and feasibility. Future research directions include

extending the proposed method to mobile sensor networks with both sensor failures and switching topolo-

gies, and directed networks. For the practical implementation of the tracking method, it is necessary to

consider the problem of time delay in the filter design.
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