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Appendix A Details of the application of SL-DDPG to missile aerodynamic design

The design parameters of the missile aerodynamic shape is defined in Table A1. The baseline model of the missile consists

of a cone nose, a cylindrical body, four trapezoidal wings and tails. The wings and tails are arranged in “+” form and

both have hexagonal airfoil. The wings and tails’ trailing edges are set perpendicular to body axis. So SWEEP can be

determined by CHORD 1, CHORD 2 and SSPAN 2. Now that LNOSE, LCENTER and DCENTER are mainly determined

by components arrangement during missile overall design, the three parameters are kept constant during the optimization.

The architecture of DNNs in SL-DDPG is illustrated in Figure A1. We take the design parameter set as network input

and the the parameters’ change as output.

The iterative interaction of the agent and the hybrid environment is described as Figure A2. The Fluent calculation

takes the Reynolds averaged navier-stokes (RANS) equations to describe the turbulent flow and Spalart-Allmaras (S-A)

model to resolve the equations.

We train the DDPG network in Datcom environment first by maximizing the following reward function:

rD(st, at) =

{
D(st + at)−D(s0), XCP ∈ [0.535, 0.635],

D(st + at)−D(s0)− 10 ·∆XCP, otherwise.
(A1)

Where D function denotes the lift-drag ratio calculation with Datcom, s0 is the state correspond with baseline config-

uration and ∆XCP denotes the positron variation of pressure center compared with baseline. The network is trained to

predict the best adjustment amount of design parameters in various conditions.

Based on the knowledge transfer discussed above, we extend the DDPG algorithm from Datcom environment to the

hybrid environment using the reward function as:

rH(st, at) =

{
H(st + at)−H(s0), XCP ∈ [0.535, 0.635],

H(st + at)−H(s0)− 10 ·∆XCP, otherwise.
(A2)

Where H function denotes the lift-drag ratio calculation with the hybrid model.
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Table A1 Definition and value bounds of design parameters

Design Parameter Definition Lower bound Upper bound Baseline

LNOSE Nose length - - 0.49

LCENTER Missile body length - - 3.17

DCENTER Missile body diameter - - 0.18

XLE1 Distance from nose tip to wing leading edge 0.5 2.3 1.72

SWEEP1 Wing leading-edge sweep angle - - -

CHORD1 1 Wing root chord 0.1 0.5 0.29

CHORD1 2 Wing tip chord 0 0.5 0.06

SSPAN1 2 Exposed semispan of wing 0.1 0.5 0.23

XLE2 Distance from nose tip to tail leading edge 2.9 3.2 3.2

SWEEP2 Wing trailing-edge sweep angle - - -

CHORD2 1 Tail root chord 0.1 0.5 0.38

CHORD2 2 Tail tip chord 0 0.5 0.19

SSPAN2 2 Exposed semispan of tail 0.1 0.5 0.22
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Figure A1 Network architecture of DNNs for actor and critic in SL-DDPG.
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Figure A2 Reinforcement learning in the hybrid environment.


