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Appendix A

Lemma 1. On the condition of appropriate dimensions for random variables, given a marginal Gaussian distribution for

x and a conditional Gaussian distribution for y given x in the following form

p(x) = N (x;m,Q1), (A1)

p(y|x) = N (y;Hx,Q2), (A2)

the joint distribution (x,y) and the marginal distribution of y are given by [1,2][
x

y

]
= N

([
m

Hm

]
,

[
Q1 Q1HT

HQ1 HQ1HT +Q2

])
, (A3)

p(y) = N (y;Hm,HQ1H
T +Q2). (A4)

If m = 0, the conditional distribution x give y are obtained by

p(x|y) = N (x;PHTQ−1
2 y,P), (A5)

where P = (Q−1
1 +HTQ−1

2 H)−1.

Appendix B

This Appendix shows the stability analysis of online BRFF.

Substituting (8) into (13) generates the following update form of θ̂k.

θ̂k = θ̂k|k−1 +Gkek. (B1)

Subtracting both sides of (B1) from θk yields the relation between the estimated and predicted errors as

θ̃k = θ̃k|k−1 −Gkek. (B2)

The covariance matrix Pk of the estimated error at time k given in (12) can be rewritten as

Pk =
(
I−Gkz(xk)

T
)
Pk|k−1. (B3)

According to the matrix inversion lemma in [3], i.e., (A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 with

A = Pk|k−1, B = −Pk|k−1z(xk), C = (z (xk)
T Pk|k−1z(xk) + δ2n)

−1, D = z(xk)
TPk|k−1, after some manipulations we

obtain

Pk =
(
I− δ−2

n Pkz (xk) z(xk)
T
)
Pk|k−1. (B4)

Combining (14), (B3), and (B4) into (B2), we have

θ̃k = θ̃k|k−1 −Pkz(xk)δ
−2
n ek. (B5)
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To perform stability analysis of online BRFF, we construct the Lyapunov function by Vk = θ̃T
k P−1

k θ̃k, which is a

quadratic function associated with the estimated error θ̃k in the RFFS. Similarly, a quadratic function with the predicted

error θ̃k|k−1 is given by V −
k = θ̃T

k|k−1
P−1

k|k−1
θ̃k|k−1.

According to (18), we have

V −
k = θ̃T

k|k−1P
−1
k|k−1

θ̃k|k−1

= θ̃T
k−1β

T
k−1P

−1
k|k−1

βk−1θ̃k−1. (B6)

Based on (7), (20), and δ2D > 0, the following inequality associated with Pk|k−1 and Pk−1 is established.

P−1
k|k−1

= (Pk−1 + δ2DI)−1 6 P−1
k−1. (B7)

Equation (B7) holds from the fact that M−1 > (M+H)−1 [4] on the condition of any n× n matrices M,H > 0n×n. The

following inequality is therefore derived.

V −
k − Vk−1 6 θ̃T

k−1(β
T
k−1P

−1
k−1βk−1 −P−1

k−1)θ̃k−1. (B8)

Substituting (21) into (B8) yields V −
k − Vk−1 6 0.

Expanding Vk with (B5) and combining (B4), we have

Vk =θ̃T
k P−1

k θ̃k

=(θ̃k|k−1 −Pkz(xk)δ
−2
n ek)

TP−1
k (θ̃k|k−1 −Pkz(xk)δ

−2
n ek)

=θ̃T
k|k−1P

−1
k θ̃k|k−1 − θ̃T

k|k−1z (xk) δ
−2
n ek − z(xk)

T θ̃k|k−1δ
−2
n ek

+ z(xk)
TPkz (xk) δ

−4
n e2k

=V −
k + θ̃T

k|k−1δ
−2
n z (xk) z(xk)

T θ̃k|k−1 − θ̃T
k|k−1z (xk) δ

−2
n ek

− z(xk)
T θ̃k|k−1δ

−2
n ek + z(xk)

TPkz (xk) δ
−4
n e2k. (B9)

Substituting (19) into (B9) generates

Vk − V −
k =ek(αkδ

−2
n αk − αkδ

−2
n − δ−2

n αk + z(xk)
TPkz (xk) δ

−4
n )ek. (B10)

According to (22), the following inequality can be derived.

ek(αkδ
−2
n αk − αkδ

−2
n − δ−2

n αk + δ−2
n γk)ek 6 0. (B11)

Pre- and post-multiplying the left side of (B4) by z(xk)
T and z(xk) generates the following equality.

z(xk)
TPkz(xk) = z(xk)

T
(
I− δ−2

n Pkz (xk) z(xk)
T
)
Pk|k−1z(xk). (B12)

We re-arrange (B12) as

z(xk)
TPkz(xk) + z(xk)

T δ−2
n Pkz (xk) z(xk)

TPk|k−1z(xk) = z(xk)
TPk|k−1z(xk). (B13)

Further, (B13) is simplified as

δ−2
n z(xk)

TPkz(xk) =
z(xk)

TPk|k−1z (xk)

z(xk)
TPk|k−1z (xk) + δ2n

. (B14)

Based on (B14), (B11) can be rewritten as

ek(αkδ
−2
n αk − αkδ

−2
n − δ−2

n αk + δ−4
n z(xk)

TPkz(xk))ek 6 0. (B15)

Substituting (B15) into (B10) gives Vk − V −
k 6 0. Since V −

k − Vk−1 6 0, we have Vk 6 Vk−1.

Remark 1. The trackability of online BRFF is improved by introducing the diffusion noise in (4). The inequalities in

(20), (21), and (22) are the sufficient but not necessary conditions for the stability of online BRFF. Since the inequality

(21) implies the boundary of variance δ2D of the diffusion noise, which is shown in Appendix C, a bounded δ2D is required to

guarantee the stability of the online BRFF. Since Pk is a positive definite matrix, the positive Lyapunov function θ̂T
k P−1

k θ̂k
can also guarantee 1−γk > 0 in (22). It can be seen from Theorem 1 that Vk is a decreasing sequence, and thus the stability

of online BRFF is guaranteed.

Appendix C

This appendix shows the boundedness feature of variance δ2D of diffusion noise qk on the condition of (21).

Combing (18) and (21), we have inequality

qk−1,j θ̃k−1,j 6 0, j = 1, · · · , D, (C1)

where qk−1,j and θ̃k−1,j denote the j-th entries of qk−1 and θ̃k−1 respectively.

If θ̃k−1,j < 0, we obtain the following inequalities using (18), (21) and (C1).{
0 6 qk−1,j 6 −θ̃k−1,j , for 0 6 βk−1,j 6 1,

−θ̃k−1,j 6 qk−1,j 6 −2θ̃k−1,j , otherwise
. (C2)
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Similarly, θ̃k−1,j > 0 generates {
−θ̃k−1,j 6 qk−1,j 6 0, for 0 6 βk−1,j 6 1,

−2θ̃k−1,j 6 qk−1,j 6 −θ̃k−1,j , otherwise
. (C3)

When (21) is satisfied, combing (C2) and (C3) gives

|qk−1| 6 2|θ̃k−1|. (C4)

Therefore, according to (C4), we have

E(|qk−1||qk−1|T ) 6 2E(|θ̃k−1||qk−1|T ),

E(|θ̃k−1||qk−1|T ) 6 2E(|θ̃k−1||θ̃k−1|T ), (C5)

which generates

E(|qk−1||qk−1|T ) 6 4E(|θ̃k−1||θ̃k−1|T ). (C6)

Since qk−1 follows the Gaussian distribution N (q;0, δ2DI) and the inequality E(qk−1q
T
k−1) 6 E(|qk−1||qk−1|T ) holds, we

rewrite (C6) as

δ2DI 6 4E(|θ̃k−1θ̃
T
k−1|). (C7)

Therefore, there exists the boundary of δ2D when (21) is satisfied.

Appendix D Simulation results

This Appendix shows three examples of nonlinear signal processing, namely the system identification, Mackey-Glass (MG)

time series prediction, and nonlinear regression chosen for validating the proposed BRFF. In the system identification, the

stability of online BRFF in terms of the Lyapunov function is verified. The stationary and nonstationary cases are discussed

to comprehensively evaluate the performance of BRFF. For comparison, the chosen online learning algorithms [5] include

KLMS based on Mercer Kernel [6–9] and OS-ELM [10, 11]. For each example, 50 Monte Carlo simulations are performed,

and the results are averaged over these simulations.

Appendix D.1 System identification

Consider the identified system constructed using the nonlinear mapping (2) [12–14] and the linear model (5). In (2),

the nonlinear mapping constructed by the random weight ω and b first projects the d-dimensional input space onto the

D-dimensional feature space. Then the linear form in (5) modeled by the coefficient θk and the feature input can be

implemented to learn the relationship built in the original input-output pairs.

V
k

(d
B
)

Figure D1 Lyapunov function in system identification.

In this simulation, we define the input matrix Xn = [x1, · · · ,xM ] ∈ Rd×M sampled from the distribution N (Xn;0, 2Id),

where d = 5 and M = 5100 is the number of samples with 5000 for training and another 100 for testing. The desired outputs

are generated by (5) associated with ω and b drawn from Gaussian distribution N (ω;0, 5Id) and uniform distribution in

[0, 2π], respectively. Moreover, the desired outputs are corrupted by Gaussian noise with zero mean and variance δ2n = 0.01.

The variance of the diffusion noise in each direction δ2D is 10−7. Note that during the iteration, the coefficient θk in (5) is

unique and equal to the initialization θ1 drawn from N (θ1;0, 2ID) with D = 20. For performance comparison, the mean

square error (MSE) is defined as

MSE =
1

N

N∑
k=1

(yk − f̂(xk))
2, (D1)
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Figure D2 Learning curves of KLMS, OS-ELM and online BRFF in system identification.

where N is the total number of calculations. In the following, the learning curves of filters are plotted in terms of the testing

MSE based on the test data.

For KLMS, the step size being 0.4 and the kernel size being 0.2 are configured. For the online BRFF, the random weight

ω and b are used to construct the RFFS shown in (2). For fair comparison, the same Fourier basis as (2) is chosen as the

activation function of OS-ELM, and learning is performed one by one in OS-ELM. The dimension of the feature space in

OS-ELM is also set to 20.

To validate the stability of online BRFF in system identification, the corresponding Lyapunov function of θ̂T
k P−1

k θ̂k
established in (B9) is shown in Figure D1. It can be seen from Figure D1 that the Lyapunov function of online BRFF is

decreasing and convergent provided that δ2D is small enough, which guarantees its stability. Figure D2 shows the performance

comparison of KLMS, OS-ELM and online BRFF in the system identification. From Figure D2, we see that the online

BRFF can achieve a faster convergence rate than OS-ELM and KLMS. In addition, the online BRFF has a lower steady

state mean square error than KLMS.

Appendix D.2 Mackey-Glass Time Series Prediction

The MG time series, which exhibits periodic and chaotic dynamics, is generated by the following nonlinear time-delay

differential equation [15]:

dx(t)

dt
= −0.1x(t) +

0.2x(t− τ)

1 + x(t− τ)10
, (D2)

where τ = 30. The time series is first discretized using a sampling period of 6 s to obtain discrete variable x(k). The

obtained time series is corrupted by additive Gaussian noise with zero mean and a standard deviation of 0.04. The input

xk = [x(k − 10), x(k − 9), . . . , x(k − 2), x(k − 1)]T is chosen to predict the current x(k) that is the desired output yk. A

time series of 2000 samples is used as the training data and another 400 samples are used as the test data.

The dimension of the random feature space D is a crucial parameter in the online BRFF, which affects the filtering

performance. Hence, the dependence of the performance on D is first studied by simulations. For the online BRFF, the

variance of diffusion noise is set to δ2D = 2× 10−5; the random weight ω is drawn from N (ω;0, 1.2× ID) and b uniformly

from [0, 2π].

Figure D3 shows the learning curves of online BRFF versus D in the MG time series prediction, and Figure D4 presents

the averaged consumed time and steady-state MSEs over 50 Monte Carlo runs versus D, where the steady-state MSE is

obtained by averaging the final 200 iterations. It can be seen from Figure D3 and Figure D4 that the filtering accuracy

of online BRFF can be improved by increasing D at the expense of increasing the computational overhead, but is almost

kept unchanged when D exceeds 400. Hence, to balance the performance and computational cost, an appropriate value of

D should be used. Here, D = 200 is chosen in the following simulations.

For fair comparison, the activation function of OS-ELM is same as that used in the system identification, and learning

is also performed one by one in OS-ELM. The dimension of the feature space in OS-ELM is also set to 200. For KLMS,

the step size is 0.1 and the kernel size is 1.0. The learning curves of online and batch BRFF, OS-ELM, and KLMS are

shown in Figure D5. We see that the online BRFF outperforms OS-ELM and KLMS, and approaches the batch BRFF

from the aspect of filtering accuracy. The mean consumed time of online BRFF with 2.535 s, which is almost the same as

that of OS-ELM, is far less than that of KLMS with 17.759 s that has a linearly increasing network size. Therefore, no

sparsification is required in the online BRFF for online applications. Combining the filtering accuracy and computational

time, the proposed online BRFF is more efficient than KLMS and OS-ELM.
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Figure D3 Learning curves of online BRFF for different dimensions of feature space in MG time series prediction.
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Figure D4 Mean consumed time versus dimension D of feature space in MG time series prediction.
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Figure D5 Learning curves of KLMS, OS-ELM, online BRFF and batch BRFF in MG time series prediction.

Appendix D.3 Nonlinear regression

In order to test the tracking performance of online BRFF, the nonlinear regression is considered here. The representative

nonlinear system is [16]

yk = yk−1(a(1)− a(2) exp(−y2k−1))− yk−2(a(3) + a(4) exp(−y2k−1)) + a(5)sin(yk−1π), (D3)
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Figure D6 Learning curves of KLMS, OS-ELM and online BRFF in nonlinear regression.

where yk is the output at discrete time k; y−1 = 0.1 and y−2 = 0.1 are set as the initial values; and a = [a(1), · · · ,a(5)]T

denotes the coefficient vector. According to (D3), the nonlinear regression can be described using x(k) = [yk−1, yk−2]
T and

yk as the input vector and the desired output, respectively.

The tracking performance is evaluated in a nonstationary environment, where two different coefficient vectors are used

for data generation in (D3). We generate Data A and Data B in (D3) by using a = [0.8, 0.5, 0.3, 0.9, 0.1]T and a =

[0.2, 0.7, 0.8, 0.8, 0.2]T , respectively. All the data are corrupted by a zero-mean Gaussian noise with variance σ2
n = 0.004.

Therefore, nonstationary data are generated by Data A for 0 6 k 6 800 and Data B for 801 6 k 6 2000. For KLMS,

the kernel size of the Gaussian kernel is 1.5 and the step size is 0.1. The parameters for the online BRFF and OS-ELM

are the same as those used in the aforementioned MG time series prediction. The averaged MSEs of KLMS, OS-ELM and

online BRFF are plotted in Figure D6. It can be seen from Figure D6 that compared with KLMS and OS-ELM, the online

BRFF can provide not only a faster convergent rate but also better tracking performance with smaller steady-state MSE

in a nonstationary scenario.
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