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Abstract In this paper, a distributed velocity sensor fault diagnosis scheme is presented for a formation of a

second-order multi-agent system with unknown constant communication time delays. An existing distributed

proportion-derivation (DPD) formation control law is adopted and a delay-independent condition is proposed

to guarantee the asymptotical formation stability of the formation system based on the Nyquist stability

criterion. Then a distributed fault diagnosis scheme is developed. In each agent, a distributed fault detection

residual generator (DFDRG) and a bank of distributed fault isolation residual generators (DFIRGs) are

designed based on the closed-loop model of the whole system. Each DFIRG is built up on the basis of a

reduced-order unknown input observer (UIO) which is robust to the fault of one neighboring agent. According

to the robust relationship between DFIRGs and faults, distributed fault isolation can be achieved. Conditions

are presented to guarantee that each agent is able to diagnose faults of itself and its neighbors despite the

disturbance of time delays. Finally, outdoor experimental results illustrate the effectiveness of the proposed

schemes.
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1 Introduction

In recent years, distributed formation control has attracted a great deal of attention in many fields

such as rescue, surveillance, and space exploration. Compared with single dynamic systems, the merits

of formation systems include reducing cost, increasing robustness, enhancing efficiency, and providing

redundancy [1]. A lot of research has been published on distributed formation control [2–10]. A detailed

survey of distributed formation control for multi-agent systems has been conducted in [1].

In practice, communication time delays are ubiquitous in formation systems because information trans-

mission between agents is always influenced by environment disturbances, communication congestions,

and limited transmission bandwidth [11, 12]. Moreover, communication time delays will inevitably de-

teriorate the stability of formation systems. Hence, it is important to study the formation stability

of multi-agent systems with time delays. Current approaches on consensus or stability of distributed

formations with time delays can be mainly categorized into time domain methods and frequency do-

main methods. In time domain methods, Lyapunov functions are always used to analyze consensus or
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formation stability of multi-agent systems [13–15]. Nonetheless, results derived based on time domain

methods are conservative owning to the conservation of Lyapunov functions. Different from time domain

methods, frequency domain methods are able to reduce the conservation of results. In frequency domain

methods, consensus or formation stability conditions are obtained by analyzing the poles of the closed-

loop transfer function of a multi-agent system through techniques such as Nyquist stability criterion and

τ -decomposition. Although some research has been carried out on consensus or formation stability of

first-order multi-agent systems with time delays by using frequency domain methods [16–19], that of

second-order multi-agent systems with time delays has not yet been closely investigated. In the paper,

the formation problem for a network of second-order multi-agent system with constant communication

time delays is considered. Under a distributed proportion-derivation (DPD) control law presented in [20],

a delay-independent condition on the asymptotical formation stability is proposed based on the Nyquist

stability criterion.

In the application of formation systems, the successful execution of tasks requires that the formation

can be maintained and each agent operates in a fault-free manner [21]. However, there are only a handful

of studies reported to date that consider fault diagnosis for formation systems. In [22], current fault

diagnosis schemes for formation systems were surveyed and were divided into two types, namely, central-

ized schemes [23] and distributed schemes [24–27]. In a centralized scheme, the fault diagnosis algorithm

operates in a single agent. The agent is able to diagnose faults in the whole system by using information

transmitted from all the other agents. It can be seen that the centralized fault diagnosis scheme suffers

from a single point of failure and less scalability [21]. In a distributed fault diagnosis scheme, the fault

diagnosis algorithm is implemented in all agents. Each agent is able to diagnose faults in itself and

its neighbors by using the information of itself and its neighbors. Compared with centralized schemes,

distributed fault diagnosis ones have shown promising advantages in terms of robustness, scalability, and

reliability [21].

However, up to now, there have been very few studies carried out on distributed fault diagnosis schemes

for formation systems. Existing distributed fault diagnosis schemes can be divided into two categories,

i.e., local-model based schemes and global-model based schemes. The design of a local-model based

scheme in each agent requires both the model of the agent and models of neighbors of the agent, while

that of a global-model based scheme requires the model of the whole system. Admittedly, a local-model

based scheme has less computation loads than a global-model based one, but the communication load of

a local-model based scheme is higher than that of a global-model based scheme. More concretely, in each

agent, a global-model based fault diagnosis scheme only needs output information of neighbors. However,

a local-model based scheme in each agent also requires the input besides the output of neighbors [26,27].

Furthermore, when there are communication time delays between agents, diagnosis results of local-model

based schemes will be impacted by both the delayed input and the delayed output of neighbors. Hence,

in case of time delays, it is more suitable to adopt a global-model based fault diagnosis scheme where

diagnosis results are not disturbed by the delayed input of neighbors.

In [21], a distributed fault detection scheme was proposed for a formation of mobile robots based on a

Kalman filter which was developed on the basis of the model of the whole system. In [28], an observer-

based distributed fault diagnosis strategy for a team of first-order robots was designed. The distributed

observer was developed based on the model of the whole system. A distributed fault diagnosis scheme

for a second-order multi-agent system with actuator faults was presented in [29]. In each agent, a bank

of distributed full-order unknown input observers (UIOs) were designed based on the closed-loop model

of the entire system to achieve distributed fault isolation. Similar results can also be found in [30] where

communication faults between agents were also considered. In [31], a distributed global-model based

fault diagnosis scheme was developed for a discrete-time second-order multi-agent system with actuator

faults and Gaussian white noises. A bank of distributed optimal robust observers were designed in each

agent to achieve distributed fault isolation. In [32], a reduced-order UIO based distributed fault isolation

scheme was developed for a general linear multi-agent system with actuator faults and disturbances based

on the closed-loop model of the whole system. Compared with full-order UIO-based schemes in [29–31],

the reduced-order UIO-based schemes in [32] has less computation loads.
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Most of the aforementioned studies on distributed fault diagnosis for formation systems are carried out

without considering communication time delays between agents. So far, there have been seldom attempts

to design distributed fault diagnosis schemes for formation systems with time delays. Communication

time delays increase the difficulties of designing fault diagnosis schemes and disturb fault diagnosis results

because time delays introduce nonlinear dynamics into the model of a formation system. Moreover,

most of the current distributed fault diagnosis schemes are illustrated only by simulations and lack

practical experimental verification. To the knowledge of the authors, so far, very few outdoor experimental

results on the distributed fault diagnosis for formation systems have been published. Motivated by these

considerations, in the paper, a distributed sensor fault diagnosis scheme is proposed for a formation of

a second-order multi-agent system subject to unknown constant communication time delays. In each

agent, a distributed fault diagnosis scheme consisting of a distributed fault detection unit and a bank of

distributed fault isolation units is developed. In the distributed fault detection unit, a distributed fault

detection residual generator (DFDRG) is developed based on the model of the whole system. In each

distributed fault isolation unit, a distributed fault isolation residual generator (DFIRG) is built up based

on a reduced-order UIO and the closed-loop model of the system. Each DFIRG is robust to the fault of

one neighboring agent. Moreover, each agent updates the states of its DFDRG and DFIRGs by using the

output of itself and the relative output between itself and its neighbors. It is obtained that despite time

delays, the proposed scheme is able to guarantee the accurate fault diagnosis results when sensor faults

are constants or have a period equal to the time delay.

The novel contributions of the paper are summarized as follows. (1) A delay-independent condition

on the formation stability of a second-order multi-agent system with constant time delays is proposed.

(2) New DFIRGs are proposed based on the reduced-order UIOs for formation systems with constant

time delays. (3) Conditions on the existence of the DFDRGs and DFIRGs are provided. (4) An outdoor

experiment is carried out to illustrate the effectiveness of the DPD control law and the distributed fault

diagnosis scheme based on a formation platform consisting of three quadrotors.

The rest of the paper is organized as follows. In Section 2, some preliminaries are presented and the

problem statement is given. The distributed fault diagnosis scheme is proposed in Section 3. Experimental

results are presented in Section 4. Finally, in Section 5, the conclusion is given.

Notation. In the paper, R represents the set of real numbers. R
n denotes the set of vectors with n

dimensions. 0N is a zero matrix with N ×N dimensions. 0m×n is a zero matrix with m× n dimensions.

IN is the identity matrix with N dimensions. 1N represents an N dimension vector with all elements

being 1. ‖r‖ denotes the Euclid norm of the vector r. WT is the transposition of the matrix W . W †

stands for the Moore-Penrose pseudoinverse of the matrix W . null(W ) is the basis matrix of the null

space of the matrix W . ρ{W } stands for the set of eigenvalues of the matrix W . diag{λ1, λ2, . . . , λN}

represents the diagonal matrix where elements in the diagonal place are λ1, λ2, . . . , λN . The symbol ⊗

represents the Kronecker product.
∧

stands for the logic and operation. A
⋃

B is the union of sets A

and B. A\B denotes the relative complement of set B in set A.

2 Problem statement and preliminaries

2.1 Some preliminaries

Let G = {V , E} denote the communication topology of the multi-agent system, where V = {1, . . . , N}

represents the set of agents and E ⊆ V × V represents the set of edges between agents. (i, j) ∈ E denotes

an edge from agent i to agent j which means that agent j can obtain information from agent i, and agent

i is called a neighbor of agent j. Define Ni ⊆ V as the set of neighbors of agent i. |Ni| is the cardinality

of the set Ni. N̄i = Ni

⋃

{i} represents the set including the ith agent and the neighbors of the ith agent.

Let matrix Ag = [aij ] be the adjacent matrix of G, where aii = 0, aji > 0 if and only if (i, j) ∈ E and

aji = 0 if (i, j) 6∈ E for i, j = 1, 2, . . . , N . Let the diagonal matrix Dg = [dij ] be the degree matrix of G,

where dii =
∑N

j=0 aij , and dij = 0 if i 6= j, for i, j = 1, 2, . . . , N . The Laplacian matrix Lg of G is defined

as Lg = Dg −Ag. Some properties of the Kronecker product are (A ⊗B)(C ⊗ D) = (AC) ⊗ (BD),
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(A+B)⊗C = A⊗C +B ⊗C, and A⊗ (B +C) = A⊗B +A⊗C.

2.2 Problem statement

Consider a multi-agent system consisting of N second-order integrators and the model of the ith agent is



























ξ̇i(t) = ζi(t),

ζ̇i(t) = ui(t),

yξi (t) = ξi(t),

yζi (t) = ζi(t) + fi(t),

(1)

where ξi ∈ R and ζi ∈ R represent the displacement and velocity of the ith agent, respectively. ui ∈ R

is the input of the ith agent. yξi ∈ R and yζi ∈ R denote the sensor measurement of displacement and

velocity of the ith agent, respectively. fi ∈ R is the velocity sensor fault of the ith agent. The dimension

of the second-order integrator considered in the paper is one, and results of agents with higher dimensions

can be simply extended from results here.

The formula of fi(t) is

fi(t) =

{

0, t < Ti,

χi(t− Ti), t > Ti,
(2)

where Ti ∈ R is the time instant when fault occurs in the ith agent. χi(t) ∈ R is the amplitude of the

fault in the ith agent at time instant t.

Let r(t) ∈ R be the given trajectory of the multi-agent system. Define d = [d1, d2, . . . , dN ]T as the

formation vector of the multi-agent system, where di ∈ R is the relative distance between the ith agent

and the virtual leader. Some assumptions are required in the paper.

Assumption 1. The communication topology of the system is undirected and connected.

Remark 1. Under Assumption 1, according to [3], the Laplacian matrix Lg is symmetrical and the

eigenvalues of Lg satisfy 0 = λ1 < λ2 6 · · · 6 λN , where λi ∈ ρ{Lg}, i ∈ {1, 2, . . . , N}.

Assumption 2. The first-order and second-order derivatives of the given trajectory exist.

Define the tracking error of the ith agent as ei(t) = r(t)+di− ξi(t). The definition of the asymptotical

formation stability is described as follows.

Definition 1 (Asymptotical formation stability [33]). Given a multi-agent system with communication

topology G and agents described as (1), the formation is said to be asymptotically stable if for any initial

conditions, limt→∞ ei(t) = 0 holds, i = 1, 2, . . . , N .

According to Assumption 2 and [20], the following DPD controller can be designed for the ith agent

when there is no fault.

ui(t) = k1[r(t) + di − yξi (t)] + k3[ṙ(t)− yζi (t)] + k2
∑

j∈Ni

aij

[

yξj (t− τ)− dj − yξi (t− τ) + di

]

+ k4
∑

j∈Ni

aij

[

yζj (t− τ)− yζi (t− τ)
]

+ r̈(t),
(3)

where i = 1, 2, . . . , N . k1 > 0, k2 > 0, k3 > 0, and k4 > 0 are parameters to be designed. τ > 0 is the

constant communication time delay. It is assumed that yξi (t− τ) = 0 and yζi (t− τ) = 0 hold when t 6 τ ,

i = 1, 2, . . . , N .

Note that in [20], the asymptotical formation stability conditions are presented without considering

time delays. The following theorem presents a delay-independent condition on the asymptotical stability

of the formation system with time delays.

Lemma 1. Given a multi-agent system with the communication topology G and agents described as

(1), under the DPD control law (3), when there is no sensor fault, the asymptotical formation stability

can be achieved for any finite time delay τ if k1 > k2λN and k23 − 2k1 − k24λ
2
N > 0 hold.
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Figure 1 (Color online) The framework of the distributed fault diagnosis scheme for the formation system with time

delays.

Proof. Please refer to Appendix A.

The objective of the paper is to design a distributed fault diagnosis scheme for a multi-agent system

with constant time delays such that each agent in the system is able to diagnosis sensor faults of itself

and its neighbors. Assume that there is only one velocity sensor fault in the multi-agent system at

one moment. In order to reduce communication loads and decrease the influence of the time delays, a

global-model based distributed fault diagnosis scheme is designed. The framework of the distributed fault

diagnosis scheme for the multi-agent system is described in Figure 1.

In each agent, the distributed fault diagnosis scheme consists of a distributed fault detection unit and a

bank of the distributed fault isolate units. The distributed fault detection unit includes a DFDRG which

is developed based on a Luenberger observer and the closed-loop model of the entire system. According

to the results of the distributed fault detection unit, each agent is able to detect faults of itself and its

neighbors. In each distributed fault isolation unit, a DFIRG is a reduced-order UIO which is designed

according to the closed-loop model of the entire system. The residual of each DFIRG is robust to the

fault of one neighboring agent and sensitive to faults of other neighboring agents. For instance, the

residual in the distributed fault isolation unit of the ith agent for the jth agent is robust to the fault of

the jth agent and is sensitive to faults of other agents. According to the relationship of sensitivity (or

robustness) between residuals and faults, each agent is able to isolate faults of its neighbors by combining

the residuals of DFIRGs in the agent.

Note that in each agent, all information used to update states of the DFDRG and DFIRGs is the

output of the agent and relative output between the agent and the neighbors of the agent, which is same

as the information used in the DPD control law. It is obvious that this global-model based scheme has

very few communication loads, which is suitable for the case when time delays exist.

3 Distributed fault diagnosis

In this section, a global-model based distributed fault diagnosis scheme for a multi-agent system with

sensor faults and time delays is proposed. Firstly, the closed-loop model of the whole system is obtained.

Then based on the model, the distributed fault detection and isolation schemes are designed.
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According to (1) and (3), the closed-loop model of the ith agent is



























ξ̇i(t) =ζi(t),

ζ̇i(t) =− k1ξi(t)− k3ζi(t) + k2
∑

j∈Ni

aij [ξj(t− τ)− ξi(t− τ)] + vi(t)− k3fi(t)

+ k4
∑

j∈Ni

aij [ζj(t− τ)− ζi(t− τ)] + k4
∑

j∈Ni

aij [fj(t− τ)− fi(t− τ)],

(4)

where ξi(t − τ) = 0, ζi(t − τ) = 0, and fi(t − τ) = 0 hold when t 6 τ , i = 1, 2, . . . , N . vi(t) ∈ R is the

input of the closed-loop model of the ith agent and the formula of vi(t) is

vi(t) = k1[r(t) + di] + k2
∑

j∈Ni

aij [di − dj ] + k3ṙ(t) + r̈(t). (5)

Let x = [ξ1, ξ2, . . . , ξN , ζ1, ζ2, .., ζN ]T, v = [v1, v2, . . . , vN ]T, f = [f1, f2, . . . , fN ]T, and yi(t) = [yξi (t),

yξi1(t− τ)−yξi (t− τ), . . . , yξi|Ni|
(t− τ)−yξi (t− τ), yζi (t), y

ζ
i1
(t− τ)−yζi (t− τ), . . . , yζi|Ni|

(t− τ)−yζi (t− τ)]T.

Note that yi(t) only includes the sensor measurement of the ith agent and the relative output between

the ith agent and the neighbors of the ith agent.

Then the closed-loop dynamic model of the multi-agent system is
{

ẋ(t) = A1x(t) +A2x(t− τ) +Bv(t) +E1f(t) +E2f(t− τ),

yi(t) = Ci,1x(t) +Ci,2x(t− τ) + Γi,1f(t) + Γi,2f(t− τ),
(6)

where

A1 =

[

0N IN

−k1IN −k3IN

]

, A2 =

[

0N 0N

−k2Lg −k4Lg

]

, B =

[

0N

IN

]

, E1 =

[

0N

−k3IN

]

, E2 =

[

0N

−k4Lg

]

,

Ci,1 =













iTi

0|Ni|×2N

iTi+N

0|Ni|×2N













, Ci,2 =





































01×2N

iTi1 − iTi
...

iTi|Ni|
− iTi

01×2N

iTi1+N − iTi+N

...

iTi|Ni|
+N − iTi+N





































, Γi,1 =









0(|Ni|+1)×N

îTi

0|Ni|×N









, Γi,2 =





















0(|Ni|+1)×N

01×N

îTi1 − îTi
...

îTi|Ni|
− îTi





















.

Moreover, ik and îk are the kth columns of the identity matrix I2N and IN , respectively. im is the index

of the mth neighbors of the ith agent, m = 1, 2, . . . , |Ni|.

3.1 Distributed fault detection

In this subsection, a DFDRG is designed based on the closed-loop model of the system. Then a distributed

fault detection logic is presented.

According to (6), the following DFDRG of the ith agent is developed based on the a Luenberger

observer.
{

˙̂x0
i (t) = (A1 +A2)x̂

0
i (t) +Bv(t) +G0

i [yi(t)− (Ci,1 +Ci,1)x̂
0
i (t)],

r0
i (t) = yi(t)− (Ci,1 +Ci,2)x̂

0
i (t),

(7)

where x̂0
i ∈ R

2N is the states of the DFDRG in the ith agent. r0
i ∈ R

2|Ni|+2 is the residual of the ith

agent. G0
i is the parameter to be designed.

Define the state estimation error of the DFDRG in the ith agent as e0i (t) = x(t)− x̂0
i (t). The following

theorem presents the condition on the convergence of the state estimation error.
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Theorem 1. When there is no sensor faults, given a multi-agent system with communication topology G

and agents described as (6), there exists a matrixG0
i such that the state estimation error e0i (t) approaches

to zero asymptotically if the following two conditions are satisfied.

(1) The pair (A1 +A2,Ci,1 +Ci,2) is detectable.

(2) The closed-loop system (6) is asymptotically stable.

Proof. According to (6) and (7), it follows that

ė0i (t) =ẋ(t)− ˙̂x0
i (t) = [(A1 +A2)−G0

i (Ci,1 +Ci,2)]e
0
i (t) + (A2 −G0

iCi,2)[x(t− τ)− x(t)].

Since (A1 + A2,Ci,1 + Ci,2) is detectable, there exists a matrix G0
i such that (A1 +A2) −G0

i (Ci,1

+Ci,2) is stable. When there is no sensor fault, under the assumption that the system is stable, it follows

that

lim
t→∞

x(t) =

[

r(t)

ṙ(t)

]

⊗ 1N +

[

d

0N×1

]

. (8)

Furthermore, it can be obtained that

lim
t→∞

A2[x(t− τ) − x(t)] =

([

0 0

−k2 −k4

]

⊗Lg

)([

r(t) − r(t− τ)

ṙ(t)− ṙ(t− τ)

]

⊗ 1N

)

= 02N×1,

lim
t→∞

Ci,2[x(t− τ) − x(t)] = 0(2|Ni|+2)×1.

(9)

Then it is obvious that limt→∞ e0i (t) = 0(2|Ni|+2)×1. This ends the proof.

Remark 2. Note that condition (2) in Theorem 1 is introduced to eliminate the disturbance of x(t−

τ)−x(t). Without condition (2), e0i (t) may not converge to zeros even if there are no faults, which means

that fault detection cannot be achieved. Moreover, condition (2) can be achieved according to Lemma 1.

Define J0
i (t) = ‖r0

i (t)‖ as the fault detection evaluation function of the ith agent. Let J0
i,th ∈ R be

the fault detection threshold of the ith agent. The fault detection logic of the ith agent is designed as

Algorithm 1.

Algorithm 1 Fault detection logic of the ith agent

if J0
i (t) > J0

i,th then

There is a fault in the system.

else

There is no fault in the system.

end if

Remark 3. Note that it is very complex to set the value of J0
i,th in practice. When there are no model

uncertainties, disturbances, and noises, J0
i,th can be set to be zero. Otherwise, the value of the threshold

should be determined according to the fault detection rate, disturbances, uncertainties, and noises of

the system. The interested readers may refer to [34, 35] for more approaches to design fault detection

thresholds.

3.2 Distributed fault isolation

In this subsection, a distributed fault isolation scheme is proposed for the formation system. As described

in Figure 1, in each agent, a bank of DFIRGs are designed based on reduced-order UIOs and the closed-

loop model of the multi-agent system. The residual in each DFIRG of an agent is robust to one faulty

neighbor and is sensitive to the other faulty neighbors. According to the relationship of sensitivity (or

robustness) between residuals and faults, fault isolation logic is developed.

According to (6), given an agent i, provided that a sensor fault occurs in the kth agent, where k ∈ Ni,

the closed-loop dynamic model of the whole system is
{

ẋk
i (t) = A1x

k
i (t) +A2x

k
i (t− τ) +Bv(t) +Ek

1fk(t) +Ek
2fk(t− τ),

yi(t) = Ci,1x(t) +Ci,2x(t− τ) + Γk
i fk(t− τ),

(10)
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where xk
i ∈ R

2N is the state of of the whole system when there is a fault in the kth agent. fk(t− τ) ∈ R

is the delayed fault of the kth agents. Ek
1 is the kth column of E1 and represents the direction of fk(t) in

the dynamic equation. Ek
2 is the kth column of E2 and stands for the direction of fk(t−τ) in the dynamic

system. Γk
i is the kth column of Γi,2 and denotes the direction of fk(t− τ) in the output equation.

Remark 4. It can be seen from (10) that the dynamic equation and output equation are all disturbed

by time delays, which increases the challenge of designing distributed fault diagnosis schemes. Moreover,

the sensor fault of the kth agent disturbs both the dynamic equation and the output equation in (10),

which makes the system more complicated.

In order to reduce computation loads of each agent, reduced-order UIOs are used to designed DFIRGs.

According to [36], before designing reduced-order UIOs for (10), the output information which is directly

disturbed by fk(t− τ) should be removed firstly.

Define a matrix U
k,0
i = {null[(Γk

i )
T]}T. It is obvious that Uk,0

i Γk
i = 0. Let yk

i (t) = U
k,0
i yi(t) be the

new output. The new dynamic equation and output equation for the ith agent are obtained as follows.

{

ẋk
i (t) =A1x

k
i (t) +A2x

k
i (t− τ) +Bv(t) +Ek

1 fk(t) +Ek
2 fk(t− τ),

yk
i (t) =Ck

i,1x(t) +Ck
i,2x(t− τ),

(11)

where yk
i ∈ R

2Ni+1 is the new output which is not perturbed by the fault of the kth agent. Moreover, it

follows that Ck
i,1 = U

k,0
i Ci,1 and Ck

i,2 = U
k,0
i Ci,2.

Remark 5. Owning to fk(t− τ), the relative output yζk(t− τ) − yζi (t− τ) should be deleted so that a

decoupled residual generator can be designed. However, in the case of actuator fault, there is no need to

delete any relative output information. The deletion of one output signal makes the design of diagnosis

scheme for sensor faults more difficult than that for actuator faults.

According to [36], the following reduced-order UIO based DFIRG can be designed.

{

żk
i (t) =F k

i z
k
i (t) +Mk

i v(t) + Sk
i yi(t),

rk
i (t) =Jk

i z
k
i (t) +Hk

i yi(t),
(12)

where k ∈ Ni. zk
i ∈ R

2N−1 and rk
i (t) ∈ R

2Ni are the state and residual of DFIRG, respectively. F k
i ,

Mk
i , S

k
i , J

k
i , and Hk

i are parameters to be designed.

Define the state estimation error of (12) as eki (t) = Nk
i x

k
i (t)− zk

i (t), where N
k
i = [null((Ek

i )
T)]T and

Ek
i = Ek

1 +Ek
2 . The following definition can be obtained.

Definition 2. The residual of the DFDRG (12) is said to be decoupled from a faulty agent k if eki (t)

approaches to zeros asymptotically regardless of the presence of fk(t) and fk(t− τ).

The following theorem presents conditions to guarantee that rk
i is decoupled from fk(t) and fk(t− τ)

and provides the design method of the parameters in (12).

Theorem 2. Given a system (10), let Ek
i = Ek

1 +Ek
2 . Define U

k,0
i = {null[(Γk

i )
T]}T, Ck

i,1 = U
k,0
i Ci,1,

Ck
i,2 = U

k,0
i Ci,2, and Ck

i = Ck
i,1 +Ck

i,2. The residual rk
i (t) in (12) is decoupled from the faulty agent k,

i = 1, 2, . . . , N , k ∈ Ni, if the following conditions are satisfied.

(1) rank (Ck
i E

k
i )=rank (Ek

i );

(2) rank [sI2N − (A1 + A2) E
k
i

C
k
i

0
]=2N + rank(Ek

i ), ∀s ∈ C, Re(s) > 0;

(3) The amplitude of the fault χk(t) in the kth agent is a constant or the period of χk(t) is equal to τ ;

(4) The closed-loop system (6) is asymptotically stable.

Moreover, parameters of the DFIRG (12) can be designed as follows.

Nk
i = [null((Ek

i )
T)]T, (Ek

i )
† = [(Ek

i )
T(Ek

i )]
−1(Ek

i ), (Nk
i )

† = (Nk
i )

T[(Nk
i )(N

k
i )

T]−1,

Ak
i,11 = Nk

i (A1 +A2)(N
k
i )

†, Ak
i,12 = Nk

i (A1 +A2)E
k
i ,

U
k,1
i = (Ck

i E
k
i )

† = [(Ck
i E

k
i )

T(Ck
i E

k
i )]

−1(Ck
i E

k
i )

T, U
k,2
i = [null((Ck

i E
k
i )

T)]T,

F k
i = Ak

i,11 −Ak
i,12U

k,1
i Ck

i (N
k
i )

† −Gk
iU

k,2
i Ck

i (N
k
i )

†, Mk
i = Nk

i B,

Sk
i = Ak

i,12U
k,1
i U

k,0
i +Gk

iU
k,2
i U

k,0
i , Jk

i = −U
k,2
i Ck

i (N
k
i )

†, Hk
i = U

k,2
i U

k,0
i ,

(13)
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where Gk
i is a matrix such that F k

i = Ak
i,11 −Ak

i,12U
k,1
i Ck

i (N
k
i )

† −Gk
iU

k,2
i Ck

i (N
k
i )

† is stable.

Proof. Let ∆xk
i (t) = xk

i (t− τ)− xk
i (t), ∆fk(t) = fk(t− τ)− fk(t). According to (11), it follows that

{

ẋk
i (t) =(A1 +A2)x

k
i (t) +Bv(t) +Ek

i fk(t) +A2∆xk
i (t) +Ek

2∆fk(t),

yk
i (t) =Ck

i x(t) +Ck
i,2∆xk

i (t).
(14)

Let T k
i = [(Nk

i )
T ((Ek

i )
†)T]T, (T k

i )
−1 = [(Nk

i )
† Ek

i ], x̃
k
i = T k

i x
k
i = [(x̃k

i,1)
T (x̃k

i,2)
T]T. By using T k

i ,

Eq. (14) can be transformed into the following equation.






































[

˙̃xk
i,1(t)

˙̃xk
i,2(t)

]

=

[

Ak
i,11 Ak

i,12

Ak
i,21 Ak

i,22

][

x̃k
i,1(t)

x̃k
i,2(t)

]

+

[

Nk
i B

(Ek
i )

†B

]

v(t) +

[

0(2N−1)×1

1

]

fk(t)

+ T k
i A2∆xk

i (t) + T k
i E

k
2∆fk(t),

yk
i (t) =

[

Ck
i (N

k
i )

† Ck
i E

k
i

]

[

x̃k
i,1(t)

x̃k
i,2(t)

]

+Ck
i,2∆xk

i (t).

(15)

where
[

Ak
i,11 Ak

i,12

Ak
i,21 Ak

i,22

]

= T k
i (A1 +A2)(T

k
i )

−1. (16)

According to the formula of Uk,1
i and U

k,2
i , it follows that

{

U
k,1
i yk

i (t) =U
k,1
i Ck

i (N
k
i )

†x̃k
i,1(t) + x̃k

i,2(t) +U
k,1
i Ck

i,2∆xk
i (t),

U
k,2
i yk

i (t) =U
k,2
i Ck

i (N
k
i )

†x̃k
i,1(t) +U

k,2
i Ck

i,2∆xk
i (t).

(17)

By combing the dynamic of x̃k
i,1 and (17), it follows that















˙̃xk
i,1(t) = [Ak

i,11 −Ak
i,12U

k,1
i Ck

i (N
k
i )

†]x̃k
i,1(t) +Ak

i,12U
k,1
i yk

i (t) +Nk
i Bv(t)

+Nk
i E

k
2∆fk(t) + (Nk

i A2 −Ak
i,12U

k,1
i Ck

i,2)∆xk
i (t),

U
k,2
i yk

i (t) = U
k,2
i Ck

i (N
k
i )

†x̃k
i,1(t) +U

k,2
i Ck

i,2∆xk
i (t).

(18)

According to the second condition in Theorem 2 and [36], the pair [Ak
i,11 − Ak

i,12U
k,1
i Ck

i (N
k
i )

†,

U
k,2
i Ck

i (N
k
i )

†] is detectable. Hence, there exists a matrix Gk
i such that the matrix F k

i is stable. Then,

parameters in (12) can be designed.

According to (12) and (18), it can be obtained that
{

ėki (t) =F k
i e

k
i (t) + (Nk

i A2 −Ak
i,12U

k,1
i Ck

i,2 −Gk
iU

k,2
i Ck

i,2)∆xk
i (t) +Nk

i E
k
2∆fk(t),

rk
i (t) =− Jk

i e
k
i (t) +U

k,2
i Ck

i,2∆xk
i (t).

(19)

Since the system (6) is asymptotically stable, it follows that

lim
t→∞

xk
i (t) =

[

r(t)

ṙ(t)

]

⊗ 1N +

[

d

0N×1

]

+Ωχk(t), (20)

where Ω is a matrix with appropriate dimensions.

If χk(t) is a constant or the period of χk(t) is equal to τ , it follows that

lim
t→∞

A2[x
k
i (t− τ) − xk

i (t)] =

([

0 0

−k2 −k4

]

⊗Lg

)([

r(t) − r(t− τ)

ṙ(t)− ṙ(t− τ)

]

⊗ 1N

)

= 02N×1,

lim
t→∞

Ck
i,2[x

k
i (t− τ) − xk

i (t)] = U
k,0
i Ci,2[x

k
i (t− τ)− xk

i (t)] = 0(2|Ni|+1)×1,

lim
t→∞

Nk
i E

k
2∆fk(t) = 0(2N−1)×1.

(21)

According to (19) and (21), when a sensor fault only occurs in the kth agent, it follows that limt→∞ eki (t)

= 0(2N−1)×1 and limt→∞ rk
i (t) = 02|Ni|×1 hold. This ends the proof.
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Remark 6. According to (14), in order to design a residual generator which is robust to fk(t), the

residual must be decoupled from fk(t) and ∆fk(t). However, owning to the deletion of yζk(t−τ)−yζi (t−τ),

condition (2) in Theorem 2 is hardly satisfied if Ek
i is replaced with [Ek

i Ek
2 ]. Therefore, condition (3)

in Theorem 2 is introduced to eliminate the influence of ∆fk(t). However, in case of an actuator fault,

condition (3) is unnecessary, which means that there exists a residual generator decoupled from the

actuator fault regardless of the amplitude of the fault.

Remark 7. Condition (4) in Theorem 2 is introduced to guarantee the equalities in (21). When

the closed-loop model of the multi-agent system is not stable, equalities in (21) are not satisfied and

limt→∞ rk
i (t) is not equal to zero. In this case, rk

i is not decoupled from the faulty agent k, which means

that the distributed fault isolation cannot be achieved.

If a sensor fault occurs in the ith agent, the fault isolation can be achieved by using a simpler residual

generator as (22) which is designed based on the open-loop model, the input information, and the output

information of the ith agent.
{

˙̂xi
i(t) = Ai

ix̂
i
i +Bi

iui(t) +Gi
i[y

i
i(t)−Ci

i x̂
i
i(t)],

ri
i(t) = yi

i(t)−Ci
i x̂

i
i(t),

(22)

where i = 1, 2, . . . , N . x̂i
i = [ξ̂i ζ̂i]

T ∈ R
2 is the state estimation of the i agent. yi

i = [yξi yζi ] ∈ R
2 is the

output of the ith agent. ri
i ∈ R

2 is the residual of the i agent. The vale of Ai
i, B

i
i , and Ci

i are as follows.

Ai
i =

[

0 1

0 0

]

, Bi
i =

[

0

1

]

, Ci
i =

[

1 0

0 1

]

.

It is obvious that the pair (Ai
i,C

i
i) is observable. Gi

i is the parameter to be designed and satisfies that

Ai
i −Gi

iC
i
i is stable.

It can be seen from (22) that if there is no fault occurring in the ith agent, ‖ri
i(t)‖ approaches to zero

asymptotically. Otherwise, ‖ri
i(t)‖ approaches to a non-zero constant asymptotically.

Define Jk
i (t) = ‖rk

i (t)‖ and Jk
i,th ∈ R as the fault isolation evaluation function and the fault isolation

threshold of the ith agent for the kth agent, respectively, where i = 1, 2, . . . , N and k ∈ N̄i. After a fault

is detected, according to (12) and (22), the fault isolation logic in the ith agent is designed as Algorithm 2.

Algorithm 2 Fault isolation logic of the ith agent

if Ji
i (t) > Ji

i,th then

The ith agent is faulty.

else if ∃k ∈ Ni, ∀p ∈ Ni\{k}, [Jk
i (t) < Jk

i,th] ∧ [Jp
i (t) > J

p

i,th] then

The kth agent is faulty.

else if ∀k ∈ Ni, J
k
i (t) > Jk

i,th then

The faulty agent belongs to V\N̄i.

end if

Remark 8. In Algorithm 2, the relationship of sensitivity (or robustness) between residuals and faults is

used to isolate faults in neighbors. More concretely, for agent i, if there exists an residual rk
i , k ∈ Ni, such

that the evaluation function of rk
i is less than its corresponding threshold and the evaluation functions

of all the other residuals rp
i , p ∈ Ni \ {k}, are all larger than or equal to their corresponding thresholds,

then it can be identified that a fault occurs in the kth agent.

Remark 9. The value of Jk
i,th, k ∈ N̄i, can be determined according to the fault isolation rates,

uncertainties, disturbances, and noises of the system. The detailed design of the fault isolation thresholds

can also be found in [34, 35].

4 Experimental results

In this section, an experiment is conducted based on a formation platform consisting of three quadrotors,

which is described in Figure 2. In the experiment, the communication topology of three quadrotors
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1

2 3

Figure 2 (Color online) The picture of the formation

platform.

Figure 3 The communication topology of quadrotors.
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Figure 4 (Color online) The control framework of a quadrotor along x axis.

is set as Figure 3. The Laplacian matrix of the communication topology of three quadrotors is Lg =

[2,−1,−1;−1, 2,−1;−1,−1, 2]. The eigenvalues of Lg are λ1 = 0, λ2 = λ3 = 3.

According to [37], the dynamic model of a quadrotor can be regarded as linear and is decoupled along

x, y, and z axes when the quadrotor flyes in a hovering state and the rotation angles of the quadrotor

are small. Therefore, the control law and the fault diagnosis scheme for a quadrotor can be designed

along x, y, and z axes, respectively. In the experiment, we mainly consider distributed fault diagnosis

for quadrotors along x axis. The dynamic of a quadrotor along x is ξ̈i(t) = θi(t)g and Jxθ̈i(t) = uθ,i(t),

where i = 1, 2, 3. ξi ∈ R is the position of the ith quadrotor along x axis. θi ∈ R is the pitch angle of the

ith quadrotor. uθ,i ∈ R is the input of the ith quadrotor. Jx ∈ R is the rotation inertial of quadrotors

and g ∈ R is the gravity accelerator.

In the experiment, the control law of each quadrotor consists of two controllers, namely, the internal-

loop proportion-integration-derivation controller and the external DPD controller. The control frame of

the ith quadrotor along x axis is as Figure 4. In Figure 4, ζi ∈ R is the velocity of the ith quadrotor

along x axis. θset,i is the given pitch angle of the ith quadrotor. According to [38], the dynamic model

from θset,i to θi can be regarded as the proportion one. Therefore, the dynamic from ui to ξi can be

considered as a second-order integrator, which can be described as ξ̇i(t) = ζi(t) and ζ̇i(t) = ui(t).

In the experiment, three quadrotors are set to maintain a triangle and move along x axis in the x−O−y

plane with a constant height. The given trajectory along x axis of the system is r(t) = 43.5− 0.5t(m).

Then it follows that ṙ(t) = −0.5(m/s), r̈(t) = 0(m/s2). The formation vector is d = [0, − 5m, − 5m]T.

The control parameters in the experiment are k1 = 3, k2 = 0.17, k3 = 3, and k4 = 0.37. It is obvious

that k1 − k2λ2 = 2.49 > 0 and k23 − 2k1 − k24λ
2
2 = 7.4279 > 0 hold, which means that the formation can

be achieved with any finite time delays.

In the experiment, the time delay is implemented in a software way, which means that the neighboring

data used in the distributed control law and the distributed fault diagnosis scheme are delayed in the

micro-processors of quadrotors to simulate the time delay during the communication. The time delay is

set to be τ = 1 s. The total experimental time is 60.9875 s. In the experiment, assume that a sensor fault

with amplitude −2 m/s occurs in the first quadrotor at 655.2025 s. Parameters of fault detection residual

generators and fault isolation residual generators can be found in Appendix B. The fault detection
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Figure 5 (Color online) The formation results of all quadrotors. (a) The trajectories of three quadrotors; (b) the tracking

errors of three quadrotors.
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Figure 6 (Color online) The fault diagnosis results of all quadrotors. (a1) The distributed fault detection results in

quadrotor 1; (a2) the self-fault detection results in quadrotor 1; (a3) the distributed fault isolation results in quadrotor

1; (b1) the distributed fault detection results in quadrotor 2; (b2) the self-fault detection results in quadrotor 2; (b3) the

distributed fault isolation results in quadrotor 2; (c1) the distributed fault detection results in quadrotor 3; (c2) the self-fault

detection results in quadrotor 3; (c3) the distributed fault isolation results in quadrotor 3.

threshold of the ith agent is J0
i,th = 0.5, i = 1, 2, 3. Fault isolation thresholds are J1

1,th = J2
1,th = J3

1,th =

J iso
1,th = 0.5, J1

2,th = J2
2,th = J3

2,th = J iso
2,th = 0.5, and J1

3,th = J2
3,th = J3

3,th = J iso
3,th = 0.5. The formation

results of three quadrotors are shown in Figure 5. From Figure 5, the formation stability can be achieved

when there is no fault and the formation is damaged after the fault occurs.

The fault detection and fault isolation results are demonstrated in Figures 6. It can be shown from

the upper three subgraphs of Figures 6 that the fault can be detected by the all quadrotors according to
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Algorithm 1. Moreover, according to the other subgraphs and Algorithm 2, the fault can also be isolated

by three quadrotors. The video of the experimental process can be found at the webpages1).

5 Conclusion

In the paper, problems of formation control and distributed fault diagnosis for a second-order multi-agent

system with unknown constant time delays have been considered. Under an existing DPD control law,

the condition on the delay-independent asymptotical formation stability has been presented. Distributed

fault detection and isolation schemes have been designed and conditions on the existence of the schemes

have been provided. Experimental results have demonstrated the validation of the proposed schemes.
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Appendix A Proof of Lemma 1

Proof. The dynamic of the tracking error of the ith agent can be described as

ëi(t) = −k1ei(t) − k2
∑

j∈Ni

aij [ei(t− τ)− ej(t− τ)]− k3ėi(t) − k4
∑

j∈Ni

aij [ėi(t − τ)− ėj(t− τ)],

where i = 1, 2, . . . , N . It is also assumed that r(t− τ) = 0 and ṙ(t − τ) = 0 when t 6 τ .

Let e(t) = [e1(t), . . . , eN (t), ė1(t), . . . , ėN (t)]T. It follows that ė(t) = A1e(t) +A2e(t− τ) holds, where

A1 =

[

0 IN

−k1IN −k3IN

]

=

[

0 1

−k1 −k3

]

⊗ IN , A2 =

[

0 0

−k2Lg −k4Lg

]

=

[

0 0

−k2 −k4

]

⊗ Lg .

Because Lg is an Hermitian matrix, there exists an orthogonal matrix U such that UTLgU = diag{λ1, . . . , λN}. Let

T1 = I2 ⊗UT and T2 = [i1, iN+1, i2, iN+2, . . . , iN , i2N ]T, where ik is the kth column of the matrix I2N . It follows that

Ã1 = T2T1A1T
−1
1 T−1

2 = IN ⊗

[

0 1

−k1 −k3

]

, Ã2 = T2T1A2T
−1
1 T−1

2 = diag{λ1, . . . , λN} ⊗

[

0 0

−k2 −k4

]

.

Let ẽ = T2T1e. It can be derived that ˙̃e(t) = Ã1ẽ(t) + Ã2ẽ(t − τ). Furthermore, it follows that

η̇i(t) =

[

0 1

−k1 −k3

]

ηi(t) + λi

[

0 0

−k2 −k4

]

ηi(t− τ), (A1)

where i = 1, 2, . . . , N . ηi ∈ R
2 consists of the (2i − 1)th and (2i)th elements of ẽ.

The characteristic equation of the system (A1) is s2+ k3s+ k1+(k4s+ k2)λie−τs = 0. If all roots of the above equation

lie in the left half complex plane, the system (A1) is stable. Define a function Gi(s) as follows.

Gi(s) =
(k4s+ k2)λie−τs

s2 + k3s+ k1
, i = 1, 2, . . . , N. (A2)

Let s = jw, where j2 = −1 and w ∈ R. It follows that

Gi(jw) =
(k2 + jwk4)λie

−jwτ

k1 −w2 + jk3w
, i = 1, 2, . . . , N. (A3)
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Since k1 > 0 and k2 > 0, it follows that all roots of the equation s2 + k3s + k1 = 0 lie in the left half complex plane.

According to the Nyquist stability criterion and the literature 2)3), the number of the roots of s2 + k3s + k1 + (k4s +

k2)λie
−τs = 0 with positive real part is equal to the number of the times for which the Nyquist curve of Gi(jw) encloses

the point (−1, 0) as the w increases from 0 to ∞. Therefore, the condition on the asymptotical formation stability can be

gained by analyzing the characteristic of the Nyquist curve of Gi(jw).

According to (A3), the amplitude of Gi(jw) is

|Gi(jw)| =
λi

√

k22 + (wk4)2

√

(k1 − w2)2 + (wk3)2
, i = 1, 2, . . . , N. (A4)

When i = 1, it follows that λi = 0 and |Gi(jw)| = 0. It is obvious that the Nyquist curve of G1(jw) dose not enclose the

point (−1, 0) and the system (A1) is stable when i = 1. When i ∈ {2, 3, . . . , N}, since k1 > k2λN , it follows that k1 > k2λi

holds. Since k23 − 2k1 − k24λ
2
N

> 0, it is obvious that k23 − 2k1 − k24λ
2
i > 0 holds, where i = 2, 3, . . . , N . Then, the following

equation can be obtained.

w4 + (k23 − 2k1 − k24λ
2
i )w

2 + k21 − k22λ
2
i > 0, i = 2, 3, . . . , N. (A5)

According to (A4) and (A5), it can be obtained that |Gi(jw)| < 1 holds, where i = 2, 3, . . . , N . Hence, the Nyquist curve

of Gi(jw) dose not enclose the point (−1, 0), i = 1, 2, . . . , N . The system (A1) is stable when i = 2, 3, . . . , N . Overall, the

formation system is stable and the asymptotical formation stability is achieved. This ends the proof.
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0 0 0

0.0192 0.0970 0.0970

0.0970 0.9904 −0.0096

0.0970 −0.0096 0.9904

















,S
1
3 =

















3.0044 0.0000 3.0044 1.0000 01.0808

15.0000 0.0000 0.0000 1.0000 0 − 0.0000

22.2311 22.8398 −0.3043 −10.6504 0 − 5.3252

5.2692 8.2645 −3.2122 −2.2431 0 − 0.1788

5.1075 8.2645 0.1361 −2.2431 0 − 2.0644

















, J
1
3 =













−1.0000 1.0000 0 0 0

0 −1.0000 0.9904 −0.0980 −0.0980

0 1.0000 0 0 0

0 0 0.0000 −1.0000 1.0000













,

F
2
3 =

















−21.0000 −0.0000 5.0541 1.0000 5.0541

−0.0000 −15.0000 0.0000 −0.0000 −0.0000

−10.4794 −0.0000 −2.8595 −0.1612 2.8913

−2.0735 −0.0000 −0.1612 −3.0961 0.7738

−10.4794 −0.0000 2.8913 0.7738 −3.0444

















,M
2
3 =

















0 0 0

0 0 0

0.9904 0.0970 −0.0096

0.0970 0.0192 0.0970

−0.0096 0.0970 0.9904

















,H
2
3 =













0 0 1 0 0 0

0 −1 0 0 0 0

0 0 0 0 1 0

−1 0 0 0 0 0













,

S
2
3 =

















21.0000 −0.0000 21.0000 −10.1081 −5.0541 0

15.0000 0.0000 0.0000 1.0000 −0.00007 0

7.4086 −3.1304 10.3220 −3.3315 −0.8943 0

4.5599 2.8219 2.0423 0.3506 1.1379 0

6.4646 −0.5644 10.3220 −3.3315 −2.6276 0

















,J
2
3 =













−1.0000 1.0000 0 0 0

0 −1.0000 −0.0980 0.9904 −0.0980

0 0 −1.0000 0.0000 1.0000

0 1.0000 0 0 0













.
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