• Supplementary File •

A Distributed Consensus Filter for Sensor Networks with Heavy-tailed Measurement Noise

Peng DONG^{*}, Zhongliang JING^{*}, Kai SHEN & Minzhe LI

School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, 200240, China

Appendix A

The target dynamic consists of the state $x = [p_x, \dot{p}_x, p_y, \dot{p}_y]^T$ which can be modeled by Eq. (1) according to

$$F_{k} = \begin{bmatrix} 1 \ T \ 0 \ 0 \\ 0 \ 1 \ 0 \ 0 \\ 0 \ 0 \ 1 \ T \\ 0 \ 0 \ 0 \ 1 \end{bmatrix}, Q_{k} = G_{k} \Delta G_{k}^{T}, \tag{A1}$$

where $\Delta = \text{diag}([w_x^2, w_y^2]), w_x^2 = w_y^2 = 0.1$, sample time T = 1s and

$$G_k = \begin{bmatrix} T^2/2 \ T & 0 & 0\\ 0 & 0 \ T^2/2 \ T \end{bmatrix}^T,$$
(A2)

The target trajectory (see Figure A1) is generated by the above model with the following true initial state

 $x_0 = [2600m, 20m/s, 3800m, 10m/s]^{\mathrm{T}}.$

In the simulations, initial states for filters are chosen randomly from $N(x_0, P_0)$ in each turn, where

$$P_0 = \text{diag}([50^2 \text{m}^2, 5^2 \text{m}^2/\text{s}^2, 50^2 \text{m}^2, 5^2 \text{m}^2/\text{s}^2]).$$

There are 20 sensor nodes in the sensor network of which the graphical topology representation is shown in Figure A1. The measurement model is given by Eq. (2) and

$$H_k = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$
 (A3)

Suppose we have a nominal measurement noise variance $R = \text{diag}([(10\text{m})^2, (10\text{m})^2])$, then the heavy-tailed measurement noise of sensor node *i* is generated by a mixture of Gaussian according to

$$r_k^i \sim \begin{cases} N(0, R), & \text{with probability } 1 - p_o \\ N(0, 100R), & \text{with probability } p_o \end{cases},$$
(A4)

where $p_o = 0.1$ is the probability of the measurement outlier. It is wildly used to evaluate the performance of Student-*t* based filters.

The consensus step is L = 3 and $\Lambda_k^i = R^{-1}$. The consensus weights of sensor nodes are set to $\pi^{i,j} = 1/|\mathcal{N}^i|$ if $j \in \mathcal{N}^i$ and $\pi^{i,j} = 0$ if $j \notin \mathcal{N}^i$. The DOFs of the proposed filter are set to $\nu^i = 15$. The fixed iteration step of VB is set to M = 4and it is enough to achieve convergence.

The proposed method is summarized in Table A1. Simulations results are given in Figures A2-A4 and Table A2.

^{*} Corresponding author (email: dongpengkty@sjtu.edu.cn, zljing@sjtu.edu.cn)

Peng DONG, Zhongliang JING, Kai SHEN, Minzhe LI, et al. Sci China Inf Sci $\ 2$

Update:

For each node $i \in \mathcal{N}$, set $\bar{\lambda}_k^{i,0} = 1$, given $\Omega_{k|k-1}^i$ and $q_{k|k-1}^i$, run VB iteration: for q = 1 to M(1) Obtain the local posterior information pair: $\bar{L}_k^{i,q} = \bar{\lambda}_k^{i,q-1} \Lambda_k^i$ $\Omega_{k,0}^{i,q} = \Omega_{k|k-1}^{i} + \left(H_k^i\right)^T \bar{L}_k^i H_k^i$ $q_{k,0}^{i,q} = q_{k|k-1}^{i} + \left(H_k^i\right)^T \bar{L}_k^i z_k^i$ (2) Consensus: for l = 1 to L $q_{k,l}^{i,q} = \sum_{i \in \mathcal{N}^i} \pi^{i,j} q_{k,l-1}^{j,q}, \ \Omega_{k,l}^{i,q} = \sum_{i \in \mathcal{N}^i} \pi^{i,j} \Omega_{k,l-1}^{j,q}$ end for set $q_k^{i,q} = q_{k,L}^{i,q}$ and $\Omega_k^{i,q} = \Omega_{k,L}^{i,q}$ (3) Evaluate sufficient statistic of measurement distribution: $\hat{x}_{k}^{i,q} = \Omega_{k}^{i,q} q_{k}^{i,q}, P_{k}^{i,q} = (\Omega_{k}^{i,q})^{-1}$ $\hat{z}_k^{i,q} = H_k^i \hat{x}_k^{i,q}$ $D_k^{i,q} = H_k^i P_k^{i,q} (H_k^i)^T + (z_k^i - \hat{z}_k^{i,q}) (z_k^i - \hat{z}_k^{i,q})^T$
$$\begin{split} & - \frac{1}{k} \sum_{k=1}^{n} (H_{k}^{i})^{*} + (z_{k}^{i})^{*} \\ & \bar{\gamma}_{k}^{i,q} = \operatorname{tr}(D_{k}^{i,q} \Lambda_{k}^{i}) \\ & a_{k}^{i,q} = \frac{\nu^{i} + d}{2}, \ b_{k}^{i,q} = \frac{\nu^{i} + \bar{\gamma}_{k}^{i,q}}{2} \\ & \bar{\lambda}_{k}^{i,q} = \frac{a_{k}^{i,q}}{b_{k}^{i,q}} \end{split}$$
end for Set $\hat{x}_{k}^{i} = \hat{x}_{k}^{i,M}, \ P_{k}^{i} = P_{k}^{i,M}, \ \Omega_{k}^{i} = \Omega_{k}^{i,M}, \ q_{k}^{i} = q_{k}^{i,M}.$ Prediction:

For each node $i \in \mathcal{N}$, compute $q_{k+1|k}^i$, $\Omega_{k+1|k}^i$ via Eq. (14) and Eq. (15).

p_o	DCI filter		DVBSCI filter	
	Position (m)	Velocity (m/s)	Position (m)	Velocity (m/s)
0	3.8471	0.9669	4.0887	1.0202
0.1	7.5076	1.2899	4.3926	1.0517
0.2	9.7272	1.5345	4.6203	1.0849
0.3	11.3421	1.7150	4.9282	1.1272
0.4	12.9377	1.9119	5.3105	1.1777

Table A2 RMSE of position and velocity for different p_o

Figure A1 Topology of the distributed sensor network and track of target.

Figure A2 Position errors of x-axis in a typical run for sensor node 1.

Figure A3 RMSE of position over time.

Figure A4 RMSE of velocity over time.