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Dear editor,
Signal processing algorithms are generally used to
identify an unknown system, and can be classified
as batch algorithms and online learning algorithms
(OLAs). Batch algorithms are applied to offline
scenarios that require all data being available. In
real-time applications, because information is pro-
cessed sequentially, an OLA is desirable [1].

As a commonly used OLA, the kernel adap-
tive filter (KAF) [2] is proposed to solve compli-
cated nonlinear issues. However, the network size
of KAF is linearly growing, thus leading to high
computational overhead. To this end, a random
feature mapping function (RFMF) is used to gen-
erate the online sequential extreme learning ma-
chine (OS-ELM) with a fixed network size in the
random Fourier feature space (RFFS) [3]. How-
ever, the statistical characteristics of system pa-
rameters are not considered in OS-ELM. Bayesian
inference provides a probability distribution on a
system model and its parameters, and is applied
to learning algorithms for improving generaliza-
tion performance [4].

In this study, a novel OLA with a fixed network
size, namely online Bayesian random Fourier fil-
ter (BRFF), is proposed. The main contributions
are summarized as follows: (1) The network size
of online BRFF is fixed; (2) In comparison with
KAF, online BRFF can improve the filtering ac-
curacy for Gaussian noises by applying Bayesian

inference and a Gaussian diffusion process to esti-
mate the system parameters in the RFFS; (3) A
Lyapunov function in the RFFS is established to
validate the convergence of online BRFF.

Problem formulation. In a nonlinear system, a
sequence of input-output pairs is assumed to be de-
noted by {(xk, yk), k = 1, 2, . . . |xk ∈ R

d, yk ∈ R}.
The learned input-output relationship existing in
this system is therefore described by

yk = f(xk) + vk, (1)

where f : Rd → R and vk is a Gaussian noise with
zero mean and variance δ2n. The purpose of an

OLA is to obtain an approximation f̂ of f from
the available noisy input-output data.

Online Bayesian random Fourier filter. A ran-
dom mapping z(x) with randomized Fourier fea-
tures [5] projects the input data x of dimension
d onto another Euclidean feature space of a rela-
tively high dimension D (D > d) using randomly
generated data, i.e.,

z(x) =
√

2/D
[

cos(xTω1 + b1), cos(x
Tω2 + b2),

. . . , cos(xTωD + bD)
]T

, (2)

where weight ω ∈ R
d is generated from a Gaussian

distribution denoted by N (ω;0, σ2I) and bias b
is obtained from a uniform distribution in [0, 2π].
Based on z(xk) ∈ R

D, the function approximation

f̂ takes the form of the linear inner product in the
RFFS, i.e.,
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f̂(xk) = z(xk)
Tθk, (3)

where θk denotes the weight in the RFFS. In the
following, Bayesian inference based on the assump-
tion of Gaussian distribution for the weight and
noise is used to estimate θk in the network with
the fixed dimension D shown in (2).

First, a Gaussian diffusion process associated
with a Gaussian distribution noise N (q;0, δ2DI) is
used to model the system parameters, i.e.,

p(θk|θk−1) = N (θk; θk−1, δ
2
DI), (4)

where I denotes the identity matrix and δ2D is the
variance of the diffusion noise in each dimension.

Then, the output yk ∈ R is described by the
following probabilistic model:

p(yk|θk) = N (yk; z(xk)
Tθk, δ

2
n), (5)

where δ2n is the variance of the observation noise.

Finally, the approximation f̂ in the RFFS can
be described by (4) and (5) from the perspective
of probabilistic distribution.

The posterior density of weights at discrete time
k−1 is denoted by p(θk−1|y1:k−1) = N (θk−1; θ̂k−1,
Pk−1). The online BRFF calculates the posterior
density p(θk|y1:k) at discrete time k upon receipt
of a new measurement yk, which consists of a pre-
diction step and an update step.

• Prediction step. The predictive density of
weights at discrete time k is calculated using the
Chapman-Kolmogorov equation [6], i.e.,

p(θk|y1:k−1)

=

∫

p(θk|θk−1)p(θk−1|y1:k−1)dθk−1, (6)

where θ̂k|k−1 and Pk|k−1 in p(θk|y1:k−1) = N (θk;

θ̂k|k−1,Pk|k−1) are denoted by

Pk|k−1 = Pk−1 + δ2DI, (7)

θ̂k|k−1 = θ̂k−1. (8)

• Update step. The posterior density of weights
at discrete time k is computed by Bayes’ rule, i.e.,

p(θk|y1:k) =
p(yk|θk)p(θk|y1:k−1)

∫

p(yk|θk)p(θk|y1:k−1)dθk

, (9)

where the current observation yk given the cur-
rent weight θk is assumed to be conditionally inde-
pendent of the observation histories, i.e., p(yk|θk,
y1:k−1) = p(yk|θk).

According to (5) and (6), the joint distribution
of θk and yk given y1:k−1 is calculated by

p(θk, yk|y1:k−1) = p(θk|y1:k−1)p(yk|θk). (10)

According to Lemma 1 in Appendix A, by set-
ting x = θk, y = yk, H = z(xk)

T, m = θ̂k|k−1,
Q1 = Pk|k−1, andQ2 = δ2n [6], we obtain the mean
and covariance of p(θk, yk|y1:k−1) as follows:

θ
y
k =

[

θ̂k|k−1

y−k

]

, P
θ,y
k =

[

Pk|k−1 P z
k|k−1

P zT
k|k−1 γ2

n

]

, (11)

where y−k = z(xk)
Tθ̂k|k−1 and γ2

n = z(xk)
TPk|k−1

·z(xk) + δ2n, P
z
k|k−1 = Pk|k−1z(xk).

Based on the joint distribution in (11), the con-
ditional distribution of θk given y1:k can be ob-
tained by p(θk|y1:k) = N (θk; θ̂k,Pk) with

Pk = Pk|k−1 −
Pk|k−1z(xk)z(xk)

T
Pk|k−1

z(xk)TPk|k−1z(xk) + δ2n
, (12)

θ̂k = θ̂k−1 +Gkek, (13)

where ek = yk − z(xk)
Tθ̂k−1 and the gain matrix

Gk takes the form of

Gk =
Pk|k−1z(xk)

z(xk)TPk|k−1z(xk) + δ2n
. (14)

The proposed online BRFF is summarized in
Algorithm 1.

Algorithm 1 Online Bayesian random Fourier filter

Initiation: δ2n, δ
2
D
, D, P1, and θ̂1.

while {xk , yk} (k > 1) available do

(1) Transform the input data by (2);
(2) Calculate Pk|k−1 and Gk by (7) and (14);

(3) Update Pk and θ̂k and by (12) and (13);
end whlile

Remark 1. Because the online BRFF is ob-
tained from Bayesian inference, it has a similar
update form shown in Algorithm 1 to that of non-
linear Kalman filter (NKF) [7,8]. However, in com-
parison with NKF estimating the unknown state
vector from observations, BRFF can learn the non-
linear function hidden in input-output data. In
addition, NKFs perform state estimation in the
input space whereas BRFF performs the function
approximation in a D-dimensional RFFS.

Batch BRFF. When all the input-output pairs
are available for training, the weights in the RFFS
can also be determined by the batch BRFF based
on Gaussian process regression (GPR) [6]. De-
fine L transformed input data and observations as
ZL = [z(x1), . . . , z(xL)] and yL = [y1, . . . , yL]

T,
respectively. Under the assumption of conditional
independence of observations, the full likelihood of
the observations given the weight vector is

p(y1:L|θ) =
L
∏

i=1

p(yi|θ) = N (yL;Z
T
Lθ, δ

2
nI). (15)
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Assume that the weight vector has a prior dis-
tribution of N (θ;0, δ2θI) where the mean value 0

is the null vector with appropriate dimension.
Let the posterior distribution of the weight vec-

tor given y1:L be p(θ|y1:L) = N (θ; θ̂L,PL). Ac-
cording to Lemma 1 in Appendix A, by letting
x = θk, y = yL, H = ZT

L , m = 0, Q1 = δ2θI, and
Q2 = δ2nI, we obtain the mean and covariance of
p(θ|y1:L) as follows:

θ̂L = (ZLZ
T
L + δ2nδ

−2
θ I)−1ZLyL, (16)

PL = (δ−2
n ZLZ

T
L + δ−2

θ I)−1. (17)

The batch BRFF with O(L3) incurs a higher
computational cost than the online BRFF with
O(D2) at each iteration. Here, the batch BRFF is
only used for performance comparison.

Stability of online BRFF. A Lyapunov func-
tion [9] is constructed to perform the stability anal-
ysis of online BRFF.

Define the predicted error and the estimated er-
ror as θ̃k|k−1 = θk − θ̂k|k−1 and θ̃k = θk − θ̂k,
respectively. According to (4) and (8), the follow-
ing equality can be established:

θ̃k|k−1 = βk−1θ̃k−1, (18)

where the unknown diagonal matrix βk =
diag([βk,1, . . . ,βk,D]) includes the perturbations
with consideration of the diffusion noise in (4).
Similarly, we have ek in (13) re-arranged as

αkek = z(xk)
Tθ̃k|k−1, (19)

where αk is an unknown scalar with consideration
of the observation noise in (5).

To perform stability analysis of online BRFF,
we construct the Lyapunov function by Vk =
θ̃T
k P

−1
k θ̃k, which is a quadratic function associ-

ated with the estimated error θ̃k in the RFFS. The
stability of online BRFF is gualranteed by the de-
creasing characteristic of Vk given in Theorem 1.

Theorem 1. The Lyapunov function at discrete
time k, Vk 6 Vk−1 is satisfied, if the following in-
equalities hold:

(1) There exist pmin, pmax> 0 and pmax > pmin

such that

pminI 6 Pk−1 6 pmaxI. (20)

(2) βk,j with j = 1, . . . , D in (18) is bounded as
follows:

|βk,j | 6 1. (21)

(3) αk in (19) satisfies

1−
√

1− γk 6 αk 6 1 +
√

1− γk, (22)

where γk is given by

γk =
z(xk)

T
Pk|k−1z (xk)

z(xk)
T
Pk|k−1z (xk) + δ2n

. (23)

The proof and the simulated results are given in
Appendixes B–D.

Conclusion and future work. A novel online
BRFF for Gaussian noise is proposed by using ran-
dom Fourier mapping and Bayesian theory. The
accuracy and trackability of online BRFF is sig-
nificantly improved. Because the online BRFF has
a fixed network structure, the computational com-
plexity is reduced. A batch BRFF is also presented
for comparison. In addition, the convergence anal-
ysis of online BRFF is derived by using the con-
structed Lyapunov function to verify its stability.
In the future work, the dimension of the random
Fourier feature space will be discussed theoreti-
cally.
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