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Appendix A Proof of Lemma 2
Proof. Let a gain K be chosen such that (2) has a solution P > 0. Defining S = P−1 > 0 and multiplying the inequality (2)

on both sides by S yield S(A + BK)T + (A + BK)S + 2σS < 0. Hence, for z ∈ Rn and z 6= 0, we have zT [S(A + BK)T +

(A + BK)S + 2σS]z < 0, that is,

zT (SAT + AS + 2σS)z + 2zT BKSz < 0. (A1)

Let X = BBT , Y = −(SAT + AS + 2σS), which implies that X = XT > 0, Y = Y T . If z 6= 0, zT Xz = 0, i.e.

zT BBT z = 0, zT B = 0, then it follows from (A1) that zT (SAT + AS + 2σS)z < 0, i.e. zT Y z > 0. According to Lemma 1,

there exists a constant τ > 0 such that Y + τX > 0, i.e. SAT + AS + 2σS − τBBT < 0. By multiplying P on both sides,

it is obtained that (3) holds.

On the other hand, we suppose that there exists a constant τ > 0 such that (3) has a symmetric positive definite solution

P . We rewrite (3) as P
(
A− τ

2
BBT P

)
+

(
AT − τ

2
PBBT

)
P + 2σP < 0. Letting K = − τ

2
BT P , we have P (A + BK) +

(AT + KT BT )P + 2σP < 0, which immediately leads to (2). This completes the proof.

Appendix B Proof of Lemma 3
Proof. Multiplying (4) on both sides by P , we have PA + AT P + 2σP − τPBBT P < 0, i.e. (3) holds. According to the

proof of the second part in Lemma 2, the choice K = − τ
2
BT P can guarantee that (2) has a symmetric positive definite

solution P .

Appendix C Proof of Lemma 5
Proof. From Lemma 4, we know that (A + σI, B) is a controllable pair. Thus, there exists a constant matrix K satisfying

that (A + σI) + BK is stable. Hence, P = P T > 0 can be found such that the following Lyapunov equation holds:

[(A + σI) + BK]T P + P [(A + σI) + BK] = −Q, (C1)

for any given Q = QT > 0, that is, (A + BK)T P + P (A + BK) = −Q− 2σP < −2σP.

Appendix D Proof of Lemma 7
Proof. From Lemma 6, we have

V (t) 6 exp(−σt)V (0) +

∫ t

0
exp[−σ(t− τ)]l exp(−λτ)dτ

= exp(−σt)V (0) +
l exp(−σt)

λ− σ
[1− exp(−(λ− σ)t)] , ∀t > 0. (D1)

By noting λ > σ, (D1) can be rewritten as

V (t) 6 exp(−σt)V (0) +
l exp(−σt)

λ− σ
=

(
V (0) +

l

λ− σ

)
exp(−σt), ∀t > 0.
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Appendix E Proof of Theorem 1
Proof. We first rewrite (5) as

ė = (A + BK)e + B

[
−

r∑

i=1

aiYi(X) + bu(t)− x
(n)
d −Ke

]
. (E1)

Define a positive Lyapunov function

V = eT Pe +
b

γ
exp(−2σt)θ̃2(t), θ̃(t) = θ∗ − θ̂(t), (E2)

whose derivative is

V̇ = eT
[
P (A + BK) + (A + BK)T P

]
e− 2σb

γ
exp(−2σt)θ̃2

−2b

γ
exp(−2σt)θ̃

˙̂
θ + 2eT PB

[
−

r∑

i=1

aiYi(X) + bu(t)− x
(n)
d −Ke

]
. (E3)

Substituting (2) and (10) into (E3) and noting (E2), we have

V̇ 6 −2σeT Pe− 2σb

γ
exp(−2σt)θ̃2 − 2bθ̃|eT PB|f(X, t) + 2eT PB

[
−

r∑

i=1

aiYi(X)− x
(n)
d −Ke

]
+ 2beT PBu(t)

= −2σV − 2bθ̃|eT PB|f(X, t) + 2beT PBu(t) + 2eT PB

[
−

r∑

i=1

aiYi(X)− x
(n)
d −Ke

]
. (E4)

Noting the definitions in (7) and (8), we have

eT PB

[
−

r∑

i=1

aiYi(X)− x
(n)
d −Ke

]
6 |eT PB|

[
r∑

i=1

|ai| · |Yi(X)|+ ‖K‖ · ‖e‖+ sup
t>0

|x(n)
d |

]

6 |eT PB|θ
(

r∑

i=1

|Yi(X)|+ ‖e‖+ 1

)

6 |eT PB|θf(X, t) = b|eT PB|θ∗f(X, t). (E5)

Combining (E4) and (E5) implies that

V̇ 6 −2σV − 2bθ̃|eT PB|f(X, t) + 2beT PBu(t) + 2b|eT PB|θ∗f(X, t)

= −2σV + 2beT PBu(t) + 2b|eT PB|θ̂f(X, t). (E6)

Then, substituting (9) into (E6) results in

V̇ 6 −2σV + 2b|eT PB|θ̂f(X, t)− 2b(eT PB)2θ̂2f2(X, t)

eT PB tanh [l−1eT PB exp(2λt)] θ̂f(X, t) + l exp(−2λt)
. (E7)

Using the inequality 0 6 x tanh
(

x
a

) 6 |x|, ∀x ∈ R, a > 0, and noting the nonnegativeness of b, θ̂(t) and f(X, t), we have

V̇ 6 −2σV + 2b|eT PB|θ̂f(X, t)− 2b(eT PB)2θ̂2f2(X, t)

|eT PB|θ̂f(X, t) + l exp(−2λt)

= −2σV + 2bl exp(−2λt)
|eT PB|θ̂f(X, t)

|eT PB|θ̂f(X, t) + l exp(−2λt)
. (E8)

Applying the inequality a
a+b

6 1, ∀a > 0, b > 0 or ∀a > 0, b > 0, to (E8), we get V̇ 6 −2σV + 2bl exp(−2λt). Thus, using

Lemma 7, we obtain V (t) 6
(
V (0) + bl

λ−σ

)
exp(−2σt). Owing to (E2), we conclude that

eT Pe 6
(

V (0) +
bl

λ− σ

)
exp(−2σt),

b

γ
exp(−2σt)θ̃2 6

(
V (0) +

bl

λ− σ

)
exp(−2σt), (E9)

which further implies that ‖e‖ 6
√

V (0)+ bl
λ−σ

λmin(P )
exp(−σt), |θ̃| 6

√
γ

(
V (0)+ bl

λ−σ

)

b
. Clearly, it can be seen that the tracking

error converges to zero exponentially, and the convergence rate is not less than σ. Moreover, it follows that the parameter

estimate θ̂(t) is bounded. By Assumption 1, it is shown that X is bounded. Examining (7), we obtain the boundedness of

f(X, t). Next, we will prove u(t) is bounded. Using (9) and then applying Lemma 8, we get

|u(t)| 6 θ̂2f2(X, t)
|eT PB|

eT PB tanh [l−1eT PB exp(2λt)] θ̂f(X, t) + l exp(−2λt)

6 θ̂2f2(X, t)
eT PB tanh

[
l−1eT PB exp(2λt)

]
+ κl exp(−2λt)

eT PB tanh [l−1eT PB exp(2λt)] θ̂f(X, t) + l exp(−2λt)

= θ̂f(X, t)
eT PB tanh

[
l−1eT PB exp(2λt)

]
θ̂f(X, t)

eT PB tanh [l−1eT PB exp(2λt)] θ̂f(X, t) + l exp(−2λt)

+κθ̂2f2(X, t)
l exp(−2λt)

eT PB tanh [l−1eT PB exp(2λt)] θ̂f(X, t) + l exp(−2λt)
, (E10)

which leads to |u(t)| 6 θ̂f(X, t) + κθ̂2f2(X, t). Noting the boundedness of θ̂ and f(X, t), we can obtain the boundedness of

u(t). Therefore, all the closed-loop signals are bounded. This completes the proof.
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Appendix F Simulation results
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Figure F1 (a) plant states and reference signals x, xd (top), ẋ, ẋd (bottom); (b) tracking errors e1, e2; (c) parameter

estimate θ̂; (d) designed input u


