
SCIENCE CHINA
Information Sciences

. Supplementary File .

Expressivity Issues in SPARQL: Monotonicity and
Two-versus Three-valued Semantics

Xiaowang ZHANG1,2*, Chenhong MENG1,2 & Lei ZOU3

1School of Computer Science and Technology, Tianjin University, Tianjin 300350, China;
2Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin 300350, China;

3Peking University, Beijing 100871, China

Appendix A Preliminaries

In this section, we briefly introduce SPARQL and relational algebra. For more comprehensive background knowledge, we

refer the reader to [1, 5].

RDF graph Let I, B, and L be infinite sets of IRIs, blank nodes and literals, respectively. These three sets are pairwise

disjoint. We denote the union I ∪B ∪ L by U , and elements of I ∪ L will be referred to as constants.

A triple (s, p, o) ∈ (I ∪B)× I × (I ∪B ∪ L) is called an RDF triple. An RDF graph is a finite set of RDF triples.

The syntax of SPARQL The official syntax of SPARQL [6] considers operators OPTIONAL, UNION, and FILTER,

and concatenation via a point symbol (.), to construct (graph) pattern. The syntax also considers {} to group patterns, and

some implicit rules of precedence and association. For example, the point symbol (.) has precedence over OPTIONAL, and

OPTIONAL is left associative. In order to avoid ambiguities in the parsing, we present the syntax of SPARQL patterns in

a more traditional algebraic formalism, using binary operators AND, UNION, OPT, and FILTER, respectively. We fully

parenthesize expressions making explicit the precedence and association of operators.

A (SPARQL) pattern is defined in an inductive way:

• A tuple from (I ∪ L ∪ V)× (I ∪ V)× (I ∪ L ∪ V) is a pattern (a triple pattern).

• If P1 and P2 are patterns, then (P1 AND P2), (P1 OPT P2), and (P1 UNION P2) are patterns.

• If P is a pattern and C is a SPARQL built-in condition, then (P FILTER C) is a pattern.

A SPARQL constraint (or built-in condition) is constructed using elements of the set I ∪ L ∪ V and constants, logical

connectives (¬, ∧, ∨), inequality symbols (<,6,>, >), the equality symbol (=), unary predicates like bound, isBlank, and

isIRI, plus other features (see [6] for a complete list). In this paper, we restrict to the fragment where constraints are a

boolean combination of terms constructed by using = and bound, that is:

• If ?x, ?y ∈ V and c ∈ I ∪ L, then bound(?x), ?x = c and ?x =?y are built-in conditions;

• If C1 and C2 are built-in conditions, then (¬C1), (C1 ∨ C2) and (C1 ∧ C2) are built-in conditions.

Let P be a pattern. We use var(P) to denote the set of variables occurring in P . In particular, if t is a triple pattern,

then var(t) denotes the set of variables occurring in the components of t. Similarly, for a built-in condition C, we use

var(C) to denote the set of variables occurring in C.

Let P be a pattern and let S ⊂ V a finite set of variables. A SELECT query is of the form SELECTS(P). All SELECT

queries are on the top of patterns. Note that SELECT can be nested as subquery in SPARQL 1.1 [9]. In this paper, we

don’t discuss SELECT as subquery following SPARQL 1.0.

Three-valued and two-valued semantics of SPARQL There are two formalizations of semantics of

SPARQL, namely, set-based semantics and bag-based semantics. The semantics we use is set-based [5], whereas the seman-

tics of real SPARQL is bag-based [6].

Set-based semantics

Semantically based on sets, a mapping µ from an infinite set of variables V to a set of RDF term U is a partial function.

For each triple t = (s, p, o), we use µ(t) to denote the triple obtained by replacing the variables in t according to µ. That

is, dom(u) is a subset of V . We say two mapping µ1, µ2 are compatible, written by µ1 ∼ µ2, if they agree on all shared

* Corresponding author (email: xiaowangzhang@tju.edu.cn)

Zhang X., et al. Sci China Inf Sci 2

Table A1 Truth value table

µ(C1) µ(C2) µ(C1) ∧ µ(C2) µ(C1) ∨ µ(C2)

true true true true

true false false true

true error error true

false true false true

false false false false

false error false error

error true error true

error false false error

error error error error

variables, i.e., if µ1(?x) = µ2(?x) for all ?x ∈ dom(µ1)∩ dom(µ2). That is to say, µ1 ∪µ2 is also a mapping. Intuitively, µ1
and µ2 are compatibles if µ1 can be extended with µ2 to obtain a new mapping, and vice versa.

Let Ω1,Ω2 be two sets of mappings. We define the join of, the union of, and the difference between Ω1 and Ω2 as follows:

• Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2};
• Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 : µ1 ∼ µ2};
• Ω1 \ Ω2 = {µ1 ∈ Ω1 | ∀µ2 ∈ Ω2 : µ1 6∼ µ2};
• Ω1 ./ Ω2 = (Ω1 ./ Ω2) ∪ (Ω1 \ Ω2);

• πS(Ω) = {µ1 | ∃µ2 : µ1 ∪ µ2 ∈ Ω and dom(µ1) ⊆ S and dom(µ2) ∩ S = ∅}.
Let G be an RDF graph, t a triple pattern, P, P1, P2 patterns and C a filter condition. We define

JtKG = {µ | dom(µ) = var(t) and µ(t) ∈ G};
JP1 AND P2KG = JP1KG ./ JP2KG;

JP1 UNION P2KG = JP1KG ∪ JP2KG;

JP1 OPT P2KG = JP1KG ./ JP2KG;

JP FILTER CKG = {µ ∈ JP KG | µ |= C};
JSELECTS(P)KG = πS(JP KG).

(A1)

Three-valued set-based semantics

The three-valued semantics officially recommended by W3C of filter expressions goes as follows. Given a mapping µ and

a constraint C, we say that the evaluation of C against µ, denoted by µ(C), is defined in a three-valued logic with truth

values {true, false, error} as follows (see [1]):

• If C is an atomic constraint, then

(1) If var(C) ⊆ dom(µ) then µ(C) = true when

(a) C is ?x = c and µ(?x) = c; or

(b) C is ?x =?y and µ(?x) = µ(?y); or

(c) C is bound(?x);

and µ(C) = false otherwise.

(2) If var(C) 6⊆ dom(µ) then if C is bound(?x) then µ(C) = false else µ(C) = error .

• If C is complex constraint, then µ(C) is defined as follows: (1) ¬µ(C) = true (false or error) if µ(C) = false (true or

error) respectively; and (2) the boolean constraints are defined under the three-valued semantics in Table A1.

A mapping µ satisfies a constraint C, denoted by µ |= C, if and only if µ(C) = true.

Two-valued set-based semantics

The two-valued semantics [5] (classically, true and false are truth values) is different from the three-valued semantics only

in characterizing constraints. The two-valued semantics of them goes as follows. Given a mapping µ and a constraint C,

the evaluation of C against µ, denoted by µ(C), is defined in a two-valued logic with truth values {true, false} as follows:

• If C is an atomic constraint, then

(1) If var(C) ⊆ dom(µ) then µ(C) = true when

(a) C is ?x = c and µ(?x) = c; or

(b) C is ?x =?y and µ(?x) = µ(?y); or

(c) C is bound(?x);

and µ(C) = false otherwise.

Zhang X., et al. Sci China Inf Sci 3

Table A2 Truth value table under the two-valued semantics

µ(C1) µ(C2) µ(C1) ∧ µ(C2) µ(C1) ∨ µ(C2)

true true true true

true false false true

false true false true

false false false false

(2) If var(C) 6⊆ dom(µ) then µ(C) = false.

• If C is complex constraint, then µ(C) is defined as follows:

(1) ¬µ(C) = true (or false) if µ(C) = false (or true) respectively; and

(2) the boolean constraints are defined under the two-valued semantics in Table A2.

A mapping µ satisfies a constraint C, denoted by µ |=2 C, if and only if µ(C) = true.

Let P be a pattern and G an RDF graph. We use JP K2G to denote the collection of all mappings satisfying P under the

two-valued semantics.

In SPARQL, two semantics are slightly different in constraints ¬(?x = c) and ¬(?x =?y).

• Under the three-valued semantics,

(1) µ |= ¬(?x = c) if ?x ∈ dom(µ) and µ(x) 6= c;

(2) µ |= ¬(?x =?y) if {?x, ?y} ⊆ dom(µ) and µ(x) 6= µ(?y).

• Under the two-valued semantics,

(1) µ |= ¬(?x = c) if either ?x ∈ dom(µ) and µ(x) 6= c or ?x 6∈ dom(µ);

(2) µ |= ¬(?x =?y) if {?x, ?y} ⊆ dom(µ) and µ(x) 6= µ(?y) or {?x, ?y} 6⊆ dom(µ).

For simplification, we directly use ?x 6= c to denote ¬(?x = c) and ?x 6=?y to denote ¬(?x =?y) in this paper.

Finally, given two patterns P1, P2, we say P1 is subsumed in P2 under the three-valued semantics, written by P1 ⊆ P2,

if for every RDF graph G, JP1KG ⊆ JP2KG. Analogously, we say P1 is subsumed in P2 under the two-valued semantics,

written by P1 ⊆2 P2, if for every RDF graph G, JP1K2G ⊆ JP2K2G.

Well-designed patterns Well-designed patterns are introduced to characterize weak monotonicity [5].

A UNION-free pattern P is well-designed if the followings hold:

• P is safe, that is, for every sub-pattern Q of form (Q FILTER C) of P , var(C) ⊆ var(Q);

• for every sub-pattern Q of form (Q1 OPT Q2) of P and for every variable ?x occurring in P , the following condition

hold: If ?x occurs both inside Q2 and outside Q, then it also occurs in Q1.

A well-designed pattern P is of the following form (called UNION norm form):

Q1 UNION . . .UNION Qm, (A2)

where each Qi (i = 1, 2, . . . ,m) is UNION-free well-designed pattern.

Let P be a pattern. We use ∆(P) to denote the least reduction of P (defined in [5]) as follows:

• ∆(t) := t;

• ∆(P1 UNION P2) := ∆(P1) UNION ∆(P2);

• ∆(P1 AND P2) := ∆(P1) AND ∆(P2);

• ∆(P1 OPT P2) := ∆(P1);

• ∆(P1 FILTER C) := ∆(P1) FILTER C.

Appendix B Proofs

Proposition 1. The two-valued pattern semantics is equivalent to the three-valued pattern semantics in SPARQL+.

Proof. We only need to prove that for any pattern P in SPARQL+, for any RDF graph G, we have JP KG = JP K2G.

By induction on the structure of P .

If P is a triple pattern that this claim directly follows definition since triple patterns do not contain any constraint.

If P is of the form P1 AND P2, P1 OPT P2, and P1 UNION P2, then this claim holds by induction.

If P is of the form P1 FILTER C then this claim follows from the following claim.

Claim 1. Let C be a positive constraint. For all mappings µ, µ |= C if and only if µ |=2 C.

We will prove this claim by induction on the structure of C.

• (basic step) Let’s consider three kinds of atomic constraints.

(1) µ |=?x = c ⇔ µ(?x = c) = true ⇔ µ(?x) = c ⇔ µ |=2?x = c;

(2) µ |=?x =?y ⇔ µ(?x =?y) = true ⇔ µ(?x) = µ(?y) ⇔ µ |=2?x =?y;

Zhang X., et al. Sci China Inf Sci 4

(3) µ |= bound(?x) ⇔ µ(bound(?x)) = true ⇔ ?x ∈ dom(µ) ⇔ µ |=2 bound(?x).

• (Inductive step) Assume that µ |= Ci ⇔ µ |=2 Ci (i = 1, 2).

(1) µ |= C1 ∧ C2 ⇔ µ |= C1 and µ |= C2 ⇔ µ |=2 C1 and µ |=2 C2 ⇔ µ |=2 C1 ∧ C2;

(2) µ |= C1 ∨ C2 ⇔ µ |= C1 or µ |= C2 ⇔ µ |=2 C1 or µ |=2 C2 ⇔ µ |=2 C1 ∨ C2.

Here ⇔ means “if and only if”. 2

Proposition 2. The two-valued pattern semantics is not equivalent to the three-valued pattern semantics in SPARQLb.

Proof. We only need to prove that there exists some pattern P in SPARQLb and some RDF graph G such that

JP KG 6= JP K2G.

Consider a pattern P of the form (?x, p, ?y) FILTER ?z 6= c and an RDF graph G = {(a, p, b)}. Thus JP KG = ∅ while

JP K2G = {(?x→ a, ?y → b)}. 2

Proposition 3. SPARQL is expressible in SPARQLb under the two semantics.

Proof. To prove Proposition 3, we define γ(P) as a new pattern obtained from P by applying the following rule:

substituting ¬ bound (?x) by ?x 6=?x.

We can conclude the following claim:

Claim 2. For any pattern P in SPARQL, for any RDF graph G, we have JP K2G = Jγ(P)K2G.

And the following claim that the expressivity of SPARQL under the two-valued semantics is the same as the expressivity

of SPARQL under the three-valued semantics [8, Proposition 17].

Claim 3. [8] For all SPARQL pattern P , there exists some SPARQL pattern Q such that for any graph G, JP KG = JQK2G.

We only need to show that for any pattern P of the form QFILTER¬bound(?x), for any RDF graph G, JP K2G = Jγ(P)K2G,

that is, JQFILTER¬ bound (?x)K2G = JQFILTER ?x 6=?xK2G. Let µ ∈ JQFILTER¬ bound (?x)K2G. Thus µ ∈ JQK2G. Since

?x 6∈ dom(µ), µ |=?x 6=?x under the two-valued semantics. Then JQFILTER¬ bound (?x)K2G ⊆ JQFILTER ?x 6=?xK2G. On

the other hand, µ ∈ JQFILTER ?x 6=?xK2G. Thus µ ∈ JQK2G. Since µ |=?x 6=?x under the two-valued semantics, ?x 6∈ dom(µ).

Then JQFILTER ?x 6=?xK2G ⊆ JQFILTER¬bound(?x)K2G. Therefore, JQFILTER¬bound(?x)K2G = JQFILTER ?x 6=?xK2G.

2

By Claim 2, for any pattern P in SPARQL, for any RDF graph G, we have JP K2G = Jγ(P)K2G. We conclude that for any

pattern P in SPARQL, there exists some pattern Q′ (here Q′ is γ(P)) in SPARQLb such that JP K2G = JQ′K2G for any RDF

graph G since γ(P) is a pattern in SPARQLb. Then SPARQL is expressible in SPARQLb under the two-valued semantics.

We also have that SPARQL is expressible in SPARQLb under the three-valued semantics by Claim 3.

Therefore, SPARQL is expressible in SPARQLb under two semantics. 2

Proposition 4. AFU is monotonic under the two-valued semantics.

Proof. Firstly, we introduce a claim as follows:

Claim 4. Let Ωi and Ω′
i be a set of mappings (i = 1, 2). If Ωi ⊆ Ω′

i then the followings hold.

• Ω1 ∪ Ω2 ⊆ Ω′
1 ∪ Ω′

2;

• Ω1 ./ Ω2 ⊆ Ω′
1 ./ Ω′

2.

•
Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2};

⊆ {µ | µ ∈ Ω′
1 or µ ∈ Ω′

2};
= Ω′

1 ∪ Ω′
2.

•
Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1 and µ2 ∈ Ω2 and µ1 ∼ µ2};

= {µ1 ∪ µ2 | µ1 ∈ Ω′
1 and µ2 ∈ Ω′

2 and µ1 ∼ µ2};
= Ω′

1 ./ Ω′
2.

By Claim 4, we will prove Proposition 4.

Next, we only need to show that for any pattern P in AFU , for any two RDF graphs G1 and G2, JP KG1
⊆ JP KG2

if

G1 ⊆ G2.

By induction on the structure of P .

• If P is a triple pattern then this claim directly follows by definition. That is to say, JP KG1
⊆ JP KG2

if G1 ⊆ G2.

• If P is of the form P1 UNION P2 then JPiKG1 ⊆ JPiKG2 (i = 1, 2) if G1 ⊆ G2. By Claim 4, we can conclude that

JP1 UNION P2KG1 ⊆ JP1 UNION P2KG2 .

• If P is of the form P1 AND P2 then JPiKG1
⊆ JPiKG2

(i = 1, 2) if G1 ⊆ G2. By Claim 4, we can conclude that

JP1 AND P2KG1
⊆ JP1 AND P2KG2

.

• Finally, if P is of the form P1 FILTER C then JP1KG1 ⊆ JP1KG2
if G1 ⊆ G2. Let’s discuss six cases of C.

Zhang X., et al. Sci China Inf Sci 5

(1) If C is of the form bound(?x) then

JP KG1 = JP1 FILTER bound(?x)KG1 ;

= {µ | µ ∈ JP1KG1
and µ |= bound(?x)};

= {µ | µ ∈ JP1KG1
and ?x ∈ dom(µ)};

⊆ {µ | µ ∈ JP1KG2
and ?x ∈ dom(µ)};

= {µ | µ ∈ JP1KG2
and µ |= bound(?x)};

= JP1 FILTER bound(?x)KG2
;

= JP KG2 .

(2) If C is of the form ?x = c then

JP KG1
= JP1 FILTER ?x = cKG2

;

= {µ | µ ∈ JP1KG1
and µ |=?x = c};

= {µ | µ ∈ JP1KG1 and ?x ∈ dom(µ) and µ(?x) = c};
⊆ {µ | µ ∈ JP1KG2 and ?x ∈ dom(µ) and µ(?x) = c};
= {µ | µ ∈ JP1KG2

and ?x ∈ dom(µ) and µ(?x) = c};
= JP1 FILTER ?x = cKG2

;

= JP KG2
.

(3) If C is of the form ?x =?y then

JP KG1
= JP1 FILTER ?x =?yKG1

;

= {µ | µ ∈ JP1KG1
and µ |=?x =?y};

= {µ | µ ∈ JP1KG1
and {?x, ?y} ⊆ dom(µ) and µ(?x) = µ(?y)};

⊆ {µ | µ ∈ JP1KG1
and {?x, ?y} ⊆ dom(µ) and µ(?x) = µ(?y)};

= {µ | µ ∈ JP1KG2 and µ |=?x =?y};
= JP1 FILTER ?x =?yKG2 ;

= JP KG2
.

(4) If C is of the form C1 ∨ C2 then

JP KG1 = JP1 FILTER C1 ∨ C2KG1 ;

= {µ | µ ∈ JP1KG1
and µ |= C1 ∨ C2};

= {µ | µ ∈ JP1KG1
and (µ |= C1 or µ |= C2};

= {µ | µ ∈ JP1KG1
and µ |= C1} ∪ {µ | µ ∈ JP1KG1

and µ |= C2};
⊆ {µ | µ ∈ JP1KG2

and µ |= C1} ∪ {µ | µ ∈ JP KG2
and µ |= C2};

= {µ | µ ∈ JP1KG2
and (µ |= C1 or µ |= C2};

= {µ | µ ∈ JP1KG2 and µ |= C1 ∨ C2};
= JP FILTER C1 ∨ C2KG2 ;

= JP KG2
.

(5) If C is of the form C1 ∧ C2 then

JP KG1 = JP1 FILTER C1 ∧ C2KG1

= {µ | µ ∈ JP1KG1
and µ |= C1 ∧ C2};

= {µ | µ ∈ JP1KG1
and (µ |= C1 and µ |= C2};

= {µ | µ ∈ JP1KG1
and µ |= C1} ∩ {µ | µ ∈ JP1KG1

& µ |= C2};
⊆ {µ | µ ∈ JP1KG2

and µ |= C1} ∩ {µ | µ ∈ JP1KG2
& µ |= C2};

= {µ | µ ∈ JP1KG2
and (µ |= C1 and µ |= C2};

= {µ | µ ∈ JP1KG2
and µ |= C1 ∧ C2};

= JP1 FILTER C1 ∧ C2KG2 ;

= JP KG2 .

(6) If C is of the form ¬C1 then:

JP KG1 = JP FILTER ¬C1KG1 ;

= {µ | µ ∈ JP KG1 and µ |= ¬C1};
= {µ | µ ∈ JP KG1

and µ 6|= C1};
⊆ {µ | µ ∈ JP KG2

and µ 6|= C1};
= {µ | µ ∈ JP KG2

and µ |= ¬C1};
= JP FILTER ¬C1KG2

;

= JP KG2
. 2

Zhang X., et al. Sci China Inf Sci 6

Proposition 5. Any fragment consisting of OPT is non-monotonic under the two semantics.

Proof. Consider a pattern P = (?x, p, ?y) OPT (?y, q, ?z) and two RDF graphsG1 = {(a, p, b)} andG2 = {(a, p, b), (b, q, c)}.
We have the followings.

• JP KG1
= {µ1} where µ1(?x) = a and µ1(?y) = b;

• JP KG2 = {µ2} where µ2(?x) = a, µ2(?y) = b, and µ2(?z) = c.

We have both JP KG1 6⊆ JP KG2 and JP K2G1
6⊆ JP K2G2

while G1 ⊆ G2 while since µ1 6= µ2. 2

Corollary 1. Both OPT-free SPARQL+ and OPT-free SPARQLb are monotonic under the two semantics.

Proof. By Proposition 4 and the fact that AFU is monotonic under the three-valued semantics [8], we know that OPT-free

SPARQL+ and OPT-free SPARQLb is monotonic since both OPT-free SPARQL+ and OPT-free SPARQLb are fragments

of AFU . 2

Appendix B.1 Weak monotonicity and well-designed patterns

Proposition 6. For any pattern P , if P is weak monotonic then P is non-optionally monotonic under the two semantics,

but not vice versa.

Proof. Let P be a pattern. Given two RDF graphs G1 and G2, G1 ⊆ G2 implies JP KG1
v JP KG2

since P is weak

monotonic. That is, for any mapping µ1 ∈ JP KG1
, there exists some mapping µ2 ∈ JP KG2

such that µ1 v µ2. Let µ be a

mapping in J∆(P)KG1
and µ v µ1. Since µ1 v µ2 and µ v µ1, µ v µ2. Therefore, P is non-optionally monotonic.

Consider a pattern P = ((?x, p, ?y) OPT (?y, q, ?z)) OPT (?z, r, ?w) and two RDF graphs G1 = {(a, p, b), (d, r, e)},
G2 = {(a, p, b), (d, r, e), (b, q, c)}). We have that P is non-optionally monotonic while P is not weak monotonic since

µ1 6= µ2. 2

Proposition 7. For any pattern P in AFU , P is monotonic, weak monotonic, and non-optionally monotonic under two

semantics.

Proof. Since P is OPT-free, ∆(P) = P . Thus P is weak monotonic iff P is non-optionally monotonic.

Next, we only need to show that P is weak monotonic. By Proposition 4, P is monotonic. That is, for any two RDF

graphs G1 and G2 with G1 ⊆ G2, for any mapping µ1 ∈ JP KG1 , µ1 ∈ JP KG2 and then, µ1 ∈ JP KG2 and µ1 v µ1. Therefore,

P is weak monotonic. 2

Proposition 8. Each well-designed pattern is weak monotonic and non-optionally monotonic under two semantics.

Proof. Since the three-valued semantics is equivalent to the two valued-semantics by Proposition 2, we can conclude that

P is weak monotonic under the two-valued semantics. Next, we need to show that P is non-optionally monotonic under two

semantics. For any two RDF graphs G1 and G2 with G1 ⊆ G2, for any mapping µ1 ∈ JP KG1
, there exists some mapping

µ2 ∈ JP KG2
such that µ1 v µ2 and then, for any mapping µ ∈ J∆(P)KG1

, µ v µ1, we have µ v µ2 since µ1 v µ2. Therefore,

P is non-optionally monotonic. 2

Proposition 9. OU is non-optionally monotonic under the two semantics.

Proof. Firstly, we introduce the following claim:

Claim 5. For every pattern P in OU , the followings hold.

• ∆(P) has of the following form: ∆(P) = t1 UNION · · ·UNION tn; where ti (i = 1, 2, . . . , n) is a triple pattern.

• For every RDF graph G, for every mapping µ ∈ JP KG, there exists some mapping µ′ ∈ JtiKG for some i ∈ {1, . . . , n}
such that µ′ v µ.

• For every RDF graph G, for every mapping µ ∈ JtiKG with i ∈ {1, . . . , n}, there exists some mapping µ′ ∈ JP KG such

that µ v µ′.
Those claims directly follow the definition of ∆(P).

Let P be a pattern in OU and let ∆(P) be of the following form: t1 UNION . . .UNION tn by the first item of Claim 5.

Given two RDF graphs G1 and G2 with G1 ⊆ G2, let µ1 be a mapping JP KG1
, there exists some mapping µ′1 ∈ JtiKG1

for some i ∈ {1, . . . , n} such that µ′ v µ by the second item of Claim 5. Thus µ′1 ∈ JtiKG2
since each triple pattern is

monotonic. Then there exists some mapping µ′1 ∈ JP KG2
by the third item of Claim 5. Therefore, P is non-optionally

monotonic. 2

Proposition 10. AO and FO are not non-optionally monotonic under the two semantics.

Proof. Consider a pattern P1 = ((?x, p, ?y) OPT (?y, q, ?z)) AND (?x, r, ?z) and two RDF graphs G1 = {(a, p, b), (a, r, d)}
and G2 = G1 ∪ {(b, q, c)}. We have JP1KG1

= {µ1} where µ1(?x) = a, µ1(?y) = b, and µ1(?z) = d while JP1KG2
= ∅. Then

P1 is not non-optionally monotonic since J∆(P1)KG1
= {µ1}.

Consider a pattern P2 = ((?x, p, ?y) OPT (?y, q, ?z)) FILTER ¬ bound (?z) and two RDF graphs G3 = {(a, p, b))} and

G4 = G2 ∪ {(b, q, c)}. We have JP2KG3
= {µ2} where µ2(?x) = a and µ2(?y) = b while JP2KG2

= ∅. Then P2 is not

non-optionally monotonic under two semantics since J∆(P2)KG1
= {µ1}. 2

Proposition 11. Let F be a fragment of SPARQL. If DIFF is expressible in F then F is not non-optionally monotonic

under the two semantics.

Proof. Consider a pattern P = (?x, p, ?y) DIFF (?x, q, ?y), there exists some pattern Q in F such that JP KG = JQKG
for any RDF graph G. Given two RDF graphs G1 = {(a, p, b)} and G2 = G1 ∪ {(a, q, b)}, we have JP KG1

= {µ} where

µ(?x) = a and µ(?y) = b while JP KG2
= ∅. That is, JQKG1

= {µ} where µ(?x) = a and µ(?y) = b while JQKG2
= ∅ since

JP KG = JQKG for any RDF graph G. Since JQKG2
= ∅, P is not non-optionally monotonic under the two semantics. 2

Proposition 12. FO+ and FOb are not non-optionally monotonic under the two semantics.

Zhang X., et al. Sci China Inf Sci 7

Proof. We know that DIFF is expressible in both FO+ and FOb since the constraint of the form ?x = c is allowed [7].

By Proposition 11, we can conclude that FO+ and FOb are not non-optionally monotonic under the two semantics. 2

References

1 Angles, R. & Gutierrez, C. The expressive power of SPARQL. In: Proc. of Int. Semantic Web Conf. (ISWC-08),

2008, pp.114 –129.

2 Arenas, M., Gutierrez, C., P. Miranker, D., Pérez, J. & Sequeda, J. Querying semantic data on the web? SIGMOD

Record, 2012, 41(4): 6 –17.

3 Kontchakov, R. and V. Kostylev, E. On expressibility of non-monotone operators in SPARQL. In: Proc. of Int. Conf.

Principles of Knowledge Representation and Reasoning (KR-16), 2016, pp.369–379.

4 Kaminski, M. & V. Kostylev, E. (2016) Beyond well-designed SPARQL. In: Proc. of Int. Conf. Database Theory

(ICDT-16), 2016, pp.5:1-5:18.

5 Pérez, J., Arenas, M. & Gutierrez, C. Semantics and complexity of SPARQL. ACM Trans. Database Syst., 2009,

34(3):1–45

6 Prudhommeaux, E. & Seaborne, A. SPARQL query language for RDF. W3C recommendation. 2008.

7 Zhang, X., Van den Bussche, J., and Picalausa, F. On the satisfiability problem for SPARQL patterns. J. Artif. Intell.

Res., 2016, 56: 403-428.

8 Zhang, X. and Van den Bussche, J. On the primitivity of operators in SPARQL. Inf. Process. Lett., 2014,114(9):

480–485.

9 Zhang, X., Van den Bussche, J., Wang, K., & Wang, Z. On the satisfiability problem of patterns in SPARQL 1.1. In:

Proc. of AAAI. on Artificial Intelligence (AAAI-18), 2018, to appear.

	Preliminaries
	Proofs
	Weak monotonicity and well-designed patterns

