
SCIENCE CHINA
Information Sciences

December 2018, Vol. 61 129104:1–129104:3

https://doi.org/10.1007/s11432-017-9446-3

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 info.scichina.com link.springer.com

. LETTER .

New reachability trees for analyzing unbounded

Petri nets with semilinear reachability sets

Shouguang WANG1*, Dan YOU1 & Mengchu ZHOU2*

1Department of Electronic and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, China;
2Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark NJ 07102, USA

Received 20 November 2017/Revised 13 February 2018/Accepted 7 May 2018/Published online 1 November 2018

Citation Wang S G, You D, Zhou M C. New reachability trees for analyzing unbounded Petri nets with semilinear

reachability sets. Sci China Inf Sci, 2018, 61(12): 129104, https://doi.org/10.1007/s11432-017-9446-3

Dear editor,
Analysis of reachability sets is of fundamental im-
portance for a Petri net (PN). A reachability set
can be represented by a reachability tree (RT),
which is a powerful tool for intuitively checking
the properties of PNs. Thus, properly construc-
tion of an RT is critical. Actually, constructing
RTs to exactly characterize reachability sets for
unbounded PNs is challenging because such reach-
ability sets are infinite. Over the past 50 years,
much effort has been devoted to the finite repre-
sentation of RTs for PNs with infinite reachability
sets. Karp et al. [1] proposed a finite RT (FRT)
in which a special symbol, ω, is introduced to de-
note an infinite component of a marking. It has
been proven that an FRT can determine proper-
ties such as boundedness and safeness. Unfortu-
nately, the introduction of the symbol ω in an FRT
causes information loss. To avoid this problem,
Wang et al. [2] proposed a modified reachability
tree (MRT) in which the expression kωn+q rather
than ω is adopted to denote infinite components
of a marking. Additionally, they proved that an
MRT is a finite tree capable of determining prop-
erties such as reachability, deadlock-freedom, and
liveness. Counterexamples in [3] indicate that the
marking set represented by an MRT is not nec-
essarily equivalent to a reachability set. For ω-
independent unbounded nets, Wang et al. [4] con-
structed a new modified reachability tree (NMRT)

to exactly represent the reachability set of a net
and thus correctly determines deadlocks and live-
ness [5]. Enlightened by the previous work here we
proposed a new reachability tree (NRT) for a more
general class of unbounded PNs. This study’s con-
tributions include the following: (1) a modified
definition of ω-numbers is proposed, by which in-
dependent and dependent ω-markings can be dif-
ferentiated; (2) an NRT is proposed for a class
of unbounded PNs that exactly characterizes the
reachable marking set of a PN; and (3) the role of
an NRT in determining deadlocks for unbounded
nets is verified.

The basic concepts of PNs and related notions
of ω-numbers as well as ω-markings [2–4] are re-
viewed in Appendix A. We introduce modified ω-
numbers and ω-markings as well as their notions
and results for NRT. The related proofs are pro-
vided in Appendix B. The sets of integers, non-
negative integers, and positive integers are denoted
by Z, N, and N+, respectively.

Definition 1. A subset of integer S is called
an ω-number if ∃q ∈ Z, k1, k2, . . . , km ∈ N
and k1 + k2 + · · · + km 6= 0 such that S =

ω(k
(1)
1 , k

(2)
2 , . . . , k

(m)
m ; q) ≡ k1ω

(1) + k2ω
(2) + · · ·+

kmω(m) + q ≡ {i(1)k1 + i(2)k2 + · · · + i(m)km +
q|i(1), i(2), . . . , i(m) ∈ N}, where m ∈ N+.

ω(k
(1)
1 , k

(2)
2 , . . . , k

(m)
m ; q) or k1ω

(1)+k2ω
(2)+· · ·+

kmω(m) + q is called a canonical ω-number, where
ω(j) is called an ω element with superscript j, kj
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the base related to ω(j), j ∈ {1, 2, . . . ,m} and q

the starting value. Moreover, an ω-number has z

dimension if it contains z non-zero bases.
Let S = ω(k

(1)
1 , k

(2)
2 , . . . , k

(m)
m ; q), S1 = ω(k

(1)
11 ,

k
(2)
12 , . . . , k

(m)
1m ; q1), and S2 = ω(k

(1)
21 , k

(2)
22 , . . . , k

(m)
2m ;

q2) be three ω-numbers.

Definition 2. S is called a simple ω-number if
its dimension is one; otherwise, it is a compound
ω-number.

Definition 3. S1 and S2 are ω-numbers with the
same form if k1i = k2i, ∀i ∈ {1, 2, . . . ,m}.

Definition 4. Let a ∈ Z. S + a = ω(k
(1)
1 , k

(2)
2 ,

. . . , k
(m)
m ; q + a).

Definition 5. S1 +S2 = ω((k11 + k12)
(1), (k12 +

k22)
(2), . . . , (k1m + k2m)(m); q1 + q2).

Definition 6. Let S1 and S2 be two ω-numbers
with the same form (i.e., k1i = k2i, ∀i ∈ {1, 2,
. . . ,m}). S1 > S2(S1 > S2) if q1 > q2(q1 > q2).

Property 1. Let S1 and S2 be two ω-numbers
with the same form. S1 ⊆ S2 iff q1 − q2 =
c1k1 + c2k2 + · · ·+ cmkm, c1, c2, . . . , cm ∈ N.

Definition 7. We say S1 is independent of S2 if
k1i · k2i = 0, ∀i ∈ {1, 2, . . . ,m}.

Based on the modified definition of ω-numbers,
the ω-vector (resp. ω-marking) exactly represents
only one ordinary vector set (resp. ordinary mark-
ing set). Let µ = (S1, S2, . . . , Sn) be a vector,
where ∀x ∈ {1, 2, . . . , n}, Sx = {i(1)kx1 + i(2)kx2 +
· · ·+ i(m)kxm+qx|i

(1), i(2), . . . , i(m) ∈ N}, in which
qx ∈ Z, kxy ∈ N, ∀y ∈ {1, 2, . . . ,m}. Note
that Sx is an integer (i.e., Sx = qx) if kxy = 0,
∀y ∈ {1, 2, . . . ,m}; otherwise, it is an ω-number.

Remark 1. An ω-vector (resp. ω-marking) de-
fined in this study is essentially a linear set [6].

Let µ = (S1, S2, . . . , Sn), µ1 = (S11, S12, . . . ,

S1n), and µ2 = (S21, S22, . . . , S2n) be three ω-
vectors.

Definition 8. µ is an independent ω-vector if
∀i, j ∈ {1, 2, . . . , n}, and i 6= j, Si and Sj are inde-
pendent of each other; otherwise, µ is a dependent
ω-vector.

Property 2. We have µ = ∆ iff µ is an indepen-
dent ω-vector, where ∆ = {(a1, a2, . . . , an)|ag ∈
Sg (or ag = Sg if Sg is an integer), ∀g ∈ {1, 2,
. . . , n}}.

Definition 9. µ1 and µ2 are ω-vectors with the
same form if S1x and S2x are ω-numbers with the
same form or are both integers, ∀x ∈ {1, 2, . . . , n}.

Definition 10. Let µ1 and µ2 be two ω-vectors
with the same form. µ2 > µ1 if S2i > S1i,
∀i ∈ {1, 2, . . . , n}. Note that µ2 > µ1 is defined
as µ2 > µ1, but µ2 6= µ1.

Property 3. Let µ1 and µ2 be two independent

ω-vectors. µ1 ⊆ µ2 iff S1i ⊆ S2i or S1i = S2i or
S1i ∈ S2i, ∀i ∈ {1, 2, . . . , n}.

Property 4. Let µ1 and µ2 be two ω-vectors
with the same form. µ1 ⊆ µ2 iff C1×m = (c1, c2,
. . . , cm) ∈ Nm exists such that ∀x ∈ {1, 2, . . . , n}:

(1) qx − q′x = C1×m · (kx1, kx2, . . . , kxm)T if

S1x = ω(k
(1)
x1 , k

(2)
x2 , . . . , k

(m)
xm ; qx) and S2x = ω(k

(1)
x1 ,

k
(2)
x2 , . . . , k

(m)
xm ; q′x) are ω-numbers with the same

form;

(2) S1x = S2x if S1x and S2x are both integers.

Based on the modified definitions of ω-numbers
and ω-vectors as well as their related notions, the
construction algorithm (Algorithm 1) of an NRT
for unbounded PNs is developed. In Algorithm 1,
the next-state function δ(µ, t) is repeatedly called
to compute the marking that results from firing t

once at the current marking µ. The detailed com-
putation of δ(µ, t) proceeds as in [4]. In Step 8 of
Algorithm 1, determining which ω-marking is the
bigger one and whether an inclusion relation ex-
ists between two ω-markings can be accomplished
by means of Definition 10 and Properties 3 or 4,
respectively. In addition, four types of nodes are
used to construct an NRT (i.e., terminal, dupli-
cate, ω-duplicate, and common nodes [4]). We
note that an independent ω-marking can be easily
distinguished from a dependent one in an NRT.

Definition 11. Let (N,µ0) be an unbounded
PN. (N,µ0) is said to be an ω-independent net
if its NRT does not contain any dependent ω-
marking. Otherwise, it is said to be an ω-
dependent net.

In what follows, the following assumption is
made for unbounded PNs.

Assumption 1. Finite ω-numbers with differ-
ent superscripts are introduced when Algorithm 1
is applied.

Under Assumption 1, the finiteness of NRTs
is guaranteed, and NRTs can be used to ana-
lyze the reachability and determine whether un-
bounded PNs contain deadlocks, which are shown
by Theorems 1–3.

Theorem 1 (Finiteness). The NRT of an un-
bounded PN is finite.

Theorem 2 (Reachability). The NRT of an un-
bounded PN consists of only but all reachable
markings from its initial marking.

Before presenting Theorem 3, we explain that a
full conditional node is a node in an NRT with all
its direct successors linked by dotted arcs.

Theorem 3 (Deadlock checking). An un-
bounded PN has deadlocks iff its NRT contains
terminal or full conditional nodes.
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Algorithm 1 Construction of an NRT

Input: An unbounded net (N, µ0);
Output: An NRT of (N, µ0);
1: Let x0 be the root node of the tree and µ0 the marking

of node x0;
2: Ξ := {x0} and label x0 as a new node;
3: while there exists a new node x in Ξ do

4: Label x as an old node and let µx be the marking of
node x;

5: for each t ∈ T do

6: if t is enabled or conditionally enabled at µx then

7: Compute the next-state δ(µx , t) and create a
new node z in the NRT;

8: if there exists a node y on the path from the
root node to x such that δ(µx , t) > µy and
δ(µx , t) * µy then

9: if δ(µx, t) is an ordinary marking then

10: j = 1;
11: else

12: j = 1+ g, where g is the maximal dimen-
sion of all the ω-numbers in δ(µx , t);

13: end if

14: for each p ∈ P do

15: if δ(µx , t)(p) > µy(p) then

16: µz(p) := δ(µx , t)(p) + kω(j), where
k = δ(µx, t)(p) − µy(p);

17: else

18: µz(p) := δ(µx, t)(p);
19: end if

20: end for

21: else

22: µz := δ(µx , t);
23: end if

24: end if

25: if t is enabled at µx then

26: Add a solid arc t from x to z; /∗ t is enabled
at µx ∗/

27: else

28: Add a dotted arc t from x to z; /∗ t is condi-
tionally enabled at µx ∗/

29: end if

30: if z is a terminal node, ω-duplicate node, or du-
plicate node then

31: Let node z be an old node;
32: else

33: Let node z be a new node;
34: end if

35: Ξ := Ξ ∪ {z};
36: end for

37: end while

Remark 2. We note that a finite NRT can be
constructed only for a class of PNs whose reacha-
bility sets are semilinear, where a semilinear set
is a finite union of linear sets [6]. We can see
that each node in an NRT corresponds to an ω-
marking that is actually a linear set. Therefore,
an NRT with finite nodes can only characterize
a reachability set that is a semilinear set. It is
worth noting that whether a given PN has a semi-
linear reachability set is decidable, which has been
proven independently by Hauschildt [7] and Lam-
bert [8]. In addition, a wide variety of subclasses

of PNs enjoy semilinear reachability sets. Indeed,
Ref. [9] proved that persistent PNs, weakly per-
sistent PNs, almost persistent PNs, sinkless PNs,
almost sinkless PNs, and cyclic PNs all have semi-
linear reachability sets. Moreover, we note that
the NRT overcomes the drawback of the MRT (i.e.,
the set of markings represented by the nodes of the
MRT covers the set of reachable markings, but it
is not necessarily equal to that set) and breaks the
limitations of the NMRT that is applicable to ω-
independent unbounded nets only.

Conclusion. This study proposed an NRT that
provides more useful structural information than
does FRT, MRT, and NMRT. Moreover, for un-
bounded PNs with semilinear reachability sets, a
finite NRT was successfully constructed to char-
acterize precisely their infinite reachability sets.
Based on the finite NRT, we can correctly deter-
mine whether an unbounded net contains a dead-
lock.
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