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Abstract The alternating direction method with multipliers (ADMM) is one of the most powerful and suc-

cessful methods for solving various composite problems. The convergence of the conventional ADMM (i.e.,

2-block) for convex objective functions has been stated for a long time, and its convergence for nonconvex

objective functions has, however, been established very recently. The multi-block ADMM, a natural exten-

sion of ADMM, is a widely used scheme and has also been found very useful in solving various nonconvex

optimization problems. It is thus expected to establish the convergence of the multi-block ADMM under

nonconvex frameworks. In this paper, we first justify the convergence of 3-block Bregman ADMM. We next

extend these results to the N-block case (N > 3), which underlines the feasibility of multi-block ADMM

applications in nonconvex settings. Finally, we present a simulation study and a real-world application to

support the correctness of the obtained theoretical assertions.
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1 Introduction

Many problems arising in the fields of signal & image processing and machine learning involve finding a

minimizer of the sum of N (N > 2) functions with linear equality constraint [1]. If N = 2, the problem

then consists of solving

min f(x) + g(y) s.t. Ax+By = 0, (1)

where A ∈ R
m×n1 and B ∈ R

m×n2 are given matrices, f : Rn1 → R and g : Rn2 → R are proper lower

semicontinuous functions. Because of its separable structure, problem (1) can be efficiently solved by

ADMM, namely, through the procedure:





xk+1 = arg min
x∈Rn1

Lα(x, yk, pk),

yk+1 = arg min
y∈Rn2

Lα(xk+1, y, pk),

pk+1 = pk + α(Axk+1 +Byk+1),

(2)

*Corresponding author (email: zbxu@mail.xjtu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-017-9367-6&domain=pdf&date_stamp=2018-6-21
https://doi.org/10.1007/s11432-017-9367-6
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-017-9367-6
https://doi.org/10.1007/s11432-017-9367-6


Wang F H, et al. Sci China Inf Sci December 2018 Vol. 61 122101:2

where α is a penalty parameter and

Lα(x, y, p) := f(x) + g(y) + 〈p,Ax+By〉 +
α

2
‖Ax+By‖2

is the associated augmented Lagrangian function with multiplier p. So far, various variants of the con-

ventional ADMM have been suggested. Among such varieties, Bregman ADMM (BADMM) is designed

to improve the performance of procedure (2) [2]. More specifically, BADMM takes the following iterative

form:




xk+1 = arg min
x∈Rn1

Lα(x, yk, pk) + △φ(x, xk),

yk+1 = arg min
y∈Rn2

Lα(xk+1, y, pk) + △ψ(y, yk),

pk+1 = pk + α(Axk+1 +Byk+1),

(3)

where △φ and △ψ are the Bregman distance with respect to functions φ and ψ, respectively. ADMM was

introduced in the early 1970s, and its convergence properties for convex objective functions have been

extensively studied [3,4]. It has been shown that ADMM can converge at a sublinear rate of O(1/k) [5],

and O(1/k2) for the accelerated version [6]. The convergence of BADMM for convex objective functions

has been examined in [2].

Recently, there has been an increasing interest in the study of ADMM for nonconvex objective functions.

On one hand, the ADMM algorithm is highly successful in solving various nonconvex examples ranging

from nonnegative matrix factorization, distributed matrix factorization, distributed clustering, sparse

zero variance discriminant analysis, tensor decomposition, to matrix completion (see [7–9]). On the other

hand, the convergence analysis of nonconvex ADMM is generally very difficult, due to the failure of

the Fejér monotonicity of iterates. Very recently, the convergence of ADMM as well as BADMM for

nonconvex objective functions has been established in [10–12].

We now consider the 3-block composite optimization problem:

min f(x) + g(y) + h(z) s.t. Ax+By + Cz = 0, (4)

where A ∈ R
m×n1 , B ∈ R

m×n2 and C ∈ R
m×n3 are given matrices, f : Rn1 → R, g : Rn2 → R are proper

lower semicontinuous functions, and h : Rn3 → R is a continuously differentiable function. To solve this

problem, it is thus natural to extend (2) to the following form:





xk+1 = arg min
x∈Rn1

Lα(x, yk, zk, pk),

yk+1 = arg min
y∈Rn2

Lα(xk+1, y, zk, pk),

zk+1 = arg min
z∈Rn3

Lα(xk+1, yk+1, z, pk),

pk+1 = pk + α(Axk+1 +Byk+1 + Czk+1),

(5)

where the augmented Lagrangian function Lα : Rn1 × R
n2 × R

n3 × R
m → R is defined by

Lα(x, y, z, p) := f(x) + g(y) + h(z) + 〈p,Ax+By + Cz〉 +
α

2
‖Ax+By + Cz‖2. (6)

However, as shown in [13], the 3-block ADMM (5) does not necessarily converge in general even under

the convex frameworks. To guarantee its global convergence, some restrictive conditions are required;

for example, the strong convexity condition of all objective functions [14], or at least one function being

strongly convex [15, 16].

The purpose of the present study is to examine convergence of ADMM with N blocks for non-

convex objective functions. Following the idea of (3), we first propose 3-block BADMM for solving

problem (4), and establish its global convergence for some nonconvex functions. Next, we extend the

convergence result to the N -block case (N > 3), which underlines the feasibility of multi-block ADMM

applications in nonconvex settings. Finally we present a simulation study and a real-world application

to support the correctness of the obtained theoretical assertions.
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2 Preliminaries

In what follows, Rn will stand for the n-dimensional Euclidean space,

〈x, y〉 = xTy =

n∑

i=1

xiyi, ‖x‖ =
√
〈x, x〉,

where x, y ∈ R
n and T stands for the transpose operation. For convenience, we fix the following notations:

uk = (xk, yk, zk), wk = (xk, yk, zk, pk), ŵk = (xk, yk, zk, pk, zk−1),

‖w‖ = (‖x‖2 + ‖y‖2 + ‖z‖2 + ‖p‖2)1/2, ‖w‖1 = ‖x‖ + ‖y‖ + ‖z‖ + ‖p‖.

2.1 Subdifferentials

Given a function f : Rn → R, we denote by domf the domain of f , namely, domf := {x ∈ R
n : f(x) <

+∞}. A function f is said to be proper if domf 6= ∅; lower semicontinuous at x0 if lim infx→x0
f(x) >

f(x0). If f is lower semicontinuous at every point of its domain of definition, then it is simply called a

lower semicontinuous function.

Definition 1. Let f : Rn → R be a proper lower semi-continuous function.

(i) Given x ∈ domf, the Fréchet subdifferential of f at x, written by ∂̂f(x), is the set of all elements

u ∈ R
n which satisfy

lim
y 6=x

inf
y→x

f(y) − f(x) − 〈u, y − x〉
‖x− y‖ > 0.

(ii) The limiting subdifferential, or simply subdifferential, of f at x, written by ∂f(x), is defined as

∂f(x) =
{
u ∈ R

n : ∃xk → x, f(xk) → f(x), uk ∈ ∂̂f(xk) → u, k → ∞
}
.

(iii) A stationary point of f is a point x∗ in the domain of f satisfying 0 ∈ ∂f(x∗).

(iv) f is said to be L-Lipschitz continuous if ‖f(x) − f(y)‖ 6 L‖x− y‖, for any x, y ∈ domf .

Definition 2. An element w∗ := (x∗, y∗, z∗, p∗) is called a stationary point of the Lagrangian function

Lα defined as in (6) if it satisfies

{
ATp∗ ∈ −∂f(x∗), BTp∗ ∈ −∂g(y∗),

CTp∗ = −∇h(z∗), Ax∗ +By∗ + Cz∗ = 0.
(7)

The existence of proper lower semicontinuous functions and properties of subdifferential can be seen

from [17]. We particularly collect some basic properties of the subdifferential.

Proposition 1. Let f : Rn → R and g : Rn → R be proper lower semi-continuous functions. Then the

following holds:

(i) ∂̂f(x) ⊂ ∂f(x) for each x ∈ R
n. Moreover, the first set is closed and convex, while the second is

closed, and not necessarily convex.

(ii) Let (uk, xk) be sequences such that xk → x, uk → u, f(xk) → f(x) and uk ∈ ∂f(xk). Then

u ∈ ∂f(x).

(iii) Fermat’s rule: if x0 ∈ R
n is a local minimizer of f , then x0 is a stationary point of f , that is,

0 ∈ ∂f(x0).

(iv) If f is continuously differentiable function, then ∂(f + g)(x) = ∇f(x) + ∂g(x).

2.2 Kurdyka- Lojasiewicz inequality

The Kurdyka- Lojasiewicz (K-L) inequality was first introduced by  Lojasiewicz [18] for real analytic

functions, and then was extended by Kurdyka [19] to smooth functions whose graph belongs to an

o-minimal structure.
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Definition 3 (K-L inequality). A function f : Rn → R is said to have the K-L property at x̃ if there

exists η > 0, δ > 0, ϕ ∈ Aη, such that for all x ∈ O(x̃, δ) ∩ {x : f(x̃) < f(x) < f(x̃) + η},

ϕ′(f(x) − f(x̃))dist(0, ∂f(x)) > 1,

where dist(x̃, ∂f(x)) := inf{‖x̃− y‖ : y ∈ ∂f(x)}, and Aη stands for the class of functions ϕ : [0, η) → R
+

with the properties: (i) ϕ is continuous on [0, η); (ii) ϕ is smooth concave on (0, η); (iii) ϕ(0) = 0, ϕ′(x) >

0, ∀x ∈ (0, η).

Let Φ be a proper lower semicontinuous function, and a, b be two fixed positive constants. In the

sequel, we consider a sequence {xk} satisfying the following conditions:

(H1) For each k ∈ N, Φ(xk+1) 6 Φ(xk) − a‖xk − xk+1‖2;

(H2) For each k ∈ N, dist(0, ∂Φ(xk+1)) 6 b‖xk − xk+1‖;

(H3) There exists a subsequence {xkj} converging to x̃ such that Φ(xkj ) → Φ(x̃) as j → ∞.

Lemma 1 ([20]). Let {xk} be a sequence that satisfies H1–H3. If Φ has the K-L property, then the

sequence {xk} converges to x̃, which is a stationary point of Φ. Moreover, the sequence {xk} has a finite

length, i.e.,
∑∞
k=1 ‖xk+1 − xk‖1 <∞.

Typical functions satisfying the K-L inequality include strongly convex functions, real analytic func-

tions, semi-algebraic functions and subanalytic functions.

A differentiable function f is called convex if the following inequality holds for all x, y in its domain:

f(y) > f(x) + 〈∇f(x), y − x〉;

ρ-strongly convex with ρ > 0 if the following inequality holds for all x, y in its domain:

f(y) > f(x) + 〈∇f(x), y − x〉 +
ρ

2
‖y − x‖2. (8)

A subset C ⊂ R
n is said to be semi-algebraic if it can be written as

C =

r⋃

j=1

s⋂

i=1

{x ∈ R
n : gi,j(x) = 0, hi,j(x) < 0},

where gi,j , hi,j : R
n → R are real polynomial functions. Then a function f : R

n → R is called semi-

algebraic if its graph G(f) := {(x, y) ∈ R
n+1 : f(x) = y} is a semi-algebraic subset in R

n+1. For example,

the Lq norm ‖x‖q := (
∑

i |xi|q)1/q with 0 < q 6 1, the sup-norm ‖x‖∞ := maxi |xi|, the Euclidean norm

‖x‖, ‖Ax− b‖qq, ‖Ax− b‖ and ‖Ax− b‖∞ are all semi-algebraic functions for any matrix A.

A real function on R is said to be analytic if it possesses derivatives of all orders and agrees with its

Taylor series in a neighborhood of every point. For a real function f on R
n, it is said to be analytic if

the function of one variable g(t) := f(x + ty) is analytic for any x, y ∈ R
n. It is readily seen that real

polynomial functions such as quadratic functions ‖Ax − b‖2 are analytic. Moreover, the ε-smoothed Lq
norm ‖x‖ε,q :=

∑
i(x

2
i + ε)q/2 with 0 < q 6 1 and the logistic loss function log(1 + e−t) are all examples

for real analytic functions. A subset C ⊂ R
n is said to be subanalytic if it can be written as

C =
r⋃

j=1

s⋂

i=1

{x ∈ R
n : gi,j(x) = 0, hi,j(x) < 0},

where gi,j , hi,j : Rn → R are real analytic functions. Then a function f : Rn → R is called subanalytic

if its graph G(f) is a subanalytic subset in R
n+1. It is clear that both real analytic and semi-algebraic

functions are subanalytic. Generally speaking, the sum of two subanalytic functions is not necessarily

subanalytic. It is known, however, that for two subanalytic functions, if at least one function maps

bounded sets to bounded sets, then their sum is also subanalytic, as shown in [9]. In particular, the

sum of a subanalytic function and an analytic function is subanalytic. Typical subanalytic functions

include: ‖Ax− b‖2 +λ‖y‖qq; ‖Ax− b‖2 +λ
∑

i(y
2
i + ε)q/2; 1

n

∑n
i=1 log(1 + exp(−ci(aTi x+ b)) +λ‖y‖qq; and

1
n

∑n
i=1 log(1 + exp(−ci(aTi x+ b)) + λ

∑
i(y

2
i + ε)q/2.
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2.3 Bregman distance

The Bregman distance plays an important role in various iterative algorithms. As a generalization

of squared Euclidean distance, the Bregman distance shares many similar nice properties of the Eu-

clidean distance. However, the Bregman distance is not a real metric, since it does not satisfy the tri-

angle inequality nor symmetry. For a convex differential function φ, the associated Bregman distance is

defined as

△φ(x, y) = φ(x) − φ(y) − 〈∇φ(y), x − y〉.

In particular, if we let φ(x) = ‖x‖2 in the above, then it is reduced to ‖x − y‖2, namely, the classical

Euclidean distance. Moreover, if φ is ρ-strongly convex, it follows from (8) that

△φ(x, y) >
ρ

2
‖x− y‖2. (9)

For more information on Bregman distance, we refer the reader to [21, 22].

3 Convergence analysis

Motivated by (3), we propose the following algorithm for solving problem (4):





xk+1 = arg min
x∈Rn1

Lα(x, yk, zk, pk) + ∆φ1
(x, xk),

yk+1 = arg min
y∈Rn2

Lα(xk+1, y, zk, pk) + ∆φ2
(y, yk),

zk+1 = arg min
y∈Rn3

Lα(xk+1, yk+1, z, pk) + ∆φ3
(z, zk),

pk+1 = pk + α(Axk+1 +Byk+1 + Czk+1),

(10)

where △φi
is an appropriately chosen Bregman distance with respect to function φi, i = 1, 2, 3. Compared

with the traditional ADMM, our algorithm has advantages both in effectiveness and efficiency. First, the

global convergence of our algorithm does not require any strong convexity of the objective function.

Second, a proper choice of Bregman distance will simplify the subproblems, which in turn improve the

performance of the algorithm. For example, for the y-subproblem, let g(y) = ‖y‖1/21/2. In this situation,

the traditional ADMM requires to solve the following optimization problem:

min
y∈Rn2

‖y‖1/21/2 +
α

2

∥∥∥∥By +Axk+1 + Czk +
pk

α

∥∥∥∥
2

.

In general finding a solution to the above problem is not a easy task. However, if we set φ2(y) =
µ
2 ‖y‖2 − α

2 ‖By + Axk+1 + Czk − pk/α‖2 with µ > ‖B‖2 in our algorithm, then by a simple calculation

the y-subproblem is transformed into minimizing:

‖y‖1/21/2 +
µα

2

∥∥∥∥y −
(
yk − µ−1BT

(
Byk +Axk+1 + Czk +

pk

α

))∥∥∥∥
2

.

This problem can be easily solved since its solution has closed form [23].

In what follows, we assume:

(A1) Φ has the K-L property;

(A2) There is σ > 0 such that σ‖x‖2 6 ‖CTx‖2, ∀x ∈ R
m;

(A3) h is continuously differentiable such that ∇h is L-Lipschitz continuous;

(A4) φi is ρi-strongly convex and ∇φi is Li-Lipschitz continuous for i = 1, 2, 3;

(A5) The parameters are chosen so that αρσ > 6(L2 + 2L2
3) where ρ = min{ρ1, ρ2, ρ3}.

Also, define a function Φ : Rn1 × R
n2 × R

n3 × R
m × R

n3 → R by

Φ(x, y, z, p, ẑ) = Lα(x, y, z, p) +
τ

2
‖z − ẑ‖2,
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where τ = 6L2
3(ασ)−1.

We establish a series of lemmas to support the proof of convergence of procedure (10).

Lemma 2. For each k ∈ N, there exists a > 0 such that Φ(ŵk+1) 6 Φ(ŵk) − a‖ŵk+1 − ŵk‖2.
Proof. Applying Fermat’s rule to the z-subproblem, we get

∇h(zk+1) + CTpk+1 + ∇φ3(zk+1) −∇φ3(zk) = 0. (11)

It then follows from the Cauchy-Schwarz inequality that

‖CT(pk+1 − pk)‖2 = ‖(∇h(zk+1) −∇h(zk)) + (∇φ3(zk+1) −∇φ3(zk)) − (∇φ3(zk) −∇φ3(zk−1))‖2

6 ‖∇h(zk+1) −∇h(zk)‖2 + ‖(∇φ3(zk+1) −∇φ3(zk)) − (∇φ3(zk) −∇φ3(zk−1))‖2

+ 2‖∇h(zk+1) −∇h(zk)‖‖(∇φ3(zk+1) −∇φ3(zk)) − (∇φ3(zk) −∇φ3(zk−1))‖

6 3‖∇h(zk+1) −∇h(zk)‖2 +
3

2
‖(∇φ3(zk+1) −∇φ3(zk)) − (∇φ3(zk) −∇φ3(zk−1))‖2

6 3L2‖zk+1 − zk‖2 + 3(‖∇φ3(zk+1) −∇φ3(zk)‖2 + ‖∇φ3(zk) −∇φ3(zk−1)‖2)

6 3(L2 + L2
3)‖zk+1 − zk‖2 + 3L2

3‖zk − zk−1‖2.

Thus, in view of condition (A2), we get

‖pk+1 − pk‖2 6
3(L2 + L2

3)

σ
‖zk+1 − zk‖2 +

3L2
3

σ
‖zk − zk−1‖2. (12)

On the other hand, it follows from (10) and (9) that

Lα(xk+1, yk, zk, pk) 6 Lα(xk, yk, zk, pk) − ρ

2
‖xk+1 − xk‖2,

Lα(xk+1, yk+1, zk, pk) 6 Lα(xk+1, yk, zk, pk) − ρ

2
‖yk+1 − yk‖2,

Lα(xk+1, yk+1, zk+1, pk) 6 Lα(xk+1, yk+1, zk, pk) − ρ

2
‖zk+1 − zk‖2,

Lα(xk+1, yk+1, zk+1, pk+1) = Lα(xk+1, yk+1, zk+1, pk) +
1

α
‖pk+1 − pk‖2,

from which we have

Lα(wk+1) 6 Lα(wk) − ρ

2
‖uk+1 − uk‖2 +

1

α
‖pk+1 − pk‖2. (13)

Adding up inequalities (12) and (13), we have

Lα(wk+1) +
τ

2
‖zk+1 − zk‖2 6 Lα(ŵk) +

τ

2
‖zk−1 − zk‖2 − a‖ŵk+1 − ŵk‖2,

where a := (ρ/2) − 3(L2 + 2L2
3)(ασ)−1 is clearly a positive real number.

Lemma 3. If {uk} is bounded, then
∑∞

k=1 ‖wk − wk+1‖2 < ∞. In particular, {wk} is asymptotically

regular, namely, ‖wk − wk+1‖ → 0 as k → ∞. Moreover, any cluster point of {wk} is a stationary point

of the augmented Lagrangian function Lα.

Proof. In view of (11), (A2) and (A4), we have

√
σ‖pk‖ 6 ‖CTpk‖ 6 ‖∇h(zk)‖ + L3‖zk − zk−1‖.

Since ∇h is continuous and {uk} is bounded, this implies that {pk} is bounded, and so are {wk} and

{ŵk}. Thus, there exists a subsequence {ŵkj} convergent to ŵ∗. By our hypothesis, the function Φ is

lower semicontinuous, which leads to lim infj→∞ Φ(ŵkj ) > Φ(ŵ∗), so that Φ(ŵkj ) is bounded from below.

By Lemma 2, Φ(ŵk) is nonincreasing, and thus convergent. Furthermore, Φ(ŵk) > Φ(ŵ∗) for each k,

which by Lemma 2, yields

a
k∑

i=1

‖uk+1 − uk‖2 6 Φ(ŵ1) − Φ(ŵk+1) 6 Φ(ŵ1) − Φ(ŵ∗).



Wang F H, et al. Sci China Inf Sci December 2018 Vol. 61 122101:7

This together with (12) implies
∑∞

k=1 ‖wk − wk+1‖2 <∞; in particular ‖wk − wk+1‖ → 0.

Let w∗ = (x∗, y∗, z∗, p∗) be any cluster point of {wk} and let {wkj} be a subsequence of {wk} converging

to w∗. It then follows from (10) that

pkj+1 = pkj + α(Axkj+1 +Bykj+1 + Czkj+1),

− ∂f(xkj+1) ∋ AT[pkj+1 + αB(ykj − ykj+1) + αC(zkj − zkj+1)] + ∇φ1(xkj+1) −∇φ1(xkj ),

− ∂g(ykj+1) ∋ BT[pkj+1 + αC(zkj − zkj+1)] + ∇φ2(ykj+1) −∇φ2(ykj ),

−∇h(zkj+1) = CTpkj+1 + ∇φ3(zkj+1) −∇φ3(zkj ).

As ∇φi, i = 1, 2, 3 is continuous and ‖wk−wk+1‖ → 0, letting j → ∞ above yields that w∗ is a stationary

point of the augmented Lagrangian function Lα.

Lemma 4. There exists b > 0 such that dist(0, ∂Φ(ŵk+1)) 6 b‖ŵk − ŵk+1‖ for each k ∈ N.

Proof. By a simple calculation, we have

∂Φx(ŵk+1) ∋ αATB(yk+1 − yk) + αATC(zk+1 − zk) + ∇φ1(xk+1) −∇φ1(xk) +AT(pk+1 − pk),

∂Φy(ŵk+1) ∋ αBTC(zk+1 − zk) +BT(pk+1 − pk) + ∇φ2(yk+1) −∇φ2(yk),

∂Φz(ŵ
k+1) = ∇φ3(zk+1) −∇φ3(zk) + CT(pk+1 − pk) + τ(zk+1 − zk),

∂Φp(ŵ
k+1) =

1

α
(pk+1 − pk), ∂Φẑ(ŵ

k+1) = τ(zk − zk+1).

As matrices A,B,C are all bounded, the above together with (12) and (A4) implies that there exists

b > 0 such that the desired inequality follows.

Theorem 1. Each bounded sequence {wk} generated by procedure (10) converges to a stationary point

of Lα. Moreover,
∑∞

k=1 ‖wk+1 − wk‖1 <∞.

Proof. It is easy to see that conditions H1–H2 in Lemma 1 hold. To verify condition H3, we assume that

there exists a subsequence {ŵkj} that converges to ŵ∗ = (x∗, y∗, z∗, p∗, z∗). By the lower semicontinuity

of Φ, lim infj→∞ Φ(ŵkj ) > Φ(ŵ∗). On the other hand, we have

f(xkj+1) + 〈pk, Axkj+1〉 +
α

2
‖Axkj+1 +Bykj + Czkj‖2 + ∆φ1

(xkj+1, xkj )

6 f(x∗) + 〈pk, Ax∗〉 +
α

2
‖Ax∗ +Bykj + Czkj‖2 + ∆φ1

(x∗, xkj ).

Since {xk} is asymptotically regular, this implies lim supj→∞ f(xkj+1) 6 f(x∗). In a similar way, we

conclude that lim supj→∞ g(ykj+1) 6 g(y∗). Since

lim
j→∞

h(zkj+1) = h(z∗) and lim
j→∞

‖zkj+1 − zkj‖ = 0,

we have lim supj→∞ Φ(ŵk) 6 Φ(ŵ∗). Altogether, limj→∞ Φ(ŵkj ) = Φ(ŵ∗). Thus, condition H3 holds.

Applying Lemma 1, we conclude that {ŵk} converges to ŵ∗, which is a stationary point of Φ. In

particular, it is easy to see that {wk} converges to w∗. By Lemma 3, w∗ is a stationary point of Lα.

Moreover, {wk} has a finite length, i.e.,
∑∞

k=1 ‖wk+1 − wk‖1 <∞.

Remark 1. There are various choices of Bregman distance in (10). For instance, if we let

∆φ3
(x, y) = ‖x− y‖2Q = 〈Qx, x〉

with Q a symmetric positive definite matrix, then our first assumption A1 is satisfied whenever the

objective function f + g + h is subanalytic. Indeed, since the function ‖z − ẑ‖2Q is analytic, Φ is also

subanalytic as the sum of a subanalytic function and an analytic function, which in turn implies the K-L

property. Typical examples of subanalytic functions are exhibited in the previous section.

We now extend the above result to the N -block case. Thus, let us consider the following composite

optimization problem:

min f1(x1) + f2(x2) + · · · + fN (xN )

s.t. A1x1 +A2x2 + · · · +ANxN = 0,
(14)
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where Ai ∈ R
m×ni , fi : Rni → R, i = 1, 2, . . . , N − 1 are proper lower semicontinuous functions, and

fN : RnN → R is a continuously differentiable function. The Lagrangian function Lα : Rn1 ×R
n2 × · · · ×

R
nN × R

m → R of problem (14) is defined by

Lα(x1, x2, . . . , xN , p) =

N∑

i=1

fi(xi) +

N∑

i=1

〈p,Aixi〉 +
α

2

∥∥∥∥∥

N∑

i=1

Aixi

∥∥∥∥∥

2

. (15)

Accordingly, the associated algorithm takes the form:




xk+1
1 = arg min

x1∈Rn1

Lα(x1, x
k
2 , . . . , x

k
N , p

k) + △φ1
(x1, x

k
1),

xk+1
2 = arg min

x2∈Rn2

Lα(xk+1
1 , x2, . . . , x

k
N , p

k) + △φ2
(x2, x

k
2),

...
...

...
...

...
...

...

xk+1
N = arg min

xN∈RnN

Lα(xk+1
1 , . . . , xk+1

N−1, xN , p
k) + △φN

(xN , x
k
N ),

pk+1 = pk + α(A1x
k+1
1 +A2x

k+1
2 + · · · +ANx

k+1
N ).

(16)

Following the idea of Theorem 1, it is not hard to extend the results to the case whenever the followings

are satisfied:

(B1) Ψ has the K-L property;

(B2) there is σ > 0 such that σ‖x‖2 6 ‖AT
Nx‖2, ∀x ∈ R

m;

(B3) fN is continuously differentiable such that ∇fN is L-Lipschitz continuous;

(B4) φi is ρi-strongly convex and ∇φi is Li-Lipschitz continuous for i = 1, 2, . . . , N ;

(B5) the parameters are chosen so that αρσ > 6(L2 + 2L2
N) where ρ = min{ρ1, ρ2, . . . , ρN}.

Analogously, we define a function Ψ : Rn1 × · · · × R
nN × R

m × R
nN → R by

Ψ(x1, x2, . . . , xN , p, x̂N ) = Lα(x1, x2, . . . , xN , p) +
τ

2
‖xN − x̂N‖2,

where τ = 6L2
N(ασ)−1.

Theorem 2. If conditions B1–B5 are satisfied, then each bounded sequence {xk1 , xk2 , . . . , xkN , pk} gen-

erated by procedure (16) converges to a stationary point of Lα defined as in (15).

4 Demonstration examples

Consider the non-convex optimization problem with 3-block variables deduced from matrix decomposition

applications (see [24, 25]):

min
L,S,T

‖L‖⊛ + λ‖S‖1 +
µ

2
‖T −M‖2F s.t. T = L+ S, (17)

where M is an m × n observation matrix, ‖L‖⊛ :=
∑min(m,n)

i=1 |σi(L)|1/2, ‖S‖1 :=
∑m
i=1

∑n
j=1 |Sij |, λ is

a trade-off parameter between the low-rank term ‖L‖⊛ and the sparse term ‖S‖1, and µ is a penalty

parameter related to the noise level.

The augmented Lagrangian function of problem (17) is given by

Lα(L, S, T,Λ) = ‖L‖⊛ + λ‖S‖1 +
µ

2
‖T −M‖2F + 〈Λ, T − (L+ S)〉 +

α

2
‖T − (L+ S)‖2F , (18)

where Λ is the Lagrangian multiplier. According to the 3-block BADMM (10), the optimization prob-

lem (17) can be solved by the following procedure:




Lk+1 = arg min
L

Lα(L, Sk, T k,Λk) +
ρ

2
‖L− Lk‖2F ,

Sk+1 = arg min
S

Lα(Lk+1, S, T k,Λk) +
ρ

2
‖S − Sk‖2F ,

T k+1 = arg min
T

Lα(Lk+1, Sk+1, T,Λk) +
ρ

2
‖T − T k‖2F ,

Λk+1 = Λk + α
(
T k+1 − (Lk+1 + Sk+1)

)
.

(19)
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Simplifying the procedure (19), we then obtain the closed-form iterative formulas:





Lk+1 = H
(
α(T k − Sk + Λk

α ) + ρLk

α+ ρ
,

1

α+ ρ

)
,

Sk+1 = S
(
α(T k − Lk+1 + Λk

α ) + ρSk

α+ ρ
,

λ

α+ ρ

)
,

T k+1 =
µM + α(Lk+1 + Sk+1 − Λk

α ) + ρT k

µ+ α+ ρ
,

Λk+1 = Λk + α
(
T k+1 − (Lk+1 + Sk+1)

)
,

(20)

where H(A, ·) indicates the half shrinkage operator [23, 26] imposed on the singular values of A, and

S(A, ·) indicates the well-known soft shrinkage operator imposed on the entries of A. The procedure (20)

is the specification of BADMM (10) for the solution of problem (17) with functions f(x), g(y), h(z) defined

by f(L) = ‖L‖⊛, g(S) = λ‖S‖1, h(T ) = µ
2 ‖T −M‖2 and matrices A, B, C defined by A = I, B = −I,

C = −I where I is the identity matrix. It is direct to see that all the assumptions of Theorem 1 are

satisfied. Consequently, Theorem 1 can be applied to predict convergence of (20) in theory. We conduct

a simulation study and an application example below for support of such theoretical assertion.

4.1 Simulation study

Let M = L∗ +S∗ +N be an observation matrix, where L∗ and S∗ are, respectively, the original low-rank

and sparse matrices that we wish to recover by the problem (17), and N is the Gaussian noise matrix.

In the following, r and spr represent, respectively, matrix rank and sparsity ratio. The MATLAB script

for generating matrix M is as follows:

• L = randn(m, r) ∗ randn(r, n);

• S = zeros(m,n); q = randperm(m ∗ n); K = round(spr ∗m ∗ n); S(q(1 : K)) = randn(K, 1);

• σ = 0; % Noiseless case; σ = 0.01; % Gaussian noise; N = randn(m,n) ∗ σ;

• T = L+ S; M = T +N .

Specifically, we set m = n = 100, and tested

(r, spr) = (1, 0.05), (5, 0.05), (10, 0.05), (20, 0.05), (1, 0.1), (5, 0.1), (10, 0.1), and (20, 0.1),

for which the decomposition problem roughly changes from easy to hard. Regarding the implementation

issues, we empirically set the parameters α = 0.3 and ρ = α in (20). The matrices L, S, and T in the

procedure (20) are initialized by zero matrix. We terminated the procedure (20) when the relative change

falls below 10−8, i.e.,

RelChg :=
‖(Lk+1, Sk+1, T k+1) − (Lk, Sk, T k)‖F

‖(Lk, Sk, T k)‖F + 1
6 10−8,

where ‖ · ‖F indicates the Frobenius norm. Let L̂, Ŝ, and T̂ be a numerical solution of problem (17)

obtained by the proposed BADMM. We will measure the quality of recovery by the relative error to

(L∗, S∗, T ∗), which is defined by

RelErr :=
‖(L̂, Ŝ, T̂ ) − (L∗, S∗, T ∗)‖F

‖(L∗, S∗, T ∗)‖F + 1
.

In Table 1, we report the recovery results for the noiseless and Gaussian noise cases. From this table, it

can be seen that when the true sparsity ratio spr of S increase or the noise is introduced, the relative error

RelErr will go down, which suggests that the recovery performance will decline when the decomposition

problem changes from easy to hard. In addition, for the noiseless case, the proposed BADMM can exactly

recover the rank of L and the sparsity number of S. However, for the Gaussian noise case, since the noise

imposes an additional impact on the recovery, the sparsity number of S cannot be exactly recovered.
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Table 1 The matrix decomposition results on simulated matrices with the size 100 × 100

(r, spr) RelErr Rank(L∗) Rank(L̂) ‖S∗‖0 ‖Ŝ‖0

Noiseless case (σ = 0)

(1, 0.05) 4.8674E−06 1 1 500 500

(1, 0.1) 5.0446E−06 1 1 1000 1000

(5, 0.05) 2.2342E−06 5 5 500 500

(5, 0.1) 2.4366E−06 5 5 1000 1000

(10, 0.05) 1.5039E−06 10 10 500 500

(10, 0.1) 1.8572E−06 10 10 1000 1000

(20, 0.05) 1.2889E−06 20 20 500 500

(20, 0.1) 1.6974E−06 20 20 1000 1000

Gauss noise (σ = 0.01)

(1, 0.05) 0.0049 1 1 500 1723

(1, 0.1) 0.0060 1 1 1000 3797

(5, 0.05) 0.0025 5 5 500 1541

(5, 0.1) 0.0033 5 5 1000 3551

(10, 0.05) 0.0022 10 10 500 1318

(10, 0.1) 0.0024 10 10 1000 3183

(20, 0.05) 0.0020 20 20 500 1110

(20, 0.1) 0.0024 20 20 1000 3612
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Figure 1 (Color online) Convergence results for (a) the noiseless case and (b) Gaussian noise with the standard deviation

σ = 0.01.

In Figure 1, we further present the convergence results for the (r=10, spr=0.05) case with no noise and

Gaussian noise. From this figure, it can be observed that when the relative change RelChg is less than

10−8, the relative error RelErr will arrive at a stable value, which indicates that the proposed BADMM

is convergent.

4.2 An application example

We further applied the model (17) with BADMM (20) to the background subtraction application. Back-

ground subtraction is a fundamental task in video surveillance. Its aim is to subtract the background

from a video clip and meanwhile detect the anomalies (i.e., moving objects). From the webpage1), we

download four video clips: Lobby, Bootstrap, Hall, and ShoppingMall. Then we chose 600 frames from

each video clip and input these 600 frames into our algorithm. The parameter λ was fixed at the value
0.1√

max(m,n)
. In Figure 2, we exhibit the separation results of some frames in four video clips. From

1) http://perception.i2r.a-star.edu.sg/bk model/bk index.
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(a)

(b)

(c)

(d)

Figure 2 Background subtraction results in the real-world video clips. (a) Lobby; (b) Bootstrap; (c) Hall; (d) Shopping-

Mall.

Figure 2, it can be seen that our algorithm can produce a clean video background and meanwhile detect

a satisfactory video foreground, which supports the validity and convergence of the proposed BADMM.
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á établissements multiples en présence de coûts fixes. RAIRO Recherche opérationnelle, 1975, 9: 41–55

5 He B, Yuan X. On the O(1/n) convergence rate of the Douglas-Rachford alternating direction method. SIAM J Numer

Anal, 2012, 50: 700–709

6 Goldstein T, O’Donoghue B, Setzer S, et al. Fast alternating direction optimization methods. SIAM J Imag Sci, 2014,

7: 1588–1623

7 Xu Y, Yin W, Wen Z, et al. An alternating direction algorithm for matrix completion with nonnegative factors. Front

Math China, 2012, 7: 365–384

8 Bolte J, Sabach S, Teboulle M. Proximal alternating linearized minimization for nonconvex and nonsmooth problems.

Math Program, 2014, 146: 459–494

9 Xu Y, Yin W. A block coordinate descent method for regularized multiconvex optimization with applications to

nonnegative tensor factorization and completion. SIAM J Imag Sci, 2013, 6: 1758–1789

10 Hong M, Luo Z Q, Razaviyayn M. Convergence analysis of alternating direction method of multipliers for a family of

nonconvex problems. SIAM J Optim, 2016, 26: 337–364

11 Li G, Pong T K. Global convergence of splitting methods for nonconvex composite optimization. SIAM J Optim, 2015,

25: 2434–2460

12 Wang F, Xu Z, Xu H. Convergence of bregman alternating direction method with multipliers for nonconvex composite

https://doi.org/10.1016/0898-1221(76)90003-1
https://doi.org/10.1051/ro/197509V300411
https://doi.org/10.1137/110836936
https://doi.org/10.1137/120896219
https://doi.org/10.1007/s11464-012-0194-5
https://doi.org/10.1007/s10107-013-0701-9
https://doi.org/10.1137/120887795
https://doi.org/10.1137/140990309
https://doi.org/10.1137/140998135


Wang F H, et al. Sci China Inf Sci December 2018 Vol. 61 122101:12

problems. ArXiv:1410.8625, 2014

13 Chen C, He B, Ye Y, et al. The direct extension of ADMM for multi-block convex minimization problems is not

necessarily convergent. Math Program, 2016, 155: 57–79

14 Han D, Yuan X. A note on the alternating direction method of multipliers. J Optim Theor Appl, 2012, 155: 227–238

15 Cai X, Han D, Yuan X. On the convergence of the direct extension of ADMM for three-block separable convex

minimization models with one strongly convex function. Comput Optim Appl, 2017, 66: 39–73

16 Li M, Sun D, Toh K C. A convergent 3-block semi-proximal ADMM for convex minimization problems with one

strongly convex block. Asia Pac J Oper Res, 2015, 32: 1550024

17 Mordukhovich B. Variational Analysis And Generalized Differentiation I: Basic Theory. Berlin: Springer, 2006. 30–35
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