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Introduction

O Single vehicle stability systems(ABS, AFS, ESP, etc.) cannot perform well due to the
coupling of vehicle dynamics and the highly complex working condition of vehicle.

O Special difficulties for integrated vehicle dynamics control:

* Vehicle dynamic model: high-dimensional dynamics, combined and nonlinear tire
longitudinal/lateral/vertical forces, driver and environmental dependence

e Accurate describe and identify vehicle stability boundary.

e Multi-objective coordinated control for enlarging vehicle stability region with different
subsystems (ABS, AFS, ESP, etc.)
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Synergy Control Framework
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1. Vehicle dynamics model considering combined tire forces
2. Identification of vehicle stability boundary

3. Controller design to enlarge the stability region




Combined Tire Forces and Vehicle Dynamics

O Basic formula of UniTire model O Nonlinear vehicle dynamics
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Identification of stability boundary
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Casel-Adaptive Vehicle Dynamic Control (AVDC) for ICV

For internal combustion engine drive vehicle(ICV):

1. Improve vehicle agility and stability.
2. Help drivers navigate through the curve smoothly before ESC intervention.

3. Controls longitudinal motion in accordance with yaw movement.
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Signal: provide the required signals.

Decision-making: choose a reasonable control mode according to the of vehicle stability.
Control strategy: coordinate ESC, EMS, and RDU with vehicle dynamics and driving
intention.

Actuator: perform control commands.




Decision-making

The stability boundary was influenced by the vehicle speed and the road surface friction
coefficient . The stability factor R, is determined according to the distance as shown in figures.
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Where E1, E2 are the boundary coefficients, which are related to the vehicle speed Vx and the
road friction factor u. Represnoig 18 @ threshold value for judging the control mode, in addition,
to avoid a discrete change of the agility and stability modes, a switching region was used.




Control Strategy

1. Agility control that works in the tire linear operating region.
2. Agility control scheme can be split into three:
» driving intention recognition
» cornering stiffness selection
» control quantity calculation
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Control Strategy

Cornering stiffness selection

The cornering stiffness should change with the desired steering characteristics.
Increase oversteering tendency when entering the corner.

Increase understeering tendency when exiting the corner.

The following equation can be used to calculate desired yaw rate for vehicle agility:
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Where, ] ,Jy is the longitudinal and lateral acceleration, M the mass of the vehicle,w, 4., the desired

yaw rate, I, the yawing moment of inertia, 6 front wheel steering angle, a, b the distance between the
front and rear axles from the vehicle’s center of gravity point. Where C; is cornering stiffness C; (i =1, r,
where f is the front wheel, r the rear wheel)



AVDC Control Strategy

Control quantity calculation

1. Appropriate acceleration or deceleration.
2. Chang the driving torques of the front and rear axles.

3. The relationship between the desired yaw rate, longitudinal acceleration and front and
rear drive ratio is derived as follow:
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Where, Fyro, Fyro is the cornering force before control. ¢ is the front and rear axis traction force ratio.
The desired yaw motion of the vehicle can be realized by J, and o.
First change the ¢ to achieve the desired yaw motion, and if necessary, brake or accelerate the vehicle.

For example, when entering a curve, ¢ is taken as the rear axle driving mode in order to make the J,
small.
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Slalom on snow and ice

Peak value/ average value
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Experiments Results

] U turn on snow and ice
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Case2-Differential Torque Control for EV

For electric vehicle with in-wheel motor(EV)

» Improve the passband of the yaw rate response and the natural frequency

» Reduces the response lag




Vehicle Control System Architecture

Control Strate
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Fault Diagnosis System:

1. health-monitoring, fault detection, fault diagnosis

2. improve reliability, availability, maintenance and life-time
Power up and down: turn on or off the control system

Control Strategy: control motors to complete differential torque
Input and Output Model: receive and send signals



Change Damping
and Frequency
Status
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Two-degree-of-freedom vehicle model yaw rate response process according to:
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The second-order system dynamics mainly depend on frequency and damping:

(1) Frequency: the higher the natural frequency, the faster the system reacts, but the
worse the stability.

(2) Damping: the greater the damping ratio, the slower the response speed of the system,

but the faster the system decays.



Experiments Results

Slalom test:;
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The slalom test data shows that:

(1) at the same vehicle speed, compared to none differential control, the differential
control can significantly reduce the average amplitude of steering wheel, thereby
reducing the yaw rate and lateral acceleration of the vehicle when the car is over piled.

(2) the mean steering wheel angle decreases about 19.6%, the average yaw rate decreases
about 2.2%, and the average lateral acceleration decreases about 2.4% during the

slalom process. The maximum steering wheel angle decreased from 76.5° to 61.5°
a decrease of 19.6%.



Experiments Results
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The picture shows that: * S

(1) after the control, the maximum turning angle of the steering wheel by the driver is reduced to
some extent.

(2) the actual differential torque cannot be satisfied when the demand torque is large. This is due to
the limitation of the current vehicle speed and the differential torque margin of the current

throttle.




Experiments Results

Double Line Change:

(1) Differential torque control significantly expands the pass band.

(2) Compare with none-control model, through differential torque control, the maximum passband
is increased by 43.5%, the resonant frequency is increased by 33.9%, and the natural frequency
is increased to 1.614Hz.

(3) Compare with none-control model, after the differential torsion control, the 0.1Hz phase angle
hysteresis is reduced by at most 12.5%, and the 0.6Hz phase angle hysteresis is reduced by at
most 14.5%. During the actual vehicle driving, the driver obviously feels the improvement of
the steering agility of the vehicle after the differential torsion control is started.
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Experiments Results

litude ratio of vaw rate(1/s)
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The differential torque of the motor can improve the frequency response
bandwidth of the vehicle, reduce the hysteresis, and significantly
improve the transient steering characteristics of the vehicle.
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Conclusion

O A synergy control framework for enlarging vehicle stability is proposed.

O Based on the nonlinear and combined tire forces and vehicle dynamics, the
self-stable boundary 1s identified, which is crucial as constraints for the
development of controller.

O Controller for enlarging vehicle stability region is designed, and multiple
control objectives can be coordinated and optimized.

O Two kinds of vehicle, i.c., internal combustion engine drive vehicle(ICV) and
electric vehicle with in-wheel motor(EV) are utilized to evaluate the effects
of control strategies. Experimental results demonstrated how this method can
be used effectively in vehicle stability control.
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