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Dear editor,
In a complex system, many real-world optimi-
zation problems do not have explicit optimization
functions or constraint functions, whereas only
data from production processes are available be-
cause of the complexity of the system [1]. Thus,
optimization in this scenario can generally rely on
collected historical datasets, and these problems
are also known as offline data-driven optimization
problems [2]. In the last decade, studies on offline
data-driven optimization have been conducted by
first constructing a surrogate model with the col-
lected data and then considering the best solu-
tion from the surrogate model as the optimal de-
cision [1]; few studies, however, have considered
the errors existing in surrogate models. In ad-
dition, production processes are often subject to
changes, leading to the attainment of data that
are non-independent identically distributed. In
this study, we aim to deal with the offline data-
driven optimization problem for data generated
in nonstationary systems in an incremental man-
ner; specifically, we assume the data come in a
chunk as shown in Figure A1 in Appendix A. This
type of data-driven optimization poses new chal-
lenges to the current data-driven optimization al-
gorithms [2]. We focus on the following three is-
sues. The first is how to build a high-quality sur-
rogate model for each environment. The second

issue concerns optimization, i.e., how to quickly
exploit the optimal solution of each new environ-
ment. The last issue is the final solution creation,
which is necessary because errors exist between
surrogate models and corresponding real fitness
functions (the unknown formulations of real sys-
tems), resulting in less reliable solutions from the
surrogate models. To alleviate the above diffi-
culties, this study suggests a general method de-
scribed as follows.

While new data chunk Dt is income from
complex systems at the t-th environment, do
Steps 1–4:

Step 1. Update the surrogate model based on
knowledge transfer technique to adapt the t-th en-
vironment;

Step 2. Initialize population based on historical
knowledge;

Step 3. Optimize the surrogate model by using
differential evolution (DE) algorithm;

Step 4. Produce the final solution for complex
systems.

Approach. A general framework of the proposed
approach is described as above. Upon the obser-
vation of each new data chunk from complex sys-
tems, the surrogate model is first updated to adapt
to the new environment. A DE algorithm [3], a
type of population-based global optimization ap-
proach, is adopted as the optimizer. Thus, the
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next step is population initialization for the DE al-
gorithm. Then, the DE algorithm with the rand/1
strategy is applied to optimize the surrogate model
to obtain an optimal landscape of the real fitness
problems. Lastly, the final solution is generated
from the obtained optimal landscape. Details of
the surrogate model update, population initializa-
tion, and final solution production are presented
as follows.

• Knowledge transfer-based surrogate model
adaptation. Ensemble approaches are a popu-
lar means of handling incremental learning, which
uses models or training instances of historical en-
vironments to improve model quality in the cur-
rent environment [4]. Nevertheless, most work
on incremental learning has focused on classifica-
tion tasks [4]. In the optimization problem out-
lined in this study, we introduce an ensemble ap-
proach for regression tasks to formulate the surro-
gate model. Specifically, a base regression learner
is first trained via the new data chunk Dt, equiva-
lently (xt,yt), and denoted by ht. The radial basis
neural network (RBFN) is applied as a base learner
in this study because of its universal approxima-
tion ability [5]. Then, a set of base learners trained
by using the data chunks of each past environ-
ment is also constructed separately. To improve
the adaptability of past training instances, we first
map the historical data chunks D1, D2, . . . , Dt−1

to the current data chunk space Dt, thereby facil-
itating knowledge transfer between the historical
data set and the current data set. We then use
a combination of each of the transferred histori-
cal data chunk Dni and the current data chunk
Dt to build each historical base surrogate model
hi. Note that we are interested in the dynamics
of the system, which would result in a change in
the function of the value yt. Thus, we transform
yi, i = 1, 2, . . . , t − 1 in each Di to the current
objective space yt by using (1). We define the
transferred Di, which contains (xi,yni), as Dni,
i = 1, 2, . . . , t− 1.

yni =
yi − ymin

i

ymax
i

−ymin
i ×(ymax

t −ymin
t )+ymin

t , (1)

where ymax
i and ymin

i are the maximum and mini-
mum values of yi, respectively, y

max
t and ymin

t are
the maximum and minimum values of yt, respec-
tively.

In the next step, all the base surrogate mod-
els hi, i = 1, 2, . . . , t are integrated into the final
perfect surrogate f using

f =

∑t

i=1 wihi
∑t

i=1 wi

, (2)

where wi = 1
RMSEi+RMSEt

, i = 1, 2, . . . , t − 1,

wt = 1
RMSEt

and RMSEi =
√

1
|Di|

Σy∈yi
(ŷ − y)2,

i = 1, 2, . . . , t.

In this ensemble, we assign a larger wt than wi,
i = 1, 2, . . . , t to ensure a higher weight for the
base model in the current environment. This is
because the data set of the current environment is
more reliable, and thus it should be fully used.

• A priori knowledge-based population initial-
ization. After the surrogate model of the cur-
rent environment is obtained, an initial popula-
tion should be created before surrogate model opti-
mization is started. The initial population is often
randomly generated in the decision space in tra-
ditional DE algorithms. In reality, the surrogate
models of different environments are not isolated
because their training instances belong to the same
system. Therefore, using the historical knowledge
of the past environments in the population initial-
ization would benefit convergence of the current
environment. For simplicity, the candidates of the
latest environment are applied as the initial pop-
ulation in this study. Note that the initial popu-
lation is randomly generated for the first environ-
ment because there is no historical information at
the beginning.

• Top best solution averaging-based final solu-
tion production. As mentioned above, solutions
obtained during optimization are not allowed to be
evaluated by true complex problems; instead, they
are only evaluated by surrogate models. In this
case, it is interesting to create a high-quality final
solution for real fitness functions because no surro-
gate can be updated using the real fitness function,
and the fitness value of a solution evaluated by sur-
rogates may contain large errors compared to that
evaluated by real fitness problems. This study pro-
poses a top best solution averaging technique to
generate the final solution for a real fitness func-
tion instead of directly using the best solution of
the obtained candidates. Specifically, in the final
population of each environment, the average of the
top 10% best individuals is considered as the final
solution. In this manner, the errors of the final so-
lution induced by surrogates can be smoothed by
consulting a number of candidates.

Experimental results. The six dynamic opti-
mization benchmark problems [6] are applied to
examine the transferred surrogate model construc-
tion, population initialization, and final solution
production strategies. The number of decision
variables D of each problem is set to 10. The
total number of environments in each test prob-
lem is set to 50. In each environment, 3D points
generated by Laplace sampling and evaluated by
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the real fitness function are taken as the histor-
ical dataset, where D is the number of decision
variables. The experiment is conducted on dif-
ferent approaches of incremental data-driven op-
timization in nonstationary environments to ver-
ify each of the proposed techniques: SS (single
dataset-based surrogate model construction tech-
nique), KTS (knowledge transfer-based surrogate
model construction), KTSPI (the version of KTS
by inducing a prior knowledge-based population
Initialization), and KTTLSA-TBA (the KTSPI al-
gorithm with top best solution averaging-based fi-
nal solution production technique).

Table 1 Average results of 50 environments over 20 in-
dependent runs

Name SS KTS KTSPI KTSPI-TBA

F1 3.7472 3.4762 3.0220 2.9770

F2 578.2938 546.8831 528.7354 528.9487

F3 1.121E+03 1.094E+03 1.077E+03 1.074E+03

F4 646.0489 610.8318 592.6871 589.7063

F5 2.021E+03 2.016E+03 1.999E+03 1.997E+03

F6 2.341E+03 1.399E+03 1.317E+03 1.314E+03

Table 1 presents the average results of the 50 en-
vironments over 20 independent runs of the com-
pared algorithms. We can see from this table
that the values obtained by SS, KTS, KTSPI, and
KTSPI-TBA decrease in general, indicating the
suitability of the knowledge transfer-based surro-
gate model update technique, historical knowledge
population initialization technique, and averaging-
based final solution production technique. The re-
sults of each environment over 20 independent runs
of the compared algorithms on F1 and F5 is pre-
sented in Figure A2 in Appendix A. This figure
clearly shows that KTSPI and KTSPI-TBA out-
perform SS and KTS in most of the experiments
on F1. With regards to the F5 problem, we find
that KTS clearly outperforms SS in almost all ex-
periments; in addition, it can also be found that
the KTSPI-TBA algorithm achieves a more robust
performance than KTSPI in the experiment.

Conclusion. This study proposes a general
method to solve data-driven problems in nonsta-
tionary environments, which includes three tech-
niques, i.e., knowledge transfer-based surrogate

model adaptation technique, historical knowledge-
based population initialization technique, and top
best solution averaging-based final solution pro-
duction technique. We systematically compare
each technique by applying the 4 proposed incre-
mental data-driven optimization approaches to 6
benchmark problems. The statistical results re-
vealed that each strategy exhibited good perfor-
mance in addressing the incremental offline data-
driven problem in dynamic environments.
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