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Dear editor,
Aerodynamic design is usually a time-consuming
process of four steps [1]. First, an initial design
profile is obtained with designer’s domain knowl-
edge. Second, the design profile is represented as a
CAD model using softwares such as Catia or UG.
Third, a CAE software, such as ICEM or Hyper-
mesh, is applied to generate corresponding meshes.
At last, a computational fluid dynamics (CFD)
software, such as Fluent or CFX, is used to calcu-
late the performance. Therefore, only numbered
of design configurations could be evaluated. The
design efficiency and results need to be improved
desperately.

Some researchers focused on offering alterna-
tives to the most time-consuming CFD simula-
tion with surrogate model, such as Kriging and
multiple adaptive regression splines (MARS) [2,3].
Kutz [4] used deep neural networks (DNNs) to
model complex flows such as turbulent flows. Be-
sides, a developing estimation method based on
experimental data and empirical equation is also a
good choice, such as Datcom [5]. However, these
methods have limitations. Surrogate model is only
accurate for limited data field. Using DNNs to
model complex flows suffers from lacking training
data. Engineering estimation software is suitable
for large design space, but the results are only for
reference in terms of accuracy.

Reinforcement learning (RL) is gaining more

and more attention recently and has been success-
fully applied to many challenging problems. DNNs
can extract a high-level representation of raw data.
Thus, RL along with DNNs offers a new way for
aerodynamic design. We propose a deep learning
approach with shared-layer deep deterministic pol-
icy gradient (SL-DDPG) to design aerodynamic
shape, combining state-of-the-art RL method [6]
and transfer learning (TL) [7]. DDPG is used to
extract design rules from a semi-empirical method
in continuous action space with high resolution
while TL is used to accelerate the learning process
with a CFD method. To the best of our knowl-
edge, this study is the first to use RL and TL for
aerodynamic design.

Model and methodology. We consider an aerody-
namic design problem for a normal layout missile
as shown in Figure 1(a). The objective is to max-
imize the lift-drag ratio coefficient and maintain
the position of pressure center. The entire design
architecture is illustrated in Figure 1(b). We ap-
ply DDPG in two related tasks: aerodynamic de-
sign in semi-empirical software environment and
CFD environment, which are the source task and
the target task, respectively. The source task in-
tends to extract the hidden design rules, which is
a novel approach to utilize the data and empirical
equations involved in Datcom. In the target task,
the DDPG network initialized with transferred fea-
tures focuses on obtaining high performance de-
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Figure 1 (a) Design parameters of the missile; (b) architecture of the deep learning approach for aerodynamic design;
(c) performance comparison of NCGA, NSGA-II, MOPSO, DDPG, and SL-DDPG in the hybrid environment.

sign configurations precisely in Fluent, which is a
widely used high-precision CFD software.

For the source task, the iterative interaction be-
tween the agent and the Datcom environment is
realized by a Python program which writes the in-
put file, executes Datcom code and reads the out-
put file in sequence. We apply DDPG to counter
extract the design policy which counts for the
improvement of aerodynamic performance by re-
warding the increase of lift-drag ratio and penaliz-
ing its degradation and pressure center variation.
Aerodynamic design process can be essentially re-
garded as a Markov decision process (MDP) which
basically meets RL’s requirement. Taking the
learning agent as a virtual designer, the tth design
configuration as state st ∈ S, the change for the
tth design configuration as action at ∈ A, the final
design configuration is achieved by iteratively in-
teracting between the agent and the environment.
Then the extracting of design rules is equal to the
optimal policy π

∗: S → A which returns the best
action at each step.

For the target task, we aim to eliminate the
calculation deviation between Datcom and Flu-
ent and obtain design configurations precisely. In
DNNs, the former layers extract common features
while the latter ones focus on the specific features
of the particular task. Therefore, both the input
and hidden layers are shared as a common fea-
ture transformation, and the output layers are not

shared because the calculation methods are differ-
ent in Datcom and Fluent. Only the output layer
is re-trained on the target task as an adaption of
environment switching.

To further improve the design efficiency, a hy-
brid model of Datcom and Fluent is employed. Al-
though there may be calculation deviation between
Datcom and CFD, Datcom could still show the
change tendency properly with parameters variat-
ing. Hence, the hybrid model takes advantage of
Datcom’s speed and Fluent’s accuracy by setting
the calculation results of Fluent as reference value
and fitting the change tendency with Datcom. In
the hybrid model, the estimation of Fluent result
after taking action at at state st is defined as
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where TD(st, at) is the exact result of Datcom after
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taking action at at state st. The state-action pair
(st

′

, at
′

) is chosen according to the match degree
M after traversing the Fluent case base:
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The hybrid model is iteratively checked by the
maximum match degree and the consistency of the
two best matched predictions in the Fluent case
base. The consistency is calculated as
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When the maximum match degree is below 95%
or the consistency is below 99%, a Fluent calcula-
tion will be carried out to update the hybrid model
with respect to st and at.

The interaction of the agent and the hybrid
model is also realized by a Python program. Pre-
viously, a 3D baseline missile model is built using
Catia and a corresponding mesh file is generated
with ICEM. In the Fluent calculation, mesh mor-
phing technique [8] is introduced to adjust the mis-
sile geometry and mesh according to the agent’s
action without re-modeling.

Experiment and results. The design configura-
tions are evaluated by lift-drag ratio and position
variation of pressure center, which are common
criteria for aerodynamic design. DDPG and SL-
DDPG are applied to search for excellent missile
shape configurations along with three widely used
optimization algorithms in the aerospace domain,
namely NSGA-II, NCGA and MOPSO. The ex-
perimental details of the proposed method are de-
scribed in Appendix A.

In the experiment of target task using hybrid
model, NSGA-II and NCGA both had 100 genera-
tions of 20 individuals each. MOPSO had 100 iter-
ations and swarm size of 20. DDPG and SL-DDPG
both adopt max episodes of 100 and max steps of
20. Thus, the calculation amounts of the above al-
gorithms during the optimization are nearly the
same. As illustrated in Figure 1(c), SL-DDPG
outperforms other algorithms significantly in both
search speed and objective value. The lift-drag ra-
tio of SL-DDPG reaches 3.49 at 10th episode while
other algorithms achieve such performance at 71th

generation or later. In terms of obtaining similar
final solution, SL-DDPG saves up to about 85%

calculation time with the knowledge transferred
from pre-trained layers.

Conclusion and future work. This study presents
a novel approach for challenging missile aerody-
namic design problem using reinforcement learn-
ing and transfer learning. We use DDPG to learn
the optimal design policies from semi-empirical
method. Then these policies are transferred to the
target task in hybrid environment. The shared
layers accelerate the learning process significantly
compared with the methods without transfer
learning. Our experimental results also demon-
strate that SL-DDPG outperforms NCGA, NSGA-
II and MOPSO significantly in both convergence
speed and search capability which offers great
value for time-consuming aerodynamic design.

Further investigation should be carried out in
studying the adaptability for more related design
tasks, along with the detail influences of DNNs’
hyper parameters to the design process.
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