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Abstract This paper investigates the problem of distributed control of multiple redundant mobile ma-

nipulators to collectively transport an object tracking a desired trajectory with energy and manipulability

optimized. To solve this optimization problem, formation control tasks are introduced as equality constraints

with the variables being the velocities. In this paper, we propose a distributed proximal gradient algorithm

searching for the optimal solution, with which the stability of the closed-loop system is proved. Simulations

demonstrate the effectiveness of the proposed distributed optimization scheme and proximal algorithm.
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1 Introduction

Recently, cooperative control of multiple mobile manipulators, broadly applied in industrial automa-

tion [1] and object transportation tasks [2], has attracted a significant amount of attention from re-

searchers [3–6]. Centralized methods have been proposed to accomplish motion planning and cooperative

control of multiple mobile manipulators. In particular, Alonso-Mora et al. [7] divided the controller into

high-level guidance and low-level control to exploit deformability during the manipulation of soft objects.

Ge et al. [8] used the so-called reduced chained form method to control the force and motion of nonholo-

nomic mobile manipulators. It has been shown that the robustness of the system was improved such that

the parametric uncertainties and bounded disturbances can be compensated for and overwhelmed. In [9],

a hybrid controller was proposed to squeeze force for mobile manipulators. As a byproduct, a method

was also presented to compute the load-carrying capacity of manipulators.

It is worth noting that distributed control methods have the advantages of low computation burden

for each agent over centralized control schemes, distributed control methods are quite appealing for tasks

of multiple mobile manipulators over large-scale network systems, in which the local information is only

shared with its connected neighbors. As an extension to manipulators with fixed basement, mobile

manipulators were studied in [10]. Wang and Schwager [11] proposed a concept of a force-amplifying

N -robot transport system to coordinate manipulation forces from a group of robots to transport a heavy
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object without communication. The concept of “object closure” from form or force closure constraints

was derived to address the problem of transporting an object with multiple mobile robots [12]. In [13],

the authors proposed a feedback controller by sequentially composing vector fields or behaviors to con-

trol multiple mobile manipulators to surround and transport an object. In addition, the problem of

cooperative control of robotic manipulators with dynamic uncertainties was solved using a state-relied

projection estimation law and a characteristic model-based distributed controller [14]. Dong et al. [15]

proposed a distributed observer for followers to estimate the leader’s signal without assuming all the

followers know the system matrix of the leader, and developed a distributed control law that made less

use of the information of the network. A consensus protocol to compensate for the unknown delays

based on the networked predictive control scheme in multi-agent systems was designed in [16]. In [17],

the authors proposed a distributed adaptive robust state feedback controller to solve the problem for a

class nonlinear multi-agent systems with an unknown exosystem. Huang [18] studied consensus problems

for linear multi-agent systems under directed switching networks. An observer-based control law using

output feedback was designed to control the followers to uniformly globally exponentially track the leader

in [19].

In the tasks of cooperative control for multiple redundant mobile manipulators, the energy and manip-

ulability optimized is very important. Owing to the fact that energy consumption describes the efficiency

of the system, and it is especially useful in situations that the battery capacities are limited [20, 21]. On

the other hand, manipulability is an important criterion to measure the state of a manipulator to avoid

the kinematic singular configuration [22]. However, only few existing results consider both energy and

manipulability optimization objectives in multiple-manipulator control tasks. For example, Li et al. [23]

only investigated the energy optimization whereas Jin et al. [22] only considered the manipulability opti-

mization in a single-manipulator system. From this sense, the combination of energy and manipulability

optimization in the transportation control of multiple redundant mobile manipulators is essential.

Distributed optimization, widely employed in various fields such as smart grids, unmanned aerial vehicle

(UAV) tasks, and supply chain management, has been applied to controlling multiple mobile manipula-

tors recently [24–31]. Optimization techniques have been applied to the constrained inverse kinematics

problem of redundant manipulators by using the extra degrees of freedom to meet a number of secondary

functional requirements such as energy or manipulability optimization [21, 32, 33]. Li et al. [23, 34] pro-

posed optimization frameworks for cooperative control of multiple fixed manipulators at a velocity level.

Zhang et al. [35] showed that velocity-level and acceleration-level redundancy-resolution schemes can

be formulated as quadratic programmings, and a simple piecewise-linear dynamics solver was proposed.

In [36], a simplified solver was designed based on an infinity-norm joint velocity minimization technique.

In addition, different optimization solvers were designed to realize diverse control objectives [23, 34–36].

However, these results did not consider the formation shape formed by the end-effectors. Therefore, the

mobile manipulators cannot grasp and transport the target object. Furthermore, the feasibility set con-

straints, which make the design of a distributed algorithm more difficult, were also neglected in multiple

mobile manipulators optimization. Therefore, further research into advanced distributed optimization

techniques to improve the system performance for multiple redundant mobile manipulators is required.

In this paper, we focus on the distributed transportation control of multiple mobile manipulators and

use the redundant degrees of freedom to optimize the energy and manipulability. We propose a novel

distributed optimization framework for multiple mobile manipulators in transportation to accomplish the

following goals.

• Multiple mobile manipulators grasp the target object and transport it along the desired trajectory,

while satisfying the formation requirement.

• The energy and manipulabilities of the manipulators are optimized in the transportation process to

reduce the energy costs and avoid the occurrence of configuration singularity.

The contributions of this paper are summarized as follows.

Problem formulation. A practical transportation task by multiple mobile manipulators with forma-

tion control and path-following requirements is formulated mathematically as a distributed optimization

problem, which improves the efficiency of the system in terms of the energy costs and manipulability. The
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control structure is an extension to that described in [35, 36] by using the solution of the optimization

problem to realize the kinematic control of a redundant manipulator. This formulation gives a new per-

spective for controlling multiple mobile manipulators compared with previous results in [2,13,37], which

only involve the control techniques.

Task objectives. Energy and manipulability optimization of multiple mobile manipulators are per-

formed in a distributed manner, which extends the results in [22, 23]. In [23], only energy optimization

has been studied and manipulators may have singular configurations. In [22], only manipulability op-

timization has been studied in a single-manipulator system, which might result in very high energy

consumption.

Algorithm design. A general distributed continuous-time proximal algorithm, a useful tool to deal

with nonsmooth, constrained, large-scale, and distributed optimization problems (see [38]), is designed

to solve the proposed optimization problem. The algorithm is also applicable to more general problems

with feasible constraint sets or nonsmooth objective functions.

This paper is organized as follows. In Section 2, some useful preliminary knowledge is presented and

the problem of multiple mobile manipulators transportation is formulated. In Section 3, a distributed

proximal algorithm is proposed to solve the problem and the theoretical proof is given. In Section 4, the

simulations show the effectiveness of the novel scheme and algorithm. Finally, the main conclusion of

this paper is provided in Section 5.

2 Preliminaries and problem formulation

2.1 Preliminary

In this paper, the notation is fairly standard: R denotes the set of real numbers; Rn denotes the set of

n-dimensional real column vectors; Rn×m denotes the set of n ×m real matrices; In denotes the n × n

identity matrix; (·)T denotes transpose; 1n denotes the n × 1 vector of all ones; 0n denotes the n × 1

vector of all zeros; A ⊗ B is the Kronecker product of matrices A and B; diag(b) denotes a diagonal

matrix whose k-th diagonal entry is the k-th entry of vector b; and ‖ · ‖ and ∇λL(·) denote the Euclidean

norm and the gradient of function L(·) with respect to λ, respectively.

Let Ω ⊆ R
n be a closed and convex set. Here PΩ(u) = argmin{‖v − u‖ | v ∈ Ω} denotes the projection

of a point u ∈ R
n on Ω. It follows from [39] that (u−PΩ(u))

T(v−PΩ(u)) 6 0, ∀v ∈ Ω, u ∈ R
n. Suppose

that f(·) is a lower semi-continuous convex function. Then the proximal operator (see [38]) of f(·) is

proxf (v) = argminx f(x) +
1
2‖x− v‖2.

Let ∂f(x) denote the subgradient of convex function f(·) at x. Here ∂f(x) is monotone, that is

(px − py)
T(x − y) > 0 for all x, y, px ∈ ∂f(x), and py ∈ ∂f(y). In addition, the proximal operator

x = proxf (v) is equivalent to

v − x ∈ ∂f(x). (1)

A nonlinear dynamical system is defined as

ẋ(t) = φ(x(t)), x(0) = x0, t > 0, (2)

where x(t) ∈ D ⊂ R
n is the system state vector, D is an open set, and φ(·) : D → R

n is Lipschitz

continuous on D.

Lemma 1 ([40, Invariance principle, Theorem 2.41]). Consider the nonlinear dynamical system (2).

Suppose the solution x(t) to (2) corresponding to an initial condition x(0) = x0 is bounded for all t > 0.

Then the positive limit set ω(x0) of x(t), t > 0 is a nonempty, compact, invariant, and connected set.

Furthermore, x(t) → ω(x0) as t → ∞.

Lemma 2 ([40, Semistability, Theorem 4.20]). Consider the nonlinear dynamical system (2) and let Q

be an open neighborhood of φ−1(0). Suppose the orbit Ox of (2) is bounded for all x ∈ Q and assume

that there exists a continuously differentiable function V : Q → R such that

∇V T(x)φ(x) 6 0, x ∈ Q.
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Figure 1 (Color online) Transportation task of multiple mobile manipulators.

If every point in the largest invariant subset of M of {x ∈ Q : ∇V T(x)φ(x) = 0} is Lyapunov stable,

then (2) converges to a Lyapunov stable equilibrium point.

2.2 Description of multiple mobile manipulators

2.2.1 Kinematics of a redundant mobile manipulator

Consider multiple redundant mobile manipulators shown in Figure 1. Each mobile manipulator is com-

posed of a manipulator arm with m joints whose positions are represented by θ = [θ1, θ2, . . . , θm]T ∈ R
m

and a mobile platform with the configuration r ∈ R
k working in a k-dimensional Cartesian space (m > k).

The end-effector’s Cartesian coordinate x ∈ R
k in the working space can be obtained from a nonlinear

mapping

x(t) = r(t) + f(θ(t)), (3)

where f(·) is a nonlinear mapping from joint space to working space with known parameters for a given

manipulator.

At the velocity level, calculating the time derivative of both sides of (3), we arrive at

v(t) = ṙ(t) + J(θ(t))ω(t), (4)

where v(t) = ẋ(t) is the end-effector velocity in the working space, ω(t) = θ̇(t) is the joint angular velocity

in the joint space, and J(θ(t)) = ∂f/∂θ ∈ R
k×m is the Jacobian matrix of f(·) (abbreviated as J). For

convenience, t is omitted in the rest of this paper, e.g., by writing x(t) as x.

2.2.2 Manipulability of a manipulator

The quantitative measure of manipulability µ (see [41]) is given by

µ(θ) =
√

det(J(θ)J(θ)T), (5)

where J(θ) is the Jacobian matrix of f(·) and det(·) is the determinant of a matrix. If the manipulator

is singular, then rank(J) < m and µ(θ) = 0; the maximum value of µ(θ) is 1.
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2.3 Problem formulation

In this paper, we consider distributed energy and manipulability optimization in a cooperative trans-

portation control task using n+1 mobile manipulators, which are connected by a graph Gn+1. A mobile

manipulator with label i = 0 is defined to be the leader who knows the desired trajectory. The states

of the leader satisfies v0 = vd, x0 = xd, and d0 = dd. The graph Gn+1 is obtained through a connection

from the leader i = 0 to an undirected graph Gn that is formed by followers with label i = 1, 2, . . . , n.

This paper aims to propose a distributed control algorithm that achieves the following objectives.

• The centroid of the target object tracks a desired trajectory and the formation of the manipulators

are kept.

• Configurations of manipulators are adjusted to optimize the energy and manipulability in the trans-

portation process.

To achieve these objectives, we formulate a novel distributed optimization framework of distributed

control of multiple mobile manipulators as

min
ωi∈Ωi,vi∈Vi

n
∑

i=0

1

2
ci1‖ωi‖

2 +
1

2
ci2‖(vi − Jiωi)‖

2 − ci3ω
T
i Υi, (6a)

s.t. vi =
1

∑

j∈Ni
aij

∑

j∈Ni

aij [vj − ((xi − di)− (xj − dj))], i ∈ {1, . . . , n}, (6b)

v0 = vd, (6c)

where ci1 > 0, ci2 > 0, and ci3 > 0 are constant coefficients, vi and ωi are the velocity of the end-effector

and angular velocity of joints, respectively. In addition, vi − Jiωi is the velocity of the mobile platform,

xi is the Cartesian coordinate of the end-effector, Υi =
∇θi

µi

|∇θi
µi|

is the unit gradient of manipulability with

Him = ∂Ji

∂θm

i

,

Υi =
(
√

det(JiJT
i )(Ji♦{Hi1, Hi2, . . . , Him})vec((JiJ

T
i )−1))

|(
√

det(JiJT
i )(Ji♦{Hi1, Hi2, . . . , Him})vec((JiJT

i )−1))|
,

and Ji♦{Hi1, Hi2, . . . , Him} = [vec(JiHi1), vec(JiHi2), . . . , vec(JiHim)] (see [22] for more details). We

define di as the vector from the object centroid to the contact point and Ni denotes the neighbor set of

the i-th manipulator. Here aij is the (i, j)-th entry of the adjacency matrix An+1 ∈ R
(n+1)×(n+1). Note

that aij > 0 if j ∈ Ni and aij = 0 otherwise. We define Ωi and Vi as the range of the allowed joint

angular velocities in joint space and end-effector velocities in task space, respectively.

Remark 1. In the cost function (6a), the first item 1
2ci1‖ωi‖

2 indicates the kinetic energy of the manip-

ulator’s joint; the second term 1
2ci2‖(vi−Jiωi)‖

2 represents the kinetic energy of the mobile platform; the

third item −ci3ω
T
i Υi is used to optimize the manipulability of each manipulator. The trade-off between

system energy and manipulability depends on coefficients ci1, ci2, and ci3.

Remark 2. At the velocity level, the manipulability optimization can be formulated as a convex opti-

mization problem that is easier to solve compared with [42], in which the manipulability is a nonconvex

function with respect to joint angles.

Remark 3. The cost function can be rewritten as minωi∈Ωi,vi∈Vi

∑n
i=0

1
2ci1‖ωi −

ci3
ci1

Υi‖
2 + 1

2 ci2‖(vi −

Jiωi)‖
2 − 1

2
c2
i3

ci1
‖Υi‖

2, which is a quadratic function lower bounded by − 1
2
c2
i3

ci1
‖Υi‖

2. Hence, problem (6)

has solutions if it has a feasible point.

3 Main results

3.1 Tracking properties

Lemma 3. If the leader and the communication network Gn formed by follower mobile manipulators

are connected, the constraint (6b) implies that vi + (xi − di) = vd + (xd − dd) for i = 1, 2, . . . , n.
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Proof. Let Ln be the Laplacian matrix of the communication network topology Gn for label i =

1, 2, . . . , n. The i-th row and the j-th column of Ln is lij , which is defined by

lij =











∑

k∈Ni,k 6=0

aik, if i = j,

− aij , if i 6= j,

i, j ∈ {1, . . . , n}.

Define

v =















v0

v1
...

vn















, x =















x0

x1

...

xn















, d =















d0

d1
...

dn















, Ln = [−b Ln + diag(b)],

where b = [b1, . . . , bn]
T, bi = 1 if 0 ∈ Ni and bi = 0 otherwise for i = 1, 2, . . . , n.

The constraint (6b) can be rewritten as the following compact form using Kronecker algebra:

(Ln ⊗ Ik)[v + (x− d)] = 0, (7)

where ⊗ is the Kronecker product operator, Ik is a k × k identity matrix. Here v, x, d are vectors by

stacking the vi, xi, di of all mobile manipulators into a single vector, respectively.

Note that the communication network is connected. The rank of the Laplacian matrix Ln is n. Here

0 is an eigenvalue of Ln and its right eigenvector is 1n+1. Owing to (6b), there exist v′, x′, and d′ such

that vi + (xi − di) = v′ + (x′ − d′) for i = 0, 1, 2, . . . , n.

Note that v0+(x0−d0) = vd+(xd−dd). The constraint (6b) implies that vi+(xi−di) = vd+(xd−dd)

for i = 1, 2, . . . , n.

Theorem 1. If the leader and the communication network Gn formed by follower mobile manipulators

are connected, the solution of the optimization (6) can make the multiple mobile manipulator system

achieve consensus and track the desired trajectory.

Proof. The vector di from object centroid to contact point is constant, thus ḋi = 0. The tracking error

of the i-th mobile manipulator is

ei = (xi − di)− (xd − dd), i ∈ {0, 1, . . . , n}. (8)

Calculate the time derivative on both sides of (8):

ėi = ẋi − ẋd = vi − vd, i ∈ {0, 1, . . . , n}. (9)

According to the Karush–Kuhn–Tucker (KKT) condition [39], a solution of optimization (6) satisfies

the constraint (6b). Based on Lemma 3, the constraint (6b) implies vi +(xi− di) = vd+(xd − dd), hence

vi − vd = −[(xi − di)− (xd − dd)], i ∈ {0, 1, . . . , n}. (10)

By combining (8)–(10), the following equation can be obtained:

ėi(t) = −ei(t), i ∈ {0, 1, . . . , n}. (11)

By solving (11), we have

ei(t) = ei(0)e
−t, i ∈ {0, 1, . . . , n}, (12)

where ei(0) is the initial error, ei(t) → 0k as t → ∞. Thus, the tracking error will converge exponentially

to zero.
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3.2 Design of the algorithm

In this subsection, a proximal algorithm is designed to solve the optimization problem (6). The optimiza-

tion can be rewritten as follows:

min
ωi,vi

n
∑

i=0

1

2
ci1‖ωi‖

2 +
1

2
ci2‖(vi − Jiωi)‖

2 − ci3ω
T
i Υi + gi1(ωi) + gi2(vi), (13a)

s.t. vi =
1

∑

j∈Ni
aij

∑

j∈Ni

aij [vj − ((xi − di)− (xj − dj))], i = 1, . . . , n, (13b)

v0 = vd. (13c)

In this paper, gi1(ωi), gi2(vi) are indicator functions of closed convex sets Ωi, Vi, so gi1(ωi), gi2(vi) are

equivalent to set constraints ωi ∈ Ωi, vi ∈ Vi. In fact, our design is valid as long as gi1 : Rm → R and

gi2 : Rk → R are proper convex closed functions. The results in this paper are feasible for more general

cases.

For the ease of analysis, we give the compact form of problem (13) as

min
ω,v

f1(ω) + f2(ω, v) + f3(ω) + g1(ω) + g2(v), (14a)

s.t. L[v + (x− d)] = k, (14b)

where

f1(ω) =

n
∑

i=0

1

2
ci1‖ωi‖

2, f2(ω, v) =

n
∑

i=0

1

2
ci2‖(vi − Jiωi)‖

2, f3(ω) =

n
∑

i=0

−ci3ω
T
i Υi,

g1(ω) =

n
∑

i=0

gi1(ωi), g2(v) =

n
∑

i=0

gi2(vi),

ω =















ω0

ω1

...

ωn















, λ =















λ0

λ1

...

λn















, Cj =















c0j 0 0 0

0 c1j 0 0

0 0
. . . 0

0 0 0 cnj















, J =















J0 0 0 0

0 J1 0 0

0 0
. . . 0

0 0 0 Jn















,

Υ =















Υ0

Υ1

...

Υn















, k =















vd + (xd − dd)

0
...

0















, L =

[

1 01×n

−b Ln + diag(b)

]

,

b = [b1, . . . , bn]
T, bi = 1 if 0 ∈ Ni and bi = 0 otherwise for i = 1, 2, . . . , n, C1 = C1 ⊗ Im, C2 = C2 ⊗ Ik,

C3 = C3 ⊗ Ik, and L = L⊗ Ik.

The Lagrangian function of problem (14) is defined as

L(ω, v, λ) =
1

2
ωTC1ω +

1

2
(v − Jω)TC2(v − Jω) + ωTC3Υ+ λT{L[v + (x− d)]− k}+ g1(ω) + g2(v),

where λ = [λT
0 , λ

T
1 , . . . , λ

T
n ]

T is the Lagrange multiplier.

Assumption 1. (i) The weighted graph Gn+1 is connected and Gn is undirected; (ii) Slater’s condition

of problem (14) holds.

Under the Assumption 1 and based on the KKT condition (see [39]) of convex optimization, there

exists λ∗ such that the optimal solution of the problem (14) satisfies

0mn ∈ −C1ω
∗ + C2J

T(v∗ − Jω∗) + C3Υ− ∂g1(ω
∗), (15a)
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0kn ∈ −C2(v
∗ − Jω∗)− LTλ∗ − ∂g2(v

∗), (15b)

k = L[v∗ + (x− d)], (15c)

where ω∗
i , v

∗
i for i = 0, 1, . . . , n are the optimal solution to optimization problem (14).

Note that Eq. (15) can be equivalently written in the following form (16) with the aid of proximal

operators. We have Lemma 4.

Lemma 4. Under Assumption 1, a feasible point (ω∗, v∗) is the optimal solution of problem (14) if and

only if there exists λ∗ such that

0mn = proxg1 [(1− C1)ω
∗ + C2J

T(v∗ − Jω∗) + C3Υ]− ω∗, (16a)

0kn = proxg2 [(1− C2)v
∗ + C2Jω

∗ − LTλ∗]− v∗, (16b)

k = L[v∗ + (x− d)]. (16c)

The proof is a direct sequence of the KKT condition and the property of proximal operators (1).

Then, a distributed proximal algorithm is proposed as follows:

ω̇ = proxg1 [(1− C1)ω + C2J
T(v − Jω) + C3Υ]− ω, (17a)

v̇ = proxg2 [(1− C2)v + C2Jω − LTλ]− v, (17b)

λ̇ = L[v + v̇ + (x− d)]. (17c)

Algorithm (17) uses the proximal method and derivative feedback. It is a primal–dual method to solve

saddle points of the Lagrangian function L(ω, v, λ).

Remark 4. In algorithm (17), the contents of communication between the leader and connected fol-

lowers are different. The followers receive velocities, the position, and the Lagrange multiplier from the

leader. However, the leader only receives Lagrange multipliers from connected followers.

Remark 5. Like [23, 35], this algorithm recursively employs the previous solution as the new initial

value in the next step. By using the previous solution, the algorithm can converge quickly because the

system evolves around the equilibrium point.

3.3 Algorithm convergence

In this subsection, the convergence of the distributed proximal algorithm (17) is proved theoretically.

Theorem 2. Under Assumption 1, (ω∗, v∗, λ∗) is an equilibrium of algorithm (17) if and only if (ω∗, v∗)

is a solution to problem (14).

Proof. An equilibrium (ω∗, v∗, λ∗) of algorithm (17) satisfies (16). Based on Lemma 4, (ω∗, v∗, λ∗) is an

equilibrium of algorithm (17) if and only if (ω∗, v∗) is a solution to problem (14).

Theorem 3. Under Assumption 1:

(i) Any equilibrium of (17) is Lyapunov stable and the solution (ω(t), v(t)) is bounded;

(ii) The trajectory (ω(t), v(t), λ(t)) converges, and limt→∞(ω(t), v(t)) is a solution to problem (14).

Proof. (i) The Lyapunov function V (ω, v, λ) is constructed as

V =
1

2
(λ− λ∗)2 +

1

2
(ω − ω∗)2 +

1

2
(v − v∗)2 + [f1(ω)− f1(ω

∗)− (ω − ω∗)T∇f1(ω
∗)]

+ [f2(ω, v)− f2(ω
∗, v∗)− (ω − ω∗)T∇ωf2(ω

∗, v∗)− (v − v∗)T∇vf2(ω
∗, v∗)].

The function V is positive-definite, lower bounded, radically unbounded, and V̇ 6 0 (see Appendix A).

Therefore, (ω∗, v∗, λ∗) is Lyapunov stable and the trajectory (ω(t), v(t), λ(t)) is bounded.

(ii) Define R = {(ω, v, λ) : V̇ = 0} ⊂ {(ω, v, λ) : ω̇ = 0, v̇ = 0} (see Appendix A). Let M be the largest

invariant set of R. It follows from the invariant principle Lemma 1 that (ω(t), v(t), λ(t)) → M as t → ∞

and M is positive invariant. Assume (ω(t), v(t), λ(t)) is a trajectory of (17) such that (ω(0), v(0), λ(0)) ∈

M. Then (ω(t), v(t), λ(t)) ∈ M for all t > 0. Therefore, ω̇(t) ≡ 0, v̇(t) ≡ 0, and

λ̇(t) ≡ L[v(0) + (x − d)].
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Figure 2 (Color online) Simulation results on object-tracking error using the proposed scheme (6) for transporting the

object tracking a circular path. (a) Object-tracking error of the X-axis; (b) object-tracking error of the Y -axis.

Suppose λ̇(t) 6= 0. Then λ(t) becomes unbounded, which is a contradiction. Hence, M ⊂ {(ω, v, λ) :

ω̇ = 0, v̇ = 0, λ̇ = 0}. Note that any points in M is Lyapunov stable by part (i). It follows from Lemma 2

that (ω(t), v(t), λ(t)) converges to an equilibrium point. Owing to Lemma 4, limt→∞(ω(t), v(t)) is a

solution to problem (14).

Remark 6. The proximal algorithm (17) cannot only solve the optimization problem with set con-

straints, but also solve the optimization problem with nonsmooth terms in the cost function. In general,

g1(ω) and g2(v) can be convex, lower-semicontinuous, and nonsmooth functions.

4 Simulations

In this section, the efficiency of the proposed optimization scheme (6) and its proximal algorithm solver

(17) are verified through numerical simulations.

4.1 Transporting an object tracking a circular path

In this subsection, four mobile manipulators cooperatively transport an object and meanwhile tracking

a dynamic target point, e.g., a circular path, by using the distributed optimization scheme (6) with the

solver (17). This simulation verifies the efficiency of the scheme to optimize the energy and manipulability

in the process of transportation.

Parameters and initial states of four mobile manipulators are set as length l = [1, 1] m, cij = 1 for

i = 1, 2, 3, 4; j = 1, 2, and ci3 = 0.6 for i = 1, 2, 3, 4, initial angle θi = [0, 0.01] rad, initial position of mobile

platform r1 = [2, 4], r2 = [−2, 2], r3 = [−4,−3], r4 = [4,−2] m, and convex sets Ω = [−0.5, 0.5]2 rad/s,

V = [−5, 5]2 m/s. It can be observed from the initial states that the four mobile manipulators’ end-

effectors are not adjacent to the object and their manipulability is low. The four end-effectors need to

reach target points on the object, and then transport the object to track the desired trajectory. The

object is conducted to track a circular path. To be specific, the reference of the object center moves

at an angular speed at 1.25 rad/s along a circle centered at [0, 0] m with radius 1 m. As observed in

Figure 2, the center of the object follows the desired circular trajectory. The tracking errors of the X-axis

and Y -axis almost approach zero. Figure 3 shows that the positions and velocities of four end-effectors

achieve consensus. Furthermore, the formation of the end-effectors is kept during the movement.

As further demonstrated in Figure 4, the four mobile manipulators change from initial state with low

manipulability to a state with high manipulability. The manipulability optimization is effective during

the process of movement. The constraints of end-effector velocity and angular velocity are satisfied as

shown in Figure 5. This implies that the control variables of velocity are consistent with the physical

constraints.
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Figure 3 (Color online) Simulation results on position errors and velocity errors of end-effectors using the proposed scheme

(6) for transporting the object tracking a circular path. (a) Position error of end-effectors of the X-axis; (b) position error of

end-effectors of the Y -axis; (c) velocity error of end-effectors of the X-axis; (d) velocity error of end-effectors of the Y -axis.
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Figure 4 (Color online) Simulation results on manipulability of four mobile manipulators using the proposed scheme (6)

for transporting the object tracking a circular path.

4.2 Relationship between energy and manipulability

A comparison simulation is designed to demonstrate the capability of manipulability optimization and

the relationship between energy and manipulability. The first simulation uses the control scheme (6) with

ci3 = 0 identifying only formation control. The second simulation uses the control scheme (6) with a

constant ci3 = 0.6 for i = 1, 2, 3, 4 which not only has the formation control but also has manipulability

optimization. The third simulation uses the same control scheme with adaptive ci3 as below

ci3 =

{

1− µi, if µi < 0.5,

0, if µi > 0.5,
i ∈ {1, 2, 3, 4}.

The physical parameters of mobile manipulators, initial states, and control objectives of these three

simulations are the same as in Subsection 4.1.

As shown in Figure 6(a), the four mobile manipulators’ manipulabilities fluctuate from 1 to 0 irreg-

ularly with ci3 = 0. In Figure 6(b), the four mobile manipulators’ manipulabilities remain close to the



Chen J, et al. Sci China Inf Sci December 2018 Vol. 61 120201:11

0               5               10             15             20
Time (s)

−6

−4

−2

0

2

4

6
E

n
d
-e

ff
ec

to
r 

v
el

o
ci

ty
-x

 (
m

/s
)

0               5               10             15             20
Time (s)

−6

−4

−2

0

2

4

6

E
n
d
-e

ff
ec

to
r 

v
el

o
ci

ty
-y

 (
m

/s
)

0               5              10             15             20
Time (s)

−0.6

−0.4

−0.2

0

0.2

0.4

A
n
g
u
la

r 
v
el

o
ci

ty
-1

 (
ra

d
/s

)

ω11 ω21 ω31 ω41

0               5              10             15             20

Time (s)

−0.6

−0.4

−0.2

0

0.2

0.4

A
n
g
u
la

r 
v
el

o
ci

ty
-2

 (
ra

d
/s

)

(a)

(c)

(b)

(d)

v1x

v2x

v3x

v4x

v1y

v2y

v3y

v4y

ω12 ω22 ω32 ω42

Figure 5 (Color online) Simulation results on velocity limits using the proposed scheme (6) for transporting the object

tracking a circular path. (a) End-effector velocities of the X-axis; (b) end-effector velocities of the Y -axis; (c) angular

velocities of joint 1; (d) angular velocities of joint 2.
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Figure 6 (Color online) Simulation results on manipulability change with different coefficients. (a) Manipulability change

without manipulability optimization in the first simulation; (b) manipulability change with manipulability optimization

with constant ci3 in the second simulation; (c) manipulability change with manipulability optimization with adaptive ci3

in the third simulation.

maximum value using control scheme (6) with constant ci3. As illustrated in Figure 6(c), the four mobile

manipulators’ manipulabilities remain greater than 0.5 with adaptive ci3.
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Figure 7 (Color online) Simulation results on total ma-

nipulability of four manipulators with different coefficients.

Figure 8 (Color online) Simulation results on total en-

ergy with different coefficients.

Then the total energy and manipulability of four mobile manipulators are compared. As shown in

Figure 7, the manipulability on average of the second simulation is 41.36% higher than that of the

first simulation. This result shows the efficiency of manipulability optimization. However, as observed in

Figure 8, the energy of the second simulation is 37.52% higher than that of the first simulation. The reason

is that the second simulation requires some extra energy to increase the manipulability. Furthermore, if

it only needs to keep the manipulability greater than 0.5, the third simulation strikes a trade-off between

energy and manipulability.

5 Conclusion

In this paper, a novel distributed transportation control scheme for multiple mobile manipulators has

been proposed through distributed optimization. A distributed optimization formulation has been es-

tablished by treating the formation requirement of end-effectors, physical limits of velocities, energy and

manipulability as an equality constraint, feasible set constraints, and the objective function, respectively.

The trade-off between system energy and manipulability was balanced under the proposed optimization

framework. Then a continuous-time proximal gradient algorithm was designed to solve the proposed

optimization problem. The proposed algorithm can also solve more general optimization problems with

nonsmooth cost functions. The efficiency of the proposed optimization framework and algorithm has been

demonstrated by simulations. In the future, game theory will be introduced to gain the largest payoff in

cooperative transportation control, and transportation control in a complex environment with obstacles

will be further investigated.
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Appendix A Convergence analysis

The algorithm (17a), (17b) can be rewritten as

ω̇ + ω = proxg1 [(1− C1)ω + C2J
T(v − Jω) + C3Υ],

v̇ + v = proxg2 [(1− C2)v + C2Jω − LTλ].

It follows from (1) that

(1 − C1)ω + C2J
T(v − Jω) + C3Υ− (ω̇ + ω) ∈ ∂g1(ω̇ + ω), (A1)

(1 − C2)v + C2Jω − LTλ− (v̇ + v) ∈ ∂g2(v̇ + v). (A2)

Let (ω∗, v∗, λ∗) be an equilibrium of algorithm (17). The following can be obtained:

− C1ω
∗ + C2J

T(v∗ − Jω∗) + C3Υ ∈ ∂g1(ω
∗), (A3)

− C2(v
∗ − Jω∗)− LTλ∗ ∈ ∂g2(v

∗). (A4)

Because g1(·), g2(·) are convex function, ∂g1(·) and ∂g2(·) are monotone. By combining (A1)–(A4), it follows that

[−C1ω + C2J
T(v − Jω)− ω̇ + C1ω

∗ − C2J
T(v∗ − Jω∗)]T(ω̇ + ω − ω∗) > 0, (A5)

[−C2(v − Jω)− LTλ− v̇ + C2(v
∗ − Jω∗) + LTλ∗]T(v̇ + v − v∗) > 0. (A6)

According to (A5), the following is derived:

(C1ω
∗ − C1ω)

T(ω − ω∗) + [C2J
T(v − Jω)− C2J

T(v∗ − Jω∗)]T(ω − ω∗)− ω̇Tω̇

> ω̇T(ω − ω∗) + (C1ω − C1ω
∗)Tω̇ + [C2J

T(v∗ − Jω∗)− C2J
T(v − Jω)]Tω̇. (A7)

Then, (A7) is rewritten as

− (ω − ω∗)T(∇f1(ω) −∇f1(ω
∗))− (ω − ω∗)T(∇ωf2(ω, v)−∇ωf2(ω

∗, v∗))− ω̇Tω̇

> ω̇T(ω − ω∗) + ω̇T(∇f1(ω) −∇f1(ω
∗)) + ω̇T(∇ωf2(ω, v) −∇ωf2(ω

∗, v∗)).

According to (A6), the following can be obtained:

− [C2J
T(v∗ − Jω∗)− C2J

T(v − Jω)]T(v∗ − v) + (λ∗ − λ)TL[v + v̇ + (x− d)]− v̇Tv̇

> v̇T(v − v∗) + [C2J
T(v − Jω)− C2J

T(v∗ − Jω∗)]Tv̇. (A8)

Then, (A8) can be rewritten as

− (v − v∗)T(∇vf2(ω, v) −∇uf2(ω
∗, v∗)) + (λ∗ − λ)TL[v + v̇ + (x− d)]− v̇T v̇

> v̇T(v − v∗) + v̇T(∇vf2(ω, v)−∇vf2(ω
∗, v∗)).

The function V1(ω, u) is constructed as

V1 =
1

2
(ω − ω∗)2 +

1

2
(v − v∗)2 + [f1(ω) − f1(ω

∗)− (ω − ω∗)T∇f1(ω
∗)]

+ [f2(ω, v)− f2(ω
∗, v∗)− (ω − ω∗)T∇ωf2(ω

∗, v∗)− (v − v∗)T∇vf2(ω
∗, v∗)]. (A9)

Computing time derivative of V1 in (A9), the following can be derived:

V̇1 = ω̇T(ω − ω∗) + ω̇T(∇f1(ω) −∇f1(ω
∗)) + ω̇T(∇ωf2(ω, v) −∇ωf2(ω

∗, v∗))

+ v̇T(v − v∗) + v̇T(∇vf2(ω, v) −∇vf2(ω
∗, v∗))

6− (ω − ω∗)T[∇f1(ω) −∇f1(ω
∗)]

− (ω − ω∗)T[∇ωf2(ω, v)−∇ωf2(ω
∗, v∗)]

− (v − v∗)T[∇vf2(ω, v) −∇vf2(ω
∗, v∗)]
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+ (λ∗ − λ)TL[v + v̇ + (x− d)]− ω̇Tω̇ − v̇Tv̇. (A10)

Based on V̇1 (A10), another function V2(λ) is constructed as

V2 =
1

2
(λ − λ∗)2. (A11)

By calculating the time derivative of V2, V̇2 can be obtained

V̇2 = λ̇T(λ− λ∗) = (λ − λ∗)TL[v + v̇ + (x− d)]. (A12)

It follows from (A10) and (A12) that

V̇ = V̇1 + V̇2

6− (ω − ω∗)T[∇f1(ω) −∇f1(ω
∗)]

− (ω − ω∗)T[∇ωf2(ω, v) −∇ωf2(ω
∗, v∗)]

− (v − v∗)T[∇vf2(ω, v) −∇vf2(ω
∗, v∗)]

− ω̇Tω̇ − v̇Tv̇

6− ω̇Tω̇ − v̇Tv̇

6 0.

As a result, {(ω, v, λ) : V̇ = 0} ⊂ {(ω, v, λ) : ω̇ = 0, v̇ = 0}. In addition, because f1 and f2 are convex functions, then

f1(ω) − f1(ω
∗)− (ω − ω∗)T∇f1(ω

∗) > 0,

f2(ω, v) − f2(ω
∗, v∗)− (ω − ω∗)T∇ωf2(ω

∗, v∗)− (v − v∗)T∇vf2(ω
∗, v∗) > 0.

By combining (A9) and (A11), it follows that

V = V1 + V2

=
1

2
(ω − ω∗)2 +

1

2
(v − v∗)2 + [f1(ω)− f1(ω

∗)− (ω − ω∗)T∇f1(ω
∗)]

+ [f2(ω, v) − f2(ω
∗, v∗)− (ω − ω∗)T∇ωf2(ω

∗, v∗) − (v − v∗)T∇vf2(ω
∗, v∗)] +

1

2
(λ− λ∗)2

>
1

2
(ω − ω∗)2 +

1

2
(v − v∗)2 +

1

2
(λ− λ∗)2

> 0.
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