
SCIENCE CHINA
Information Sciences

December 2018, Vol. 61 129204:1–129204:3

https://doi.org/10.1007/s11432-018-9502-1

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 info.scichina.com link.springer.com

. LETTER .

Distributed optimization on unbalanced graphs via

continuous-time methods

Zhenhong LI & Zhengtao DING*

School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, UK

Received 25 April 2018/Accepted 24 May 2018/Published online 20 November 2018

Citation Li Z H, Ding Z T. Distributed optimization on unbalanced graphs via continuous-time methods. Sci

China Inf Sci, 2018, 61(12): 129204, https://doi.org/10.1007/s11432-018-9502-1

Dear editor,
Distributed optimization problems (DOPs) have
attracted significant attention in the past decade,
owing to their potential applications in a variety of
scenarios such as sensor networks, distributed pa-
rameters estimation, and power system economic
dispatch. An important class of DOPs refers to
minimizing the sum of local objective functions
(e.g., [1–3])

min
ω∈Rn

f(ω) = min
ω∈Rn

N
∑

i=1

fi(ω), (1)

where N is the number of agents, fi : Rn → R

is the local cost function of agent i, and f =
∑N

i=1 fi(ω) is the global cost function of the net-
work.

To solve problem (1), two continuous-time
schemes are designed from a control perspective
in [4] to find the optimal solution with centralized
and distributed structures, respectively. The dis-
tributed scheme achieves asymptotic convergence
for constrained optimization problem on directed
graphs. For the system with twice differentiable lo-
cal cost functions, zero-gradient-summethod in [5]
achieves exponential convergence if the initial
value of states are the optimal solution of lo-
cal cost functions. To remove the restriction on
the initial condition, Lagrangian based algorithms
are proposed in [2]. A remarkable feature of La-
grangian based algorithms is the use of auxiliary
states which can also be regarded as Lagrangian
multipliers. However the algorithms in [2] need to

transmit the auxiliary states over the network. To
reduce the communication cost, a new Lagrangian
based algorithm is designed in [3]. Sufficient condi-
tions are established to guarantee the exponential
convergence of the algorithm.

The aforementioned studies require that the co-
mmunication structures are undirected or at least
balanced. Moreover, to eliminate the communica-
tion of auxiliary states, the lower bound of local
convexity constants are used to establish the con-
vergence of algorithms [3, 6]. Designing optimiza-
tion algorithms on a more general communication
structure and relaxing the assumptions on the lo-
cal gradients remain as ongoing research issues.

We consider the distributed optimization prob-
lem where each agent has a strongly convex cost
function with globally Lipschitz gradients. A
continuous-time algorithm is presented for unbal-
anced directed graphs. Sufficient conditions for the
convergence are derived based on invariance and
Lyapunov stability theory. By introducing a semi-
positive definite term to the Lyapunov function
and exploring the invariant projection of Lapla-
cian matrix, the requirement of the lower bound
of local convexity constants is removed. Finally,
we build a experiment on a distributed microcom-
puter platform to validate the results.

Methodology. Consider a group of N agents.
The communication topology among agents is de-
scribed by the directed graph G. The set of agents
is defined as V = {1, . . . , N}. The adjacency ma-
trix is defined as A = [αij ] ∈ R

N×N , where αii = 0
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and αij = 1 if the i-th agent can get the informa-
tion from the j-th agent, otherwise αij = 0. The
Laplacian matrix L = [lij ] ∈ R

N×N associated

with G is defined as lii =
∑N

j=1 aij and lij = −aij ,
for i 6= j. A directed graph is strongly connected
if there exists a directed path from every agent to
every other agent.

Throughout this study, we make Assumptions 1
and 2.

Assumption 1. Each local objective function fi
is strongly convex and differentiable with globally
Lipschitz gradient, i.e., there exists Ki ∈ R>0 such
that ‖▽ fi(x)−▽fi(y)‖ 6 Ki‖x− y‖, ∀x, y ∈ R

n.

With Assumption 1, the global objective func-
tion f is also strongly convex, and the solution of
problem (1) is unique.

Assumption 2. The communication topology G
is strongly connected.

With Assumption 2 and [7, Lemma 2.1], fol-
lowing similar steps in [1], we transform the pro-
blem (1) into a minimization problem under a con-
sensus condition.

min
x∈RNn

f̃(x) =
N
∑

i=1

fi(xi),

s.t. (L ⊗ In)x = 0Nn, (2)

where xi ∈ R
n is the state of i-th agent, x is the

aggregated variable of xi, and 0Nn denotes a col-
umn vector of size Nn with all entries equal to
zero. In the following, we will introduce the main
results of this study.

A continuous-time optimization algorithm is de-
signed as

ẋ = −γ ▽ f̃(x)− α (ΞL ⊗ In)x− v, (3a)

v̇ = αβ (ΞL ⊗ In)x, (3b)

where vi ∈ R
n is the auxiliary state of i-th agent,

v is the aggregated variable of vi, γ, α, β ∈ R>0 are
constant gains, ▽f̃(x) = [▽f1(x1)

T,▽f2(x2)
T,

. . . ,▽fN(xN )T]T is the gradient of f̃ , and Ξ is
defined in [7, Lemma 2.2].

Lemma 1. Under Assumptions 1 and 2, the
equilibrium point of (3) satisfying (x̄, v̄) ∈ P0(0) is
an optimal solution of problem (2), where P0(0) =
{(x, v) ∈ R

Nn × R
Nn | (1TN ⊗ In)v = 0n}.

Proof. Note that the equilibrium point (x̄, v̄) of
(3) satisfies

x̄ = 1N ⊗ a, ∀a ∈ R
n,

v̄ = −γ ▽ f̃(x̄).

Applying (1TN ⊗ In)v̄ = −γ
∑N

i=1 fi(x̄) = 0n, we
have that (x̄, v̄) is the optimal solution (x⋆, v⋆).

Theorem 1. Under Assumptions 1 and 2, algo-
rithm (3) solves the distributed optimization prob-
lem (2) for (x(0), v(0)) ∈ P0(0), if α, β, γ ∈ R>0

satisfy

(δ + 1)γβ − 2γ2K̄ > 0, (4a)

(2δ + 1)λ2(L̄)αβ − 17

2
(δ + 1)2β2 > 0, (4b)

where δ ∈ R>0, K̄ = max{K1,K2, . . . ,KN}, L̄ =
ΞL+LTΞ and λ2(L̄) denotes the smallest nonzero
eigenvalues of L̄.
Proof. Define ρ = x− x̄, ̺ = v − v̄. We can get
the network dynamics

ρ̇ = −γh− α (ΞL ⊗ In) ρ− ̺,

˙̺ = αβ (ΞL ⊗ In) ρ,

where h = ▽f̃(x) −▽f̃(x̄).
Consider the following Lyapunov function can-

didate

V2 =
1

2
ρT (((δ + 1)βΠ+ δβIN )⊗ In) ρ

+
1

2β
(βρ+ ̺)T(βρ+ ̺),

where Π = IN − 1
N
1N1TN .

The time derivative of V2 along (3) is given by

V̇2 =− (δ + 1)γβρTh− (δ + 1)γβρT (Π⊗ In)h

− (2δ + 1)

2
αβρT

(

L̄ ⊗ In
)

ρ− (δ + 1)βρT̺

− (δ + 1)βρT (Π⊗ In) ̺− γ̺Th− ̺T̺. (5)

Note that P0(0) is positive invariant under (3).
Furthermore, for (x, v) ∈ P0(0), we have ρT̺ =
ρT (Π⊗ In) ̺. Using this fact, we can rewrite (5)
as follows:

V̇2 =− (δ + 1) γβρTh− (δ + 1)γβρT (Π⊗ In)h

− 2(δ + 1)βρT (Π⊗ In) ̺− γ̺Th− ̺T̺

− (2δ + 1)

2
αβρT

(

L̄ ⊗ In
)

ρ

6−
(

(δ + 1) γβ − 2γ2K̄
)

ρTh− 1

2
̺T̺

−
∥

∥

∥

∥

2 (δ+1)β (Π⊗ In) ρ+
1

2
̺

∥

∥

∥

∥

2

−
∥

∥

∥

∥

γh+
1

2
̺

∥

∥

∥

∥

2

−
∥

∥

∥

∥

1

2
(δ + 1)β (Π⊗ In) ρ+ γh

∥

∥

∥

∥

2

− ρT
((

(2δ+1)

2
αβL̄− 17

4
(δ+1)2β2Π

)

⊗In

)

ρ.

The last equality follows the facts that ΠΠ = Π
and hTh 6 K̄ρTh.

Because L̄Π = ΠL̄, by [8, Theorem 4.1.6], there
exists an orthogonal matrix U ∈ R

N×N such that

(2δ + 1)

2
αβL̄ − 17

4
(δ + 1)2β2Π
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UT. (6)

Applying ρTh > 0, (4) and (6), we have V̇2 6

0. Therefore, we can conclude that the vari-
ables ρ and ̺ are bounded. From LaSalle’s in-
variance principle, we have limt→∞ ρTh = 0 and
limt→∞ ̺ = 0Nn, which implies that xi converges
to the optimal solution of problem (2) as t → ∞,
for i = 1, . . . , N .

There always exist α, β, γ ∈ R>0 satisfying (4);
e.g., by choosing β, γ, δ ∈ R>0 satisfying (4a), we
can find sufficiently large α to have (4b). The tun-
ning of α and γ is decoupled.

Experiment validation. A microcomputer plat-
form is used to validate the design of algorithm (3).
The microcomputer platform shown in Figure 1(a)
consists of a router and 5 microcomputers. Each
microcomputer has an onboard processor Cortex-
A53 running at 1.2 GHz and a micro-SD card. The
router is used to set up the wireless communica-
tion among microcomputers, each of which can get
the state information of its neighbors through an
802.11n wireless LAN that is provided by the on-
board chip BCM43438.

Consider a network of 5 agents with local cost
functions given by

f1 = x
4

3 , f2 = e0.2x,

f3 = (x + 2)2, f4 = 0.1x2 +
x2

√
x2 + 1

, (7)

f5 = x2 + ln(x2 + 1),

where x ∈ R. The initial states xi(0), i = 1, 2, . . . ,
5 are randomly selected within [0.11, 1]. Then we
can calculate the optimal solution x⋆ = 0.6575.
To satisfy (x(0), v(0)) ∈ P0(0), vi(0) are set as
0, ∀i = 1, 2, . . . , 5. The parameters are chosen as
α = 6, β = 1, and γ = 1. The communication
structure G is shown in Figure 1(a).

To implement the algorithms (3) on hardware
platform, the gradients ▽fi, which include terms
x

1

3 ,
√
x2 + 1 and e0.2x, are approximated by a

Newton iterative method and Taylor series. The
accuracy of approximation is set as 10−5. The
integrations are calculated using a forward Eu-
ler method. Furthermore the frequency of algori-
thm (3) is 100 Hz.

The result in Figure 1(b) shows that all the tra-
jectories of states converge to the optimal solution,
implying that (3) can be implemented on embed-
ded systems with limited computation capability.
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Figure 1 (Color online) (a) Communication structure G;
(b) the agent states xi, i = 1, 2, . . . , 5.

Conclusion. We consider the DOP on unbal-
anced directed graphs. Sufficient conditions for the
convergence are established without the knowledge
of the lower bound of local convexity constants.
The experiment results show that our algorithm
can be implemented on embedded systems with
limited computation capability.
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