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Dear editor,
Distributed state estimation is very important in
distributed sensor networks (DSNs) [1]. The con-
sensus estimation can make the sensor networks
achieve global consistency according to the data of
all nodes [2]. It is very useful for the state estima-
tion of DSNs. The fusion center and full connec-
tion between network nodes are not required. The
information only exchanges between the neighbor-
ing nodes, which eliminates the need of local ob-
servability, and the stability of the state estima-
tion can be guaranteed by the global observabil-
ity. These characteristics lead to a simplified net-
work topology, enhanced flexibility and robustness
of the network structure. An effective approach
to consensus estimation is consensus on informa-
tion (CI) proposed in [3], and the stability is also
proved. In addition, there are other distributed
state estimation methods such as [4, 5]. However,
measurement outliers with the heavy-tailed fea-
ture occur relatively often in practice and they
may cause the divergence of estimates of states.
The consideration of this problem is absent in the
consensus approaches. Recently, some robust fil-
ters using the Student-t distribution and varia-
tional Bayesian (VB) method are proposed to deal
with the heavy-tailed measurement noise [6–8].

We propose a novel distributed consensus fil-
ter to deal with the heavy-tailed measurement
noise for sensor networks. We model the measure-
ment noise of each sensor node as the multivariate

Student-t distribution rather than the Gaussian
distribution. The Student-t distribution can be
constructed by a Gaussian variable and a Gamma
variable with an auxiliary parameter. Since the
sufficient statistic of the parameter and the state of
each sensor node are coupled, an iterative solution
of VB formula is applied to approximate the joint
posterior density. Each iteration resembles the dis-
tributed CI filter. Simulation results demonstrate
that the proposed method outperforms the con-
ventional distributed CI filter.

Principles of the proposed method. A two-tuple
(N ,A) can be used to represent the DSN, where
N means the set of sensor nodes, and A ⊆ N ×N
is the set of connections between nodes. For each
node i ∈ N , N i is the set of its neighbors. That

is N i ∆
= {j : (j, i) ∈ A}. A linear dynamic system

is considered here.

xk+1 = Fkxk + wk, (1)

zik = Hi
kxk + rik, i ∈ N , (2)

where xk is the n-dimension state vector, Fk is
the state matrix, wk ∼ N(0, Qk) is the Gaussian
process noise with zero mean and covariance Qk,
zik is the d-dimension measurement vector of sen-
sor node i, Hi

k is the measurement matrix, and
rik is the measurement noise. Let the informa-

tion matrix Ωk
∆
= P−1

k and the information vec-

tor qk
∆
= P−1

k x̂k, where x̂ denotes the estimation
of the state, and P denotes the covariance of the
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estimation error. In addition, the process noise

information matrix is defined by Wk
∆
= Q−1

k .
Unlike [7] that can only manage the estimate

of a single sensor with heavy-tailed measurement
noise, our derivation starts from the multi-sensor
scenario and further extends to the distributed
consensus filter. The proposed algorithm is de-
rived step by step as follows.

Suppose that Zi
k = {zi1, z

i
2, . . . , z

i
k} is the set

of measurements of the node i till time k and
Zk = {Zi

k, i ∈ N} is the set of measurements of
all sensor nodes till time k. We model the mea-
surement noise as a Student-t distribution zik|xk ∼
St(Hi

kxk, (Λ
i
k)

−1, νi), where Λi
k denotes the preci-

sion matrix and νi is degrees of freedom (DOF).
By introducing an auxiliary random variable

λi
k, the distribution of the measurement can be

determined by the following marginal density
p(zik|xk)=

∫

p(zik|xk, λ
i
k)dλ

i
k, where zik|xk, λ

i
k ∼

N(Hi
kxk, (λ

i
kΛ

i
k)

−1) is a Gaussian distribution and
λi
k ∼ G(νi/2, νi/2) is a Gamma distribution. The

aim of Bayesian filter is to estimate joint posterior
p(xk, λ

i
k|Zk), that is

p(xk, λ
i
k|Zk) ∝ (λi

k)
d

2 e−
λ
i

k

2
(zi

k
−Hi

k
xk)

T
Λi

k
(zi

k
−Hi

k
xk)

× e(xk−x̂k|k−1)
TΩk|k−1(xk−x̂k|k−1)(λi

k)
d

2
−1e−

ν
i
λ
i

k

2 .
(3)

Then the state posterior can be recovered by
marginalizing λi

k out of the joint posterior.
Because the density of xk and λi

k are cou-
pled, the VB approximation approach is utilized to
make the computation of the joint posterior den-
sity tractable. Let λk = {λi

k, i ∈ N} and assume
that xk and λk are independent, then the joint
posterior distribution can be approximated via the
free-form VB approximation by p(xk, λk|Zk) ≈
q(xk)q(λk), where q(xk) and q(λk) are approxi-
mating densities. The log marginal probability of
p(Zk) can be decomposed as

ln p(Zk) =L(q(xk)q(λk))

+ KL[q(xk)q(λk) ‖ p(xk, λk|Zk)], (4)

where L(·) is a lower bound on the log likelihood
function ln p(Zk) and the KL(·) means Kullback-
Leibler divergence (KLD). The definitions of the
lower bound and the KLD can be seen in [6]. By
maximizing lower bound, we can obtain the min-
imized KLD, which can result in an optimal so-
lution. Suppose all the elements λi

k(i ∈ N ) in
λk are independent and disjoint, thus we have
q(λk) =

∏

i∈N qi(λ
i
k). Then the joint posterior

distribution of xk and λk can be rewritten as

p(xk, λk|Zk) ≈ q(xk)
∏

i∈N

qi(λ
i
k). (5)

Maximization will be reached by

ln q(xk) =

∫

ln p(xk, λk,Zk)
∏

i∈N

qi(λ
i
k)dλk+C

=Eλ[ln p(xk, λk,Zk)]+C, (6)

ln qi(λ
i
k) =

∫

ln p(xk, λk,Zk)q(xk)

×
∏

j∈N ,j 6=i

qj(λ
j
k)dxkdλ

j
k+C

=Ex,λ̃[ln p(xk, λk,Zk)]+C, (7)

where C is a constant. Since the state and the pa-
rameter are inter-dependent, the iteration method
should be applied to solve these equations. The
solutions can be obtained via alternating between
them until settling at a fixed point.

Given the expected q(λi
k), ln q(xk) can be given

according to (6):

ln q(xk)

= −
1

2

∑

i∈N

tr(E[λi
k]Λ

i
k(z

i
k −Hi

kxk)(z
i
k −Hi

kxk)
T)

−
1

2
tr(Ωk|k−1(xk − x̂k|k−1)(xk − x̂k|k−1)

T)+C.

(8)
Similarly, ln q(λi

k) can be determined according to
(7):

ln q(λi
k) = −

1

2
λi
kγ̄

i
k

+

(

νi + d

2
− 1

)

lnλi
k −

νiλi
k

2
+ C, (9)

where

γ̄i
k = Ex[(z

i
k −Hi

kxk)
TΛi

k(z
i
k −Hi

kxk)]

= tr(Di
kΛ

i
k), (10)

Di
k = Ex[(z

i
k −Hi

kxk)(z
i
k −Hi

kxk)
T]

= Hi
kP

i
k(H

i
k)

T + (zik − ẑik)(z
i
k − ẑik)

T. (11)

The posterior distribution of λi
k is still a

Gamma, thus q(λi
k) is the density of the dis-

tribution G(aik, b
i
k) with expectation λ̄i

k= E[λi
k] =

∫

λi
kq(λ

i
k)dλ

i
k =

ai

k

bi
k

, where aik = νi+d
2 and bik =

νi+γ̄i

k

2 .
We derive the above formulations of the state

and parameter update in a centralized way for
node i and it can be extended to distributed es-
timation in a consensus way directly. Since the
posterior distribution of the state xi

k is a Gaus-
sian, q(xi

k) can be approximated by

Ωi
k,0 = Ωi

k|k−1 +
(

Hi
k

)T
L̄i
kH

i
k,

qik,0 = qi
k|k−1 +

(

Hi
k

)T
L̄i
kz

i
k,

(12)
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qik,l=
∑

j∈N i

πi,jqjk,l−1,Ω
i
k,l=

∑

j∈N i

πi,jΩj
k,l−1, (13)

where L̄i
k = λ̄i

kΛ
i
k, l = 0, 1, . . . , L − 1, L is the

consensus step, πi,j is the consensus weight with
πi,j > 0 and

∑

j∈N i πi,j = 1. The prediction dis-
tribution can be approximated with the Gaussian
density according to the prediction of the CI filter.

Ωi
k+1|k = Wk −WkFk

(

Ωi
k + FT

k WkFk

)−1
FT
k Wk,

(14)
x̂i
k+1|k = Fkx̂

i
k, q

i
k+1|k = Ωi

k+1|kx̂
i
k+1|k. (15)

The proposed distributed consensus filter
named distributed variational Bayesian Student-
t CI (DVBSCI) filter for DSNs with heavy-tailed
measurement noise is summarized in Table A1.

Simulations. A two-dimension tracking scenario
of 20 sensors (see Figure A1) is considered here.
Configurations of this scenario are given in Ap-
pendix A. We compare the proposed DVBSCI fil-
ter with the distributed CI filter in [3] with the
nominal R (DCI). Figure A2 shows the position
errors of x-axis in a typical run for sensor node 1.
It can be seen that the DCI filter is subject to
outliers obviously. However, the proposed method
is hardly affected by outliers. The averaged root
mean square error (RMSE) of the estimated po-
sition and velocity obtained by 100 Monte Carlo
runs are shown in Figures A3 and A4. It can be
seen that the convergence speed of the DVBSCI
filter is faster than that of the DCI filter and the
RMSE of the DVBSCI filter is significantly smaller
than that of the DCI filter. Therefore, with merely
the nominal R at hand, the proposed DVBSCI
filter performs significantly better than the DCI
filter. The RMSE of position and velocity with
different po are given in Table A2. Observe that
when po = 0, which means that the measurement
noise is the standard Gaussian with none heavy
tails, performance of the DVBSCI filter and the
DCI filter are almost the same. When po > 0, the
DVBSCI filter always outperforms the DCI filter.
It means the proposed method has a certain adap-
tive ability to adjust different heavy-tailed noises.

Conclusion. This article presents a novel con-
sensus filter for distributed state estimation with
the heavy-tailed measurement noise in DSNs. The
Student-t distribution of the measurement noise
is used to deal with the heavy-tailed noise. The
variational Bayesian is applied to iteratively esti-
mate the joint density of the state and the param-
eter under the framework of the consensus filter.
The consistency on information can be obtained

in the presence of the heavy-tailed measurement
noise. Simulation results verify that the proposed
method can perform better than the traditional
DCI filter. The merits of this method are that
the computational burden is small, and there is a
certain adaptability to the noise. However, it can-
not deal with situations where there are outliers
on both the state and measurement noises. In the
future, we will extend this framework to combine
other robust Student-t based estimation methods
with different consensus strategies.
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