
SCIENCE CHINA
Information Sciences

November 2018, Vol. 61 119205:1–119205:3

https://doi.org/10.1007/s11432-018-9506-7

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 info.scichina.com link.springer.com

. LETTER .

Stability criteria for stochastic singular systems with

time-varying delays and uncertain parameters

Shuanyun XING1,2,3, Feiqi DENG2* & Weixing ZHENG3

1College of Science, Shenyang Jianzhu University, Shenyang 110168, China;
2Systems Engineering Institute, South China University of Technology, Guangzhou 510640, China;

3School of Computing, Engineering and Mathematics, Western Sydney University, Sydney NSW 2751, Australia

Received 22 May 2018/Accepted 11 June 2018/Published online 19 October 2018

Citation Xing S Y, Deng F Q, Zheng W X. Stability criteria for stochastic singular systems with time-varying de-

lays and uncertain parameters. Sci China Inf Sci, 2018, 61(11): 119205, https://doi.org/10.1007/s11432-018-9506-7

Dear editor,
It is well known that singular systems can bet-
ter describe physical systems and they are widely
used in chemical processes, microelectronic cir-
cuits, economic systems, and network control sys-
tems [1]. We can effectively model singular sys-
tems as stochastic singular systems when the
structure of singular systems is unexpectedly al-
tered by the environment. Several meaningful con-
tributions were reported in [2–4].

The stability problem in stochastic singular sys-
tems with time delays has recently attracted signif-
icant research interest. In particular, considerable
attention has been focused on research concern-
ing delay-dependent stability because the stability
criteria in stochastic singular systems are less con-
servative. There are many meaningful results re-
cently about this topic have been obtained [5–7].
To our knowledge, solutions to the problems asso-
ciated with stochastic stability for uncertain con-
tinuous singular systems with random process and
time-varying delays still do not exist.

This study proposes new delay-dependent sta-
bility criteria for a class of stochastic singular sys-
tems with time-varying delays and uncertain pa-
rameters. To reduce the conservatism, we con-
struct the appropriate Lyapunov-Krasovskii func-
tionals, and then utilize the free-weighting-matrix
approach and linear matrix inequality (LMI) tech-

nique based on an auxiliary vector function. The
new delay-dependent stability criteria are de-
rived to ensure the considered system is regular,
impulse-free, and stochastically stable in the mean
square.

Problem statement. Consider the stochastic sin-
gular system defined in a complete probability
space (Ω,F ,P),

Edx(t) = ((A+∆A(t))x(t) + (Ad +∆Ad(t))

×x(t− d(t)))dt+(J+∆J(t))x(t)dω(t),

x(t) = φ(t), t ∈ [−d0, 0] , (1)

where x(t) ∈ R
n is the state vector, the matrixE ∈

R
n×n maybe singular, and we assume rank(E)

= r 6 n. A, Ad, J are known constant matri-
ces with appropriate dimensions. ω(t) is a one-
dimensional standard Brownian motion defined
on the probability space (Ω,F , {Ft}t>0,P), which

satisfies E {dω(t)} = 0, E {dω2(t)} = dt. ∆A(t),
∆Ad(t) and ∆J(t) are uncertainties in system ma-
trices of the form

[∆A(t) ∆Ad(t) ∆J(t)]=MF1(t) [NA Nd NJ ], (2)

where M , NA, Nd, and NJ are known real con-
stant matrices. The time-varying nonlinear func-
tion F1(t) satisfies F

T
1 (t)F1(t) 6 I. ϕ(t) is the ini-

tial condition that relates to the time-varying de-
lay d(t), satisfying for all t > 0, 0 6 d(t) 6 d0,
ḋ(t) 6 d̄ 6 1, where d0 and d̄ are scalars.
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Assumption 1. rank([E J + MF1(t)NJ ]) =
rank(E).

Main results. An auxiliary vector function η(t)
is defined such that

η(t) = (A+∆A(t))x(t)

+ (Ad +∆Ad(t))x(t − d(t)). (3)

Using (1), we can obtain the following integral
equality:

Ex(t) − Ex(t− d(t))

=

∫ t

t−d(t)

η(s)ds+

∫ t

t−d(t)

(J+∆J(t))x(s)dω(s). (4)

Theorem 1. For a scalar d̄ > 0, the system (1) is
regular, impulse-free, and stochastically stable in
the mean square if there exist matrices P , Q > 0,
Q1 > 0, Z > 0, M̂ , N̂ and real numbers ε1 > 0,
ε2 > 0, ε3 > 0 such that

ETP = PTE > 0, (5)

ETP = ETQ1E, (6)

Π =

[

Φ1 Φ2

∗ Φ3

]

< 0, (7)

where Φ3 = diag{Λ6,Λ7},

Φ1=

[

Λ1 Λ2

∗ Λ3

]

, Φ2=

[

Λ4 Λ5

0 0

]

, Λ3=

[

−d20Z 0

∗ −Z

]

,

Λ1=

[

Θ11 Θ12

∗ Θ22

]

, Λ2=

[

0 ETM̂

0 ETN̂

]

,

Λ4=

[

JT(E+)TET PTM

0 0

]

, Λ5=

[

PTM NT
J

0 0

]

,

Λ6 = diag{Θ31,−ε1I}, Λ7 = diag{−ε3I,−ε2I},

Θ11 = ATP + PTA+ ψ11,

Θ12 = PTAd + ET(M̂ − N̂T)E,

ψ11 = Q− ET(M̂ + M̂T)E + ε1N
T
ANA,

Θ22 = −(1− d̄)Q+ ET(N̂ + N̂T)E + ε3N
T
d Nd,

Θ31 = −Q̂+ ε2EE
+MMT(E+)TET,

Q̂ = Q−1
1 .

Proof. First, we prove the system (1) is regu-
lar and impulse-free. Under Assumption 1, if
rank(E) = r, there are nonsingular matrices U
and V such that

UEV =

[

I 0

0 0

]

, UAV =

[

A11 A12

A21 A22

]

,

UAdV =

[

Ad11 Ad12

Ad21 Ad22

]

, U−TPV =

[

P11 P12

P21 P22

]

. (8)

From (5), it follows that

V TETUTU−TPV = V TPTU−1UEV > 0.

Then, we have P11 = PT
11, P12 = 0.

From (7), it can be implied that

ATP + PTA− ET(M̂ + M̂T)E < 0. (9)

Thus,

V TATUTU−TPV + V TPTU−1UAV

− V TETUTU−T(M̂ + M̂T)U−1UEV < 0, (10)

that is
[

⊗ ⊗̃

∗ (AT
22P22 + PT

22A22)

]

< 0. (11)

Because ⊗ and ⊗̃ are irrelevant to the results
of the following discussion, the real expression of
these two variables are omitted here. Accord-
ing to the expression (11), it is easy to see that
AT

22P22 + PT
22A22 < 0, which implies that A22 is

nonsingular. Thus, the pair (E,A) is regular and
impulse-free.

In addition, from the expression (7), we have

Λ1 < 0. (12)

Pre- and post-multiplying (12) by [I I] and its
transpose, we can easily obtain

(AT +AT
d )P + PT(A+Ad) + d̄Q < 0.

Using a similar approach as mentioned above,
we have
[

⋆ ⋆̃

∗ (AT
22 +AT

d22)P22 + PT
22(A22 +Ad22)

]

<0. (13)

Because ⋆ and ⋆̃ are irrelevant to the results
of the following discussion, the real expression of
these two variables have been excluded. From
(13), it can be easily seen that (AT

22 +AT
d22)P22 +

PT
22(A22 + Ad22) < 0, which implies that the pair

(E,A+Ad) is regular and impulse-free. Therefore,
the system (1) is regular and impulse-free for any
time-varying delay d(t) satisfying 0 6 d(t) 6 d0.

A candidate Lyapunov-Krasovskii functional is
then constructed as follows:

V (x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)), (14)

where V1(x(t)) = xT(t)ETPx(t),

V2(x(t)) =

∫ t

t−d(t)

xT(s)Qx(s)ds,

V3(x(t)) = d0

∫ 0

−d0

∫ t

t+θ

ηT(s)Zη(s)dsdθ.



Xing S Y, et al. Sci China Inf Sci November 2018 Vol. 61 119205:3

The stochastic derivative of V (x(t)) along the
trajectory of the system (1) can be obtained as
follows:

dV (x(t)) = L V (x(t))dt

+ 2xT(t)PT(J +∆J)x(t)dω(t), (15)

where

L V (x(t)) = L V1(x(t))+L V2(x(t))+L V3(x(t)).

Based on Proposition 2.1 in [8] for L V1(x(t)),
using (6) and Q̂ = Q−1

1 , there exist real numbers
ε1 > 0, ε2 > 0, ε3 > 0 such that

L V1(x(t))6 xT(t)(PTA+ATP+ε−1
1 PTMMTP

+ ε1N
T
ANA+(EE+J)T(Q̂−ε2EE

+

×MMT(E+)TET)−1EE+J

+ ε−1
2 NT

J NJ + ε−1
3 PTMMTP )x(t)

+ xT(t)(PTAd +AT
d P )x(t− d(t))

+ xT(t− d(t))ε3N
T
d Ndx(t− d(t));

L V2(x(t)) 6 xT(t)Qx(t)

− (1 − d̄)xT(t− d(t))Qx(t − d(t));

L V3(x(t)) 6 d20η
T(t)Zη(t)

−

∫ t

t−d(t)

ηT(s)dsZ

∫ t

t−d(t)

η(s)ds.

From (4), for any matrices M̂ , N̂ , we have

0 = 2[xT(t)ETM̂ + xT(t− d(t))ET
e N̂ ]

·

[

∫ t

t−d(t)

η(s)ds+

∫ t

t−d(t)

(J +∆J)x(s)dω(s)

− Ex(t) + Ex(t− d(t))

]

. (16)

Furthermore, from the expressions (15) and
(16), we have

dV (x(t)) = LṼ (x(t))dt

+ 2xT(t)PT(J +∆J)x(t)dω(t)

+ 2[xT(t)ETM̂ + xT(t− d(t))ETN̂ ]

×

∫ t

t−d(t)

(J +∆J)x(s)dω(s),

where LṼ (x(t)) 6 ξT(t)Θξ(t), and

ξT(t)=

[

xT(t) xT(t− d(t)) ηT(t)

∫ t

t−d(t)

ηT(s)ds

]

,

Θ =











Θ̃11 Θ12 0 ETM̂

∗ Θ22 0 ETN̂

∗ ∗ −d20Z 0

∗ ∗ ∗ −Z











,

Θ̃11 = ATP + PTA+ ψ11 + ε−1
1 PTMMTP

+ε−1
3 PTMMTP+(EE+J)T(Q̂−ε2EE

+

×MMT(E+)TET)−1EE+J+ε−1
2 NT

J NJ .

For the condition (7), based on the Schur com-
plement lemma, we have Θ < 0. Thus,

E {LV (x(t))} 6 E {LṼ (x(t))}

6 −λmax(Θ)‖ξ(t)‖2 6 −λmax(Θ)‖x(t)‖2.

Therefore, system (1) is stochastically stable in
the mean square. This completes the proof.

Conclusion. We discussed the stochastic sta-
bility problem of stochastic singular systems with
time-varying delays and uncertain parameters,
and a new stochastic stability solution was pro-
posed. The results of our proposed solution can
be further extended to stochastic singular nonlin-
ear systems with time-varying delays.
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