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Dear editor,
As mathematical models, finite automata have
been a powerful synthesis tool for modeling and
analyzing discrete event systems where states and
events are a finite logical or discrete set. In de-
terministic finite automata, the successor can be
uniquely determined by the predecessor and in-
put event. In other words, it exhibits a deter-
ministic behavior. As a practical and theoretical
motivation, probabilistic finite automata (PFAs)
have been shown to exhibit a stochastic behavior
in many problems such as determining the relia-
bility of sequential circuits. The research on PFAs
almost always concentrates on the language-based
approach: [1] considered the supervisory control
of probabilistic discrete event systems modeled by
PFAs, and [2] considered the state estimation of
PFAs, which was a natural generalization of the
detectability of finite automata.

More recently, a matrix-based approach to mix-
valued logical networks based on the semi-tensor
product (STP) of matrices was proposed by Cheng
et al. [3]. It provided a nice systematic approach
to analysis and design problems involving logical
networks, including Boolean networks [3], proba-
bilistic Boolean networks [4], game theory and fi-
nite automata. Under the framework of the STP
of matrices, Ref. [5] equivalently gave the bilinear
form of finite automata and provided a reachabil-
ity analysis of them; Ref. [6] reported the detection
and stabilization of the limit cycle for determinis-

tic finite automata via state feedback control; and
Ref. [7] examined the static output feedback sta-
bilization of deterministic finite automata.

The contributions of this study include two as-
pects. First, we propose a matrix-based approach
for PFAs under the framework of a STP of ma-
trices, which generalizes the approach in [3]. Sec-
ond, because the reachability analysis of PFAs is
an interesting and important topic in problems
involving blocking detection, and controllability,
with the help of the new expression, we develop a
systemic analysis of the reachability of PFAs, and
provide a sufficient and necessary condition for the
reachability.

Some notations are adopted as follows: R
n is

the set of all vectors of dimension n. Mm×n de-
notes the set of m × n matrices. In denotes the
n×n dimensional identity matrix, and δkn is the k-
th column of identity matrix In. M(i,j) is the (i, j)
element of matrix M . ∆n := {δ1n, δ

2
n, . . . , δ

n
n}. |s|

is the cardinality of string s. Col(M) represents
the column set of matrix M , Coli(M) represents
the i-th column of matrix M , and ColiΣ(M) rep-
resents the sum of the entries in the i-th column
of matrix M . MT is the transpose of matrix M .
E[x] denotes the expected value of x.

Semi-tensor product of matrices. We first pro-
vide some of the necessary knowledge of the STP
of matrices used in this study.

Definition 1 ([3]). Let A ∈ Mm×n, B ∈ Mp×q.
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Then, the STP of A and B is defined as

A⋉B = (A⊗ It/n)(B ⊗ It/p), (1)

where t denotes the least common multiple of n
and p, i.e., t = lcm(n, p); ⊗ is the Kronecker prod-
uct.

When n equals p, the STP coincides with the
conventional matrix product. The symbol ⋉ is
omitted for convenience except for the special in-
structions in this study. In addition, A1 ⋉ A2 ⋉

· · ·⋉An can be abbreviated as ⋉n
i=1Ai.

For x ∈ Rm, y ∈ Rn, y ⋉ x = W[m,n] ⋉ x ⋉ y,
where the matrix W[m,n] is the swap matrix, and
can be defined as follows:

W[m,n] = δmn[1,m+ 1, 2m+ 1, . . . , (n− 1)m+ 1,

2,m+ 2, 2m+ 2, . . . , (n− 1)m+ 2, . . . ,

m, 2m, 3m, . . . , nm].

System model. PFAs1) can be captured by
a six-tuple A = (X,Σ,Γ, f, P, x0), where X =
{x1, x2, . . . , xn} represents a finite set of states
with the initial state x0; Σ = {σ1, σ2, . . . , σm}
is a finite set of events called an alphabet; Γ(x)
is a set of feasible events defined for all x ∈ X
with Γ(x) ∈ Σ; f : X × Σ → 2X represents
the transition function, which in general is a par-
tial function on its domain; P : X × Σ × X →
[0, 1] is a state transition probability function from
state xi to the state xj with the occurrence of
event σk, defined for all xi, xj ∈ X , σk ∈ Σ
such that

∑

σk∈Γ(xi)

∑

xj∈X P (xi, σk, xj) = 1 and
∑

σk /∈Γ(xi)

∑

xj∈X P (xi, σk, xj) = 0, and we re-

fer to P k
ij as such a probability distribution P (xi,

σk, xj) for brevity. Meanwhile, Σ∗ denotes the
finite set of all finite strings s on the alphabet
Σ. Obviously, the transition function f and state
transition probability function P can be extended
over s ∈ Σ∗ by f(xi, sσ) = f(f(xi, s), σ) and P sσ

il

=
∑

xj∈X P s
ijP

σ
jl, respectively. More details on

PFAs can be found in [2, 8].

In the framework of the STP of matrices, it is
possible to identify xi ∼ δin (i ∈ [1, n]) and ek ∼ δkm
(k ∈ [1,m]), where δin and δkm are the vector forms
of state xi and input ek, respectively.

With the help of the matrix-based approach re-
ported in [5], a new transition probabilistic struc-
ture matrix of A can be defined as follows:

F := [F1,F2, . . . ,Fm] ∈ Mn×mn, (2)

where Fk ∈ R
n×n is a transition probabilistic

structure matrix associated with event σk, which

is defined as follows:

Fk(i,j) =

{

P k
ij , δjn ∈ f(δin, δ

k
m),

0, otherwise.
(3)

Remark 1. It is quite natural to consider
whether the state outputs of A involve stochas-
tic behavior. The output probabilistic structure
matrix can also be defined in a way similar to the
definition of the transition probabilistic structure
matrix.

Proposition 1. Given PFAs A and finite string
s ∈ Σ∗, the dynamics of the PFAs can be described
in an algebraic form as follows:

E[x(t+ 1)] = Fu(t)E[x(t)], (4)

where E[x(t)] denotes the expected value of the
state that is reached in t steps from x(0), u(t)
is the input vector and F denotes the transition
probabilistic structure matrix.

The proof is omitted here because it is very sim-
ilar to that of Theorem 1 in [5]. In fact, F is the
weighted adjacency matrix of the event σ-labeled
sub-graph with respect to A, and

∑m
k=1 Fk is the

transpose of the probability transition matrix de-
fined in [8].

Remark 2. Obviously, it is easy to verify that if
Γ(xi) 6= ∅, ColiΣ(

∑m
1 Fk) = 1 is satisfied for each

i. Otherwise, ColiΣ(
∑m

1 Fk) = 0.

Remark 3. The probability transition matrix
was introduced in [8], but the structural informa-
tion contained in the event-driven description was
lost. In other words, the probability transition ma-
trix in [8] could not tell us the transition proba-
bilistic distribution of the event that caused the
transition. Under the framework of the STP of
matrices, the stochastic behavior of the PFAs can
be precisely captured in the transition probabilis-
tic structure matrix defined in this study.

Reachability analysis of PFAs. The reachabil-
ity analysis of PFAs is fundamental and impor-
tant research in many control problems. Here, the
reachability definition of the PFAs is introduced
as follows.

Definition 2. Considering the PFAs in (4),
(i) state xd = δqn ∈ X is said to be reachable
from x0 = δpn with a finite input string s ∈ Σ∗

if P s
pq > 0; (ii) state xd = δqn ∈ X is said to be

reachable from x0 = δpn with a probability of one
with a finite input string s ∈ Σ∗ if P s

pq = 1.

With the help of the new expression, we have
the following main result on the reachability of the
PFAs.

1) PFAs can be rewritten as PFA for a given or specific probabilistic finite automaton.
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Proposition 2. Considering the PFAs in (4),
(i) state xd = δqn ∈ X is reachable from x0 = δpn
by a finite input string s ∈ Σ∗, if and only if there
exists r such that

Colr((δ
q
n)

T(FW[n,m])
|s|δpn) > 0; (5)

(ii) state xd = δqn ∈ X is reachable from x0 = δpn
with a probability of one by a finite input string
s ∈ Σ∗, if and only if

δqn ∈ Col((FW[n,m])
|s|δpn), (6)

where W[n,m] denotes the swap matrix defined
above.

Proof. According to the new expression (4) and
through a direct mathematical induction, we can
obtain

E[x(1)] = FW[n,m]E[x(0)]u(1)

E[x(2)] = FW[n,m]E[x(1)]u(2)

= (FW[n,m])
2E[x(0)]u(1)u(2)

...

E[x(|s|)] = FW[n,m]E[x(|s| − 1)]u(|s|)

= (FW[n,m])
|s|E[x(0)]⋉

|s|
k=1 u(k)

= (FW[n,m])
|s|δpn ⋉

|s|
k=1 u(k).

(i) Based on the Definition 2, state xd = δqn ∈ X
is reachable from x0 = δpn if and only if there exists
r such that Colr{(δqn)

T(FW[n,m])
|s|δpn} > 0.

(ii) State xd = δqn ∈ X is reachable from x0 = δpn
with a probability of one if and only if its over-
all expected value of state x(|s|) is δqn, that is,
δqn ∈ Col{(FW[n,m])

|s|δpn}.
Example. The following example from [2] is il-

lustrated in Figure 1 to validate the proposed re-
sult. The sets of states and events are rewritten in
vector form, and the initial state and target state
are x0 = δ16 and xd = δ36 , respectively.
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Figure 1 PFA used in example.

The algebraic form of the considered PFA can be
described as formula (4), and the transition prob-

abilistic structure matrix can be defined in the fol-
lowing matrix form:




















0 0 0.5 0 0 0 0 0 0 0 0 0

1/3 0.5 0.5 0 0 0 0 0 0 0 0 0

1/3 0 0 0 0 0 0 0.5 0 0 0 0

1/3 0 0 0.6 0 0.5 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0.4 0.5 0.5

0 0 0 0 0.5 0 0 0 0 0 0 0





















.

When |s| = 3, using the properties of the STP
of matrices, we can obtain matrix (FW[n,m])

3δ16 ,

and it is easy to verify that (i) state xd = δ36 is
reachable from x0 = δ16 with a finite input string
of length 3; (ii) but no string of length 3 exists
such that xd = δ36 is reachable from x0 = δ16 with
a probability of one.

Conclusion. We proposed a matrix-based mod-
eling approach to PFAs under the framework of
an STP of matrices. Meanwhile, with the new ex-
pression, we provided a sufficient and necessary
condition for the reachability of PFAs, including
the reachability and reachability with a probabil-
ity of one. Finally, a simple example was used to
validate the proposed result.

In the subsequent research on this topic, we will
concentrate on the study of the controllability and
stabilization of PFAs based on the results obtained
here.
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