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1 Introduction

The leader-follower games have received much attention due to the wide applications in economic, social

science, political science and biology [1–8]. This kind of game is hierarchical due to the fact that the

leader knows the rational reaction of the follower and reveals first his strategy, while the follower does not

know the rational reaction of the leader and has to optimize his criterion for a given control of the leader.

In this paper, we are concerned with the stochastic leader-follower game of Itô’s type. The solution with

an open-loop information structure is applied to the game, where the players are committed to follow

a predetermined strategy or no state measurements are available. The leader is seeking a strategy, a

function of time only, that it expresses before the game starts knowing the follower’s rational reaction;

the follower will then minimize its cost function with its strategy, also a function of time only.

In the framework of the deterministic dynamics, the optimal strategy is studied in [9–11] and references

therein. It is shown that the open-loop strategy is in terms of three coupled and nonsymmetric Riccati

equations within the context of the linear quadratic game. Stochastic differential game is considered

in [12–16] where the controls do not enter into the diffusion term of the state dynamic. Ref. [17] considers

the leader-follower game with both state-dependent and control-dependent noise by solving the forward-

backward stochastic differential equation (FBSDE) and sufficient conditions to ensure the existence of

the Stackelberg strategy are given.

Considering the nature of past dependence for many practical problems, it is of great significance to

include time delay in the dynamic of the game into consideration [18–20]. Nash games for a class of

linear stochastic delay system are discussed in [21] where a strategy set is established in terms of matrix
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inequality by using Lyapunov-Krasovskii method and a non-convex optimization approach. To the best

of our knowledge, there is little literature on the leader-follower stochastic game with time delay. In

fact, the problem with delay becomes much more complex and difficult because it lacks of efficient tools

of stochastic analysis such as Itô’s formula to deal with the delay term. Moreover, since the problem is

infinite dimensional, no explicit solution exists and numerical solutions are very difficult to obtain [22–26].

In this paper, we study the open-loop solution of the leader-follower stochastic game governed by Itô’s

differential equation with delay appearing in the leader’s control. The open-loop strategy is explicitly

given in the form of the conditional expectation with respect to several symmetric Riccati equations,

by establishing the nonhomogeneous relationship between the forward variables and the backward ones

obtained in the optimization problems of both the follower and the leader. We point out that the approach

to find the open-loop solution in this paper is different from that in [17] but similar to [27] where the

explicit strategy has been obtained for the leader-follower deterministic game. Moreover, we overcome

the difficulty from both the stochastic Brownian motion and the time-delayed term in the leader’s control.

The rest of this paper is organized as follows. Section 2 formulates the stochastic leader-follower game

with time delay. The main results are shown and proved in Section 3. Section 4 gives some concluding

remarks.

2 Problem formulation

Consider the leader-follower stochastic game with the system dynamic

dx(t) =
[

Ax(t) +Bu(t) + Cw(t − h)
]

dt+
[

Āx(t) + B̄u(t) + C̄w(t− h)
]

dW (t),

x(0) = x0, w(s) = ω(s), s ∈ [−h, 0), (1)

and the corresponding cost functionals

J1(u,w) = E

[

∫ T

0

[

x′(t)Q1x(t) + u′(t)R1u(t)
]

dt+ x(T )′H1x(T )

]

, (2)

J2(u,w) = E

[

∫ T

0

x′(t)Q2x(t)dt+

∫ T−h

0

w′(t)R2w(t)dt + x(T )′H2x(T )

]

, (3)

where x(t) ∈ R
n is the state, u(t) ∈ R

k and w(t) ∈ R
s are the controls of the follower and the leader,

respectively. x0 ∈ R
n as well as ω(s) is the prescribed initial data, and h > 0 represents the constant

time delay. W (t) is a one-dimensional standard Brownian motion on a probability space (Ω,F , P ). The

information structure is given by a filtration {Ft}t>0, which is generated by W (·) and augmented by all

the P -null sets. E[·] means the mathematical expectation. A, B, C, Ā, B̄, C̄ are constant matrices with

compatible dimension. The matrices Q1, Q2, R1, R2, H1, H2 are positive semi-definite.

In this paper, we mainly consider the unique strategy. The detailed definition is given below.

Definition 1. The pair (u∗, w∗) = (Tw∗, w∗) provides a unique Stackelberg solution for the two-player

game if it satisfies the following conditions. First, for each w, there exists a unique u minimizing J1(u,w).

This implies that there exists a unique map T such that J1(Tw,w) 6 J1(u,w) for all u and for every w.

Second, there exists a unique w such that J2(Tw,w) 6 J2(Tw,w).

Our aim is to study the unique open-loop strategy which is a function of time only. This is different

from the closed-loop strategy which is a function of the time and the state of the game as well.

3 Main results

In this section, we state the unique open-loop strategy. Before giving the main results, the derivations

are shown in the first three subsections.
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3.1 Optimization problem of the follower

In view of the nature of the leader-follower game, the derivations begin with the optimization problem of

the follower which is a standard stochastic linear quadratic (LQ) optimal control problem for any choice

w(t) of the leader, i.e.,

min
u

J1(u,w)

s.t.

{

dx(t) =
[

Ax(t) +Bu(t) + Cw(t− h)
]

dt+
[

Āx(t) + B̄u(t) + C̄w(t− h)
]

dW (t),

x(0) = x0, w(s) = ω(s), s ∈ [−h, 0).

Following the maximum principle obtained in [17,28] for delay-free case, the optimal solution satisfies

that

0 = R1u(t) +B′p(t) + B̄′q(t), (4)

where (p(t), q(t)) is the solution to the following backward stochastic differential equation:

dp(t) = −
[

A′p(t) + Ā′q(t) +Q1x(t)
]

dt+ q(t)dW (t), p(T ) = H1x(T ). (5)

Since our aim is to discuss the existence and uniqueness of the solution to the leader-follower game,

the follower’s optimization problem minu J1(u,w) admits a unique solution for any w. In the case of

w(t − h) = 0 for t ∈ [0, T ], the problem is reduced to the standard LQ problem which also has a unique

solution. Define














−Ṗ1(t) = P1(t)A+A′P1(t) + Ā′P1(t)Ā−
[

P1(t)B + Ā′P1(t)B̄
]

×
[

R1 + B̄′P1(t)B̄
]−1[

B′P1(t) + B̄′P1(t)Ā
]

+Q1, P1(T ) = H1,

R1 + B̄′P1(t)B̄ > 0.

(6)

It has been shown that the equivalent condition is R1 + B̄′P1(t)B̄ > 0 for the unique solvability of the

LQ problem. Specifically, the following result can be found in Theorem 2.3 of [29].

Lemma 1. The LQ problem minu J1(u,w) subject to (1) with w(t − h) = 0 for t > 0 has a unique

optimal control for any initial condition x0 if and only if the Riccati differential equation (6) admits a

solution.

We now consider the leader-follower game, i.e., w(t − h) 6= 0 for t ∈ [0, T ]. Denote

γ1(t) , R1 + B̄′P1(t)B̄,

D(t) , A−Bγ−1
1 (t)

[

B′P1(t) + B̄′P1(t)Ā
]

,

D̄(t) , Ā− B̄γ−1
1 (t)

[

B′P1(t) + B̄′P1(t)Ā
]

,

¯̄D(t) , C̄′P1(t)
{

Ā− B̄γ−1
1 (t)

[

B′P1(t) + B̄′P1(t)Ā
]}

+ C′P1(t).

Lemma 2. Assume that the open-loop strategy exists and is unique, then u(t) admits a feedback form

as follows:

u(t) = −γ−1
1 (t)

{[

B′P1(t) + B̄′P1(t)Ā
]

x(t) +B′ζ1(t) + B̄′P1(t)C̄w(t− h) + B̄′ζ̄1(t)
}

, (7)

where P1(t) is the solution to the Riccati equation (6) and ζ1(t) satisfies

dζ1(t) = −
[

D′(t)ζ1(t) + D̄′(t)ζ̄1(t) +
¯̄D′(t)w(t − h)

]

dt+ ζ̄1(t)dW (t) (8)

with ζ1(T ) = 0.

Proof. Motivated by [30], there exists a nonhomogeneous relationship between p(t) and x(t) due to the

involvement of w which is denoted by

ζ1(t) , p(t)− P1(t)x(t), (9)
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where P1(t) is the solution to (6) and dζ1(t) = Υ(t)dt+ ζ̄1(t)dW (t) while Υ(t), ζ̄1(t) are to be determined

in the sequel. Applying Itô’s formula to (9) and comparing with (5) yield that

dp(t) = Ṗ1(t)x(t)dt + P1(t)
[

Ax(t) +Bu(t) + Cw(t − h)
]

dt

+P1(t)
[

Āx(t) + B̄u(t) + C̄w(t− h)
]

dW (t) + Υ(t)dt+ ζ̄1(t)dW (t)

= −
[

A′P1(t)x(t) +A′ζ1(t) + Ā′q(t) +Q1x(t)
]

dt+ q(t)dW (t), (10)

then

q(t) = P1(t)
[

Āx(t) + B̄u(t) + C̄w(t− h)
]

+ ζ̄1(t). (11)

Substituting (9) and (11) into the equilibrium condition (4) yields that

0 = R1u(t) +B′P1(t)x(t) +B′ζ1(t) + B̄′P1(t)
[

Āx(t) + B̄u(t) + C̄w(t− h)
]

+ B̄′ζ̄1(t)

=
[

R1 + B̄′P1(t)B̄
]

u(t) +
[

B′P1(t) + B̄′P1(t)Ā
]

x(t) +B′ζ1(t) + B̄′P1(t)C̄w(t − h) + B̄′ζ̄1(t). (12)

It is known that γ1(t) > 0 provided that the leader-follower game admits a unique solution by using

Lemma 1. Accordingly, the controller u can be formulated as (7).

Substituting (7) into (10) yields that

0 = Ṗ1(t)x(t) + P1(t)Ax(t) −
[

P1(t)B + Ā′P1(t)B̄
]

γ1(t)
−1[B′P1(t) + B̄′P1(t)Ā]x(t)

−
[

P1(t)B + Ā′P1(t)B̄
]

γ−1
1 (t)B′ζ1(t)−

[

P1(t)B + Ā′P1(t)B̄
]

γ−1
1 (t)B̄′P1(t)C̄w(t)

−
[

P1(t)B + Ā′P1(t)B̄
]

γ−1
1 (t)B̄′ζ̄1(t) + P1(t)Cw(t − h) + Υ(t) +A′P1(t)x(t) +Q1x(t) +A′ζ1(t)

+Ā′P1(t)Āx(t) + Ā′P1(t)C̄w(t− h) + Ā′ζ̄1(t). (13)

Combining with (6), we have

−Υ(t) =
{

A′ −
[

P1(t)B + Ā′P1(t)B̄
]

γ−1
1 (t)B′

}

ζ1(t) +
{

Ā′ −
[

P1(t)B + Ā′P1(t)B̄
]

γ−1
1 (t)B̄′

}

ζ̄1(t)

+
[

{

Ā′ −
[

P1(t)B + Ā′P1(t)B̄
]

γ−1
1 (t)B̄′

}

P1(t)C̄ + P1(t)C
]

w(t− h)

, D(t)′ζ1(t) + D̄′(t)ζ̄1(t) +
¯̄D′(t)w(t − h).

That is, Eq. (8) follows. This completes the proof.

As a consequence of substituting u(t) in (7) into the dynamic of the state (1), we have

dx(t) =
[

{

A−Bγ−1
1 (t)

[

B′P1(t) + B̄′P1(t)Ā
]}

x(t) +
{

C −Bγ−1
1 (t)B̄′P1(t)C̄

}

w(t− h)

−Bγ1(t)
−1B′ζ1(t)−Bγ−1

1 (t)B̄′ζ̄1(t)
]

dt+
[

{

Ā− B̄γ−1
1 (t)

[

B′P1(t) + B̄′P1(t)Ā
]}

x(t)

+
{

C̄ − B̄γ−1
1 (t)B̄′P1(t)C̄

}

w(t− h)− B̄γ1(t)
−1B′ζ1(t)− B̄γ−1

1 (t)B̄′ζ̄1(t)
]

dW (t)

=
[

D(t)x(t) + E(t)w(t − h) + F1(t)ζ1(t) + F2(t)ζ̄1(t)
]

dt

+
[

D̄(t)x(t) + Ē(t)w(t − h) + F ′
2(t)ζ1(t) + F̄2(t)ζ̄1(t)

]

dW (t), (14)

where

E(t) , C −Bγ−1
1 (t)B̄′P1(t)C̄, F1(t) , −Bγ1(t)

−1B′, F2(t) , −Bγ−1
1 (t)B̄′,

Ē(t) , C̄ − B̄γ−1
1 (t)B̄′P1(t)C̄, F̄2(t) , −B̄γ−1

1 (t)B̄′.

3.2 Optimization problem of the leader

Now we are in the position to discuss the optimization problem of the leader which is in fact an opti-

mization control problem with the forward and backward constraints, that is,

min
w

J2(u,w) s.t.

{

(8),

(14).
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The maximum principle for the above optimization problem in the delay-free case has been obtained

in [17]. Combining with the techniques dealing with input delay in [25], it is immediately derived that

dp2(t) = −
[

D′(t)p2(t) + D̄′(t)q2(t) +Q2x(t)
]

dt+ q2(t)dW (t), (15)

dξ(t) =
[

D(t)ξ(t) + F1(t)p2(t) + F2(t)q2(t)
]

dt+
[

D̄(t)ξ(t) + F ′
2(t)p2(t) + F̄2(t)q2(t)

]

dW (t), (16)

p2(T ) = H2x(T ), ξ(0) = 0,

0 = R2w(t− h) + E
[

E′(t)p2(t) + Ē′(t)q2(t) +
¯̄D(t)ξ(t)|Ft−h

]

. (17)

We now introduce a new costate ζ2 satisfying

p2(t) = P2(t)x(t) + ζ2(t), (18)

where P2(t) is the solution to

− Ṗ2(t) = P2(t)D(t) +D′(t)P2(t) + D̄′(t)P2(t)D̄(t) +Q2 (19)

with P2(T ) = H2. The dynamic of ζ2 can be given in Lemma 3.

Lemma 3. The new costate ζ2 satisfies

dζ2(t) = −
{

D′(t)ζ2(t) + D̄′(t)ζ̄2(t) +
[

P2(t)E(t) + D̄′(t)P2(t)Ē(t)
]

w(t− h) +
[

P2(t)F1(t)

+D̄′(t)P2(t)F
′
2(t)

]

ζ1(t) +
[

P2(t)F2(t) + D̄′(t)P2(t)F̄2(t)
]

ζ̄1(t)
}

dt+ ζ̄2(t)dW (t) (20)

with terminal value ζ2(T ) = 0.

Proof. Denote dζ2(t) = Γ(t)dt + ζ̄2(t)dW (t). Applying Itô’s formula to p2(t) in (18) and making a

comparison with (15) yield that

dp2(t) = Ṗ2(t)x(t)dt + P2(t)
[

D(t)x(t) + E(t)w(t − h) + F1(t)ζ1(t) + F2(t)ζ̄1(t)
]

dt+ P2(t)
[

D̄(t)x(t)

+Ē(t)w(t − h) + F ′
2(t)ζ1(t) + F̄2(t)ζ̄1(t)

]

dW (t) + Γ(t)dt+ ζ̄2(t)dW (t)

= −
[

D′(t)P2(t)x(t) +D′(t)ζ2(t) + D̄′(t)q2(t) +Q2x(t)
]

dt+ q2(t)dW (t). (21)

Thus,

q2(t) = P2(t)
[

D̄(t)x(t) + Ē(t)w(t − h) + F ′
2(t)ζ1(t) + F̄2(t)ζ̄1(t)

]

+ ζ̄2(t),

and

0 = Ṗ2(t)x(t) + P2(t)
[

D(t)x(t) + E(t)w(t − h) + F1(t)ζ1(t) + F2(t)ζ̄1(t)
]

+ Γ(t)

+
[

D′(t)P2(t)x(t) +D′(t)ζ2(t) + D̄′(t)q2(t) +Q2x(t)
]

=
[

Ṗ2(t) + P2(t)D(t) +D′(t)P2(t) + D̄′(t)P2(t)D̄(t) +Q2

]

x(t) +
[

P2(t)E(t)

+D̄′(t)P2(t)Ē(t)
]

w(t− h) +
[

P2(t)F1(t) + D̄′(t)P2(t)F
′
2(t)

]

ζ1(t)

+
[

P2(t)F2(t) + D̄′(t)P2(t)F̄2(t)
]

ζ̄1(t) + Γ(t) +D′(t)ζ2(t) + D̄′(t)ζ̄2(t).

With the using of (19), it is obtained that the dynamic of ζ2(t) is exactly (20).

To further obtain the causal and adapted controller from (7) and (17), we stack the forward variables

and backward variables obtained in the optimization of the follower and leader, that is, denote

φ(t) ,

[

ξ(t)

x(t)

]

, ψ(t) ,

[

ζ1(t)

ζ2(t)

]

, ψ̄(t) ,

[

ζ̄1(t)

ζ̄2(t)

]

,

and

M(t) ,

[

D(t) F1(t)P2(t) + F2(t)P2(t)D̄(t)

0 D(t)

]

, S1(t) ,

[

F2(t)P2F
′
2(t) F1(t)

F1(t) 0

]

,
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S2(t) ,

[

F2(t)P2(t)F̄2(t) F2(t)

F2(t) 0

]

, N1(t) ,

[

F2(t)P2(t)Ē(t)

E(t)

]

,

N̄1(t) ,

[

F̄2(t)P2(t)Ē(t)

Ē(t)

]

, M̄(t) ,

[

D̄(t) F ′
2(t)P2(t) + F̄2(t)P2(t)D̄(t)

0 D̄(t)

]

,

S̄2(t) ,

[

F̄2(t)P2(t)F̄2(t) F̄2(t)

F̄2(t) 0

]

, N2(t) ,

[

¯̄D′(t)

P2(t)E(t) + D̄′(t)P2(t)Ē(t)

]

.

From (8), (14), (16), (20) and using (18), it is straightforward to obtain the following system:

dφ(t) =
[

M(t)φ(t) + S1(t)ψ(t) + S2(t)ψ̄(t) +N1(t)w(t − h)
]

dt

+
[

M̄(t)φ(t) + S′
2(t)ψ(t) + S̄2(t)ψ̄(t) + N̄1(t)w(t − h)

]

dW (t), (22)

dψ(t) = −
[

M ′(t)ψ(t) + M̄ ′(t)ψ̄(t) +N2(t)w(t − h)
]

dt+ ψ̄(t)dW (t), (23)

with boundary values φ(0) = [0 x′0]
′ and ψ(T ) = 0. Denote γ2(t) , R2 + Ē′(t)P2(t)Ē(t), then the

equilibrium condition (17) becomes

0 = γ2(t)w(t − h) + E
[

N ′
2(t)φ(t) +N ′

1(t)ψ(t) + N̄ ′
1(t)ψ̄(t)|Ft−h

]

. (24)

3.3 Establishment of a nonhomogeneous relationship between ψ(t) and φ(t)

In the sequel, the relationship between the variables ψ(t) and φ(t) will be established. To this end, denote

Ω(t) , γ2(t) + N̄ ′
1(t)
[

I − L(t)S̄2(t)
]−1

L(t)N̄1(t),

Λ(t) , N ′
2(t) + N̄ ′

1(t)
[

I − L(t)S̄2(t)
]−1

L(t)M̄(t) +
{

N ′
1(t) + N̄ ′

1(t)
[

I − L(t)S̄2(t)
]−1

×L(t)S′
2(t)
}

[

L(t)−

∫ min (T,t+h)

t

Π(t, θ)dθ

]

.

In the above, the matrix L(t) is the solution to the following equation:

− L̇(t)=



































L(t)M(t) +
[

L(t)S2(t) + M̄ ′(t)
][

I − L(t)S̄2(t)
]−1

L(t)M̄(t) + L(t)S1(t)L(t)

+M ′(t)L(t) +
[

L(t)S2(t) + M̄ ′(t)
][

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)L(t), t > T − h,

L(t)M(t) +
[

L(t)S2(t) + M̄ ′(t)
][

I − L(t)S̄2(t)
]−1

L(t)M̄(t) + L(t)S1(t)L(t)

+M ′(t)L(t) +
[

L(t)S2(t) + M̄ ′(t)
][

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)L(t)

−Π(t, t+ h), t 6 T − h,

(25)

with det
[

I − L(t)S̄2

]

6= 0, L(T ) = 0 and Π(t, θ) satisfies

−
∂

∂t
Π(t, θ) = Π(t, θ)M(t) +

{

L(t)S1(t) +M ′(t) +
[

L(t)S2(t) + M̄ ′(t)
][

I − L(t)S̄2(t)
]−1

×L(t)S′
2(t)
}

Π(t, θ) + Π(t, θ)S2(t)
[

I − L(t)S̄2(t)
]−1

L(t)M̄(t) + Π(t, θ)
{

S1(t)

+S2(t)
[

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)
}

L(t)−

∫ min (T,t+h)

θ

Π(t, θ)
{

S1(t)

+S2(t)
[

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)
}

Π(t, τ)dτ −

∫ min (T,t+h)

θ

Π(t, τ)
{

S1(t)

+S2(t)
[

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)
}

Π(t, θ)dτ, t ∈ [0, T ], θ ∈ (t,min (T, t+ h)], (26)

with

Π(t, t) = Λ′(t)Ω(t)−1Λ(t), t ∈ [0, T ], (27)

det
(

Ω(t)
)

6= 0, t ∈ [0, T ]. (28)



Xu J J, et al. Sci China Inf Sci November 2018 Vol. 61 112202:7

Remark 1. It is unavailable to give the analytical solutions to the partial differential Riccati equations

(25)–(28). However, there exists a numerical algorithm to solve these equations. Specifically, given a

partition: 0 = t0 < · · · < tN+1 = T , let δ = tk+1 − tk, δd = h, then the iteration algorithms can be given

as follows: for k = N − d+ 1, . . . , N , L(k + 1) = 0 and

L(k) = L(k + 1) + δL(k + 1)M(k) +
(

L(k + 1)S2(k) + M̄ ′(k)
)

(I − L(k + 1)

×S2(k))
−1
L(k + 1)M̄(k) + L(k + 1)S1(k)L(k + 1) +M ′(k)L(k + 1)

+
(

L(k + 1)S2(k) + M̄ ′(k)
)

(I − L(k + 1)S2(k))
−1
L(k + 1)S′

2(k)L(k + 1)

−Π(k + 1, k + d), k 6 N − d+ 1,

Π(k, k + i) = Π(k + 1, k + i) + δ P i(k + 1, k + i)

(

M̂(k + 1)−

min (N+1,k+d)
∑

j=k+i+1

δŜ(k + 1)

×Π(k + 1, j)

)

+ δ

(

M̂(k + 1)−

min (N+1,k+d)
∑

j=k+i+1

δŜ(k + 1)Π(k + 1, j)

)′

×Π(k + 1, k + i), i = 1, 2, . . . ,min (N + 1− k, d),

Π(k + 1, k + 1) = Λ′(k + 1)Ω−1(k + 1)Λ(k + 1), k = 1, . . . , N,

Ω−1(k + 1) = γ2(k + 1) + N̄ ′
1(k)(I − L(k + 1)S2(k))

−1L(k + 1)N̄1(k), k = 1, . . . , N,

Λ(k + 1) = N ′
2(k) + N̄ ′

1(k) (I − L(k + 1)S2(k))
−1
L(k + 1)M̄(k)

+
(

N ′
1(k) + N̄ ′

1(k) (I − L(k + 1)S2(k))
−1
L(k + 1)S′

2(k)
)

×



L(k + 1)−

min (N+1,k+d)
∑

j=k+2

δΠ(k + 1, j)



, k = 1, . . . , N,

where M̂(k + 1) =M(k) + L(k + 1)S1(k) + S2(k)[I − L(k + 1)S̄2(k)]
−1L(k + 1)(M̄(k) + S′

2(k)L(k + 1)),

Ŝ(k+1) = S1(k+1)+S2(k+1)[I−L(k+1)S̄2(k+1)]−1L(k+1)S′
2(k+1). By selecting sufficiently small

δ, it is obtained that L(k), Π(k, k + i) approximate L(t) and Π(t, θ), respectively.

Based on these equations, we have the nonhomogeneous relationship between ψ(t) and φ(t) which is

shown below.

Lemma 4. Provided that Eqs. (25)–(28) admit solutions, it holds that

ψ(t) = L(t)φ(t) −

∫ min (T,t+h)

t

Π(t, θ)φ̂(t|θ − h)dθ, (29)

where φ̂(t|θ − h) , E
[

φ(t)
∣

∣Fθ−h

]

, t 6 θ 6 min (T, t+ h).

Proof. Denote

Θ(t) , ψ(t)− L(t)φ(t), (30)

where Θ(t) satisfying dΘ(t) = Θ1(t)dt + Θ̄(t)dW (t), and L(t) is the solution to (25). Applying Itô’s

formula to (30) yields that

dΘ(t) = dψ(t)− L̇(t)φ(t)dt − L(t)dφ(t)

= −
[

M ′(t)ψ(t) + M̄ ′(t)ψ̄(t) +N2(t)w(t − h)
]

dt+ ψ̄(t)dW (t)− L̇(t)φ(t)dt

−L(t)
[

M(t)φ(t) + S1(t)ψ(t) + S2(t)ψ̄(t) +N1(t)w(t − h)
]

dt

−L(t)
[

M̄(t)φ(t) + S′
2(t)ψ(t) + S̄2(t)ψ̄(t) + N̄1(t)w(t − h)

]

dW (t). (31)

This implies that

Θ̄(t) = ψ̄(t)− L(t)
[

M̄(t)φ(t) + S′
2(t)ψ(t) + S̄2(t)ψ̄(t) + N̄1(t)w(t − h)

]

.
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By using the invertibility of I − L(t)S̄2, it yields that

ψ̄(t) =
[

I − L(t)S̄2(t)
]−1{

Θ̄(t) + L(t)
[

M̄(t)φ(t) + S′
2(t)ψ(t) + N̄1(t)w(t − h)

]}

. (32)

Substituting (32) into (24), we have

0 = γ2(t)w(t − h) + E
[

N ′
2(t)φ(t) +N ′

1(t)ψ(t) + N̄ ′
1(t)ψ̄(t)|Ft−h

]

= γ2(t)w(t − h) + E
[

N ′
2(t)φ(t) +N ′

1(t)ψ(t) + N̄ ′
1(t)
[

I − L(t)S̄2(t)
]−1

Θ̄(t)

+N̄ ′
1(t)
[

I − L(t)S̄2(t)
]−1

L(t)[M̄(t)φ(t) + S′
2(t)ψ(t) + N̄1(t)w(t − h)]

∣

∣

∣Ft−h

]

, Ω(t)w(t − h) + E
[

{

N ′
2(t) + N̄ ′

1(t)
[

I − L(t)S̄2(t)
]−1

L(t)M̄(t)
}

φ(t) + N̄ ′
1(t)
[

I − L(t)S̄2(t)
]−1

Θ̄(t)

+
{

N ′
1(t) + N̄ ′

1(t)
[

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)
}

ψ(t)
∣

∣

∣Ft−h

]

.

Provided that the matrix Ω(t) is invertible, one has

w(t − h) = −Ω(t)−1E
[

{

N ′
2(t) + N̄ ′

1(t)
[

I − L(t)S̄2(t)
]−1

L(t)M̄(t)
}

φ(t) + N̄ ′
1(t)
[

I − L(t)S̄2(t)
]−1

Θ̄(t)

+
{

N ′
1(t) + N̄ ′

1(t)
[

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)
}

ψ(t)
∣

∣

∣Ft−h

]

= −Ω(t)−1E
[

{

N ′
2(t) + N̄ ′

1(t)
[

I − L(t)S̄2(t)
]−1

L(t)M̄(t)
}

φ(t) + N̄ ′
1(t)
[

I − L(t)S̄2(t)
]−1

Θ̄(t)

+
{

N ′
1(t) + N̄ ′

1(t)
[

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)
}[

L(t)φ(t) + Θ(t)
]

∣

∣

∣Ft−h

]

. (33)

Plugging (33) into (31) and using (25), (32), one has

Θ1(t) = −
{

L(t)S1(t)L(t) + L̇(t) +
[

M̄ ′(t) + L(t)S2(t)
][

I − L(t)S̄2(t)
]−1

L(t)
[

M̄(t) + S′
2(t)L(t)

]

+M ′(t)L(t) + L(t)M(t)
}

φ(t)−M ′(t)Θ(t)−
[

M̄ ′(t) + L(t)S2(t)
][

I − L(t)S̄2(t)
]−1

Θ̄(t)

−L(t)S1(t)Θ(t)−
[

M̄ ′(t) + L(t)S2(t)
][

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)Θ(t)

−
{

N2(t) +
[

M̄ ′(t) + L(t)S2(t)
][

I − L(t)S̄2(t)
]−1

L(t)N̄1(t) + L(t)N1(t)
}

w(t− h).

That is, for t ∈ (T − h, T ], Θ(t) satisfies

dΘ(t) =
[

−M ′(t)Θ(t) − L(t)S1(t)Θ(t)−
[

M̄ ′(t) + L(t)S2(t)
]

×
[

I − L(t)S̄2(t)
]−1

Θ̄(t)−
[

M̄ ′(t) + L(t)S2(t)
][

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)Θ(t)

−
{

N2(t) +
[

M̄ ′(t) + L(t)S2(t)
][

I − L(t)S̄2(t)
]−1

L(t)N̄1(t)

+L(t)N1(t)
}

w(t− h)
]

dt+ Θ̄(t)dW (t), (34)

and for t ∈ [0, T − h], Θ(t) satisfies

dΘ(t) =
[

−Π(t, t+ h)φ(t) −M ′(t)Θ(t)− L(t)S1(t)Θ(t)−
[

M̄ ′(t) + L(t)S2(t)
]

×
[

I − L(t)S̄2(t)
]−1

Θ̄(t)−
[

M̄ ′(t) + L(t)S2(t)
][

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)Θ(t)

−
{

N2(t) +
[

M̄ ′(t) + L(t)S2(t)
][

I − L(t)S̄2(t)
]−1

L(t)N̄1(t)

+L(t)N1(t)
}

w(t− h)
]

dt+ Θ̄(t)dW (t). (35)

On the other hand, for t ∈ [0, T −h], differentiating on
∫ t+h

t
Π(t, θ)φ̂(t|θ−h)dθ with respect to t yields

that

d

∫ t+h

t

Π(t, θ)φ̂(t|θ − h)dθ

= Π(t, t+ h)φ(t)dt−Π(t, t)φ̂(t|t− h)dt+

∫ t+h

t

∂Π(t, θ)

∂t
φ̂(t|θ − h)dθdt
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+

∫ t+h

t

Π(t, θ)E[dφ(t)|Fθ−h]dθ

=

{

Π(t, t+ h)φ(t)−Π(t, t)φ̂(t|t− h) +

∫ t+h

t

Π(t, θ)[M(t) + S1(t)L(t)]φ̂(t|θ − h)dθ

+

∫ t+h

t

Π(t, θ)S1(t)E
[

Θ(t)|Fθ−h

]

dθ +

∫ t+h

t

Π(t, θ)N1(t)dθw(t − h)

+

∫ t+h

t

Π(t, θ)S2(t)
[

I − L(t)S̄2(t)
]−1

E[Θ̄(t)|Fθ−h]dθ +

∫ t+h

t

Π(t, θ)S2(t)
[

I

−L(t)S̄2(t)
]−1

L(t)
[

M̄(t) + S′
2(t)L(t)

]

φ̂(t|θ − h)dθ +

∫ t+h

t

Π(t, θ)S2(t)
[

I

−L(t)S̄2(t)
]−1

L(t)S′
2(t)E[Θ(t)|Fθ−h]dθ +

∫ t+h

t

Π(t, θ)S2(t)
[

I − L(t)S̄2(t)
]−1

×L(t)N̄1(t)dθw(t − h)

}

dt−

∫ t+h

t

[

Π(t, θ)M(t) +
{

L(t)S1(t) +M ′(t)

+
[

L(t)S2(t) + M̄ ′(t)
][

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)
}

Π(t, θ) + Π(t, θ)S2(t)
[

I

−L(t)S̄2(t)
]−1

L(t)M̄(t) + Π(t, θ)
{

S1(t) + S2(t)
[

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)
}

L(t)

−

∫ t+h

θ

Π(t, θ)
{

S1(t) + S2(t)
[

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)
}

Π(t, τ)dτ

−

∫ t+h

θ

Π(t, τ)
{

S1(t) + S2(t)
[

I − L(t)S̄2(t)
]−1

L(t)S′
2(t)
}

Π(t, θ)dτ

]

φ̂(t|θ − h)dθdt,

where (30), (32), (26), (22) have been used in the derivation of the second equality. In addition, it can

be obtained that

∫ t+h

t

Π(t, θ)
{

S1(t) + S2(t)[I − L(t)S̄2(t)]
−1L(t)S′

2(t)
}

∫ t+h

t

Π(t, τ)E
[

φ̂(t|τ − h)|Fθ−h

]

dτdθ

=

∫ t+h

t

Π(t, θ)
{

S1(t) + S2[I − L(t)S̄2(t)]
−1L(t)S′

2(t)
}

∫ t+h

θ

Π(t, τ)φ̂(t|θ − h)dτdθ

+

∫ t+h

t

Π(t, θ)
{

S1(t) + S2(t)[I − L(t)S̄2(t)]
−1L(t)S′

2(t)
}

∫ θ

t

Π(t, τ)E
[

φ̂(t|τ − h)|Fθ−h

]

dτdθ

=

∫ t+h

t

∫ t+h

θ

Π(t, θ)
{

S1(t) + S2(t)[I − L(t)S̄2(t)]
−1L(t)S′

2(t)
}

Π(t, τ)φ̂(t|θ − h)dτdθ

+

∫ t+h

t

∫ t+h

τ

Π(t, θ)
{

S1(t) + S2(t)[I − L(t)S̄2(t)]
−1L(t)S′

2(t)
}

Π(t, τ)φ̂(t|τ − h)dθdτ

=

∫ t+h

t

∫ t+h

θ

Π(t, θ)
{

S1(t) + S2(t)[I − L(t)S̄2(t)]
−1L(t)S′

2(t)
}

Π(t, τ)φ̂(t|θ − h)dτdθ

+

∫ t+h

t

∫ t+h

θ

Π(t, τ)
{

S1(t) + S2(t)[I − L(t)S̄2(t)]
−1L(t)S′

2(t)
}

Π(t, θ)φ̂(t|θ − h)dτdθ.

Combining with (25)–(28), it is easy to verify that (−
∫ min (T,t+h)

t
Π(t, θ)φ̂(t|θ − h)dθ, 0) satisfies (34)

and (35). Thus, Θ(t) = −
∫min (T,t+h)

t
Π(t, θ)φ̂(t|θ − h)dθ. The proof is now completed.

Based on (33) in the above discussion, we now give the strictly positive definiteness of the matrix Ω(t)

in the following result.

Lemma 5. Assume that there exists a unique open-loop strategy for the stochastic differential game

and (25) admits a solution, then the matrix Ω(t) is positive definite.
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Proof. From (14) and (15), applying Itô’s formula to p′2(t)x(t) and taking expectation yield that

E

∫ T

0

d
[

p′2(t)x(t)
]

= −E

∫ T

0

{[

D′(t)p2(t) + D̄′(t)q2(t) +Q2x(t)
]′
x(t) + p′2(t)

[

D(t)x(t)

+E(t)w(t− h) + F1(t)ζ1(t) + F2(t)ζ̄1(t)
]

dt+ q′2(t)
[

D̄(t)x(t) + Ē(t)w(t − h)

+F ′
2(t)ζ1(t) + F̄2(t)ζ̄1(t)

]}

dt

= E

∫ T

0

{

− x′(t)Q2x(t) + w′(t− h)
[

E′(t)p2(t) + Ē′(t)q2(t)
]

dt+ ζ′1(t)
[

F1(t)p2(t)

+F2(t)q2(t)
]

+ ζ̄′1(t)
[

F ′
2(t)p2(t) + F̄2(t)q2(t)

]}

dt. (36)

Similarly, it yields that

E

∫ T

0

d
[

ζ′1(t)ξ(t)
]

= E

∫ T

0

{

− w′(t− h) ¯̄D(t)ξ(t) + ζ′1(t)
[

F1(t)p2(t)

+F2(t)q2(t)
]

+ ζ̄′1(t)
[

F ′
2(t)p2(t) + F̄2(t)q2(t)

]}

dt.

Thus,

E

∫ T

0

d
[

p′2(t)x(t)
]

= E

∫ T

0

{

− x′(t)Q2x(t) + w′(t− h)
[

E′(t)p2(t)

+Ē′(t)q2(t) +
¯̄D(t)ξ(t)

]

dt+ d
[

ζ′1(t)ξ(t)
]}

. (37)

The optimal cost of the leader can be reformulated as (noting (32))

J2 = E
[

p2(0)
′x0
]

+ E

∫ T

0

w′(t− h)
[

R2w(t− h) + E′(t)p2(t) + Ē′(t)q2(t)

+ ¯̄D(t)ξ(t)
]

dt+ E

∫ T

0

d[ζ′1(t)ξ(t)]

= E
[

p2(0)
′x0
]

+ E

∫ T

0

w′(t− h)
{

Ω(t)w(t− h) +N ′
2(t)φ(t) +N ′

1(t)ψ(t)

+N̄ ′
1(t)
[

I − L(t)S̄2(t)
]−1

L(t)
[

M̄(t)φ(t) + S′
2(t)ψ(t)

]}

dt.

Similarly, we have

J t
2 , E

[

∫ T

t

x′(s)Q2x(s)ds +

∫ T−h

t

w′(s)R2w(s)ds+ x(T )′H2x(T )

]

= E
[

p2(t)
′x(t)

]

+ E

∫ T

t

w′(s− h)
{

Ω(s)w(s − h) +N ′
2(s)φ(s) +N ′

1(s)ψ(s)

+N̄ ′
1(s)

[

I − L(s)S̄2(s)
]−1

L(s)
[

M̄(s)φ(s) + S′
2(s)ψ(s)

]}

ds. (38)

Let the initial time be t and the initial values be chosen as x(t) = 0, w(t + s) = 0, s ∈ [−h, 0].

Then, the unique optimal solution with respect to these initial values is w(s − h) = 0, s ∈ [t, T ] and

the corresponding optimal cost is zero. This implies that any nonzero controller w will lead to a strictly

positive cost. Select w(s−h) = 0, s ∈ (t+ε, T ) and let w(s−h), s ∈ [t, t+ε] be arbitrarily nonzero where

ε is a sufficiently small positive constant. In this case, φ(t) = 0 from (22) and ψ(s) = 0, s ∈ [t + ε, T ]

from (23). Then, (38) is reduced to

J t
2 = E

∫ t+ε

t

w′(s− h)
{

Ω(s)w(s − h) +N ′
2(s)φ(s) +N ′

1(s)ψ(s)

+N̄ ′
1(s)

[

I − L(s)S̄2(s)
]−1

L(s)
[

M̄(s)φ(s) + S′
2(s)ψ(s)

]}

ds.
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Noting that φ(t) = 0, ψ(t + ε) = 0 and ε is sufficiently small, the above equation is reformulated as

J t
2 = εEw′(t − h)Ω(t)w(t − h) which is positive from the uniqueness of the open-loop solution for the

game. This implies that Ω(t) > 0. The proof is completed.

From Lemma 4 and (33), it yields that

w(t− h) = −Ω(t)−1E

[

{

N ′
2(t) + N̄ ′

1(t)
[

I − L(t)S̄2(t)
]−1

L(t)M̄(t)
}

φ(t) +
{

N ′
1(t) + N̄ ′

1(t)
[

I

−L(t)S̄2(t)
]−1

L(t)S′
2(t)

}

[

L(t)φ(t)−

∫ t+h

t

Π(t, θ)φ̂(t|θ − h)dθ

]

∣

∣

∣Ft−h

]

= −Ω(t)−1E

[

{

N ′
2(t) + N̄ ′

1(t)
[

I − L(t)S̄2(t)
]−1

L(t)M̄(t)
}

+
{

N ′
1(t) + N̄ ′

1(t)
[

I − L(t)S̄2(t)
]−1

×L(t)S′
2(t)
}

[

L(t)−

∫ t+h

t

Π(t, θ)dθ

] ]

φ̂(t|t− h),

that is,

w(t− h) = −Ω(t)−1Λ(t)φ̂(t|t− h). (39)

3.4 Solution to stochastic game

We are now in the position to state the main results for the open-loop strategy.

Theorem 1. Assume that there exists a unique open-loop strategy for the leader-follower stochastic

game (1)–(3). Provided that the coupled equation (25)–(28) admits a solution, the open-loop strategy is

given by

u(t) = Ku
1 (t)φ(t) +

∫ min (T,t+h)

t

Ku
2 (t, θ)φ̂(t|θ − h)dθ +Ku

3 (t)φ̂(t|t− h), (40)

w(t− h) = Kw(t)φ̂(t|t− h), (41)

where

Kw(t) = −Ω(t)−1Λ(t),

Ku
1 (t) = −γ1(t)

−1{[0 B′P1(t) + B̄′P1(t)Ā] + [B′ 0]L(t)

+[B̄′ 0][I − L(t)S̄2(t)]
−1L(t)[M̄(t) + S′

2(t)L(t)]},

Ku
2 (t, θ) = γ1(t)

−1{[B′ 0]Π(t, θ) + [B̄′ 0][I − L(t)S̄2(t)]
−1L(t)S′

2(t)Π(t, θ)},

Ku
3 (t) = γ1(t)

−1{[B̄′ 0][I − L(t)S̄2(t)]
−1L(t)N̄1(t) + B̄′P1(t)C̄}Ω(t)−1Λ(t).

Proof. From (39), the optimal controller of w(t−h) is as (41). Furthermore, in view of (7) and Lemma 4,

we have

u(t) = −γ1(t)
−1
{

[B′P1(t) + B̄′P1(t)Ā]x(t) +B′ζ1(t) + B̄′P1(t)C̄w(t − h) + B̄′ζ̄1(t)
}

= −γ1(t)
−1
{

[0 B′P1(t) + B̄′P1(t)Ā]φ(t) + [B′ 0]ψ(t) + [B̄′ 0]ψ̄(t) + B̄′P1(t)C̄w(t − h)
}

= −γ1(t)
−1

{

[0 B′P1(t) + B̄′P1(t)Ā]φ(t) + [B′ 0]L(t)φ(t)− [B′ 0]

∫ t+h

t

Π(t, θ)φ̂(t|θ − h)dθ

+[B̄′ 0][I − L(t)S̄2(t)]
−1

{

L(t)[M̄(t) + S′
2(t)L(t)]φ(t) − L(t)S′

2(t)

∫ t+h

t

Π(t, θ)φ̂(t|θ − h)dθ

+L(t)N̄1(t)w(t − h)

}

+ B̄′P1(t)C̄w(t − h)

}
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Figure 1 (Color online) The open-loop Stackelberg solution.

= −γ1(t)
−1

{

(

[0 B′P1(t) + B̄′P1(t)Ā] + [B′ 0]L(t) + [B̄′ 0][I − L(t)S̄2(t)]
−1L(t)

×[M̄(t) + S′
2(t)L(t)]

)

φ(t) −

∫ t+h

t

(

[B′ 0]Π(t, θ) + [B̄′ 0][I − L(t)S̄2(t)]
−1L(t)S′

2(t)Π(t, θ)
)

×φ̂(t|θ − h)dθ −
(

[B̄′ 0][I − L(t)S̄2(t)]
−1L(t)N̄1(t) + B̄′P1(t)C̄

)

Ω(t)−1Λ(t)φ̂(t|t− h)

}

,

which is exactly (40). The proof is now completed.

Remark 2. Compared to the results in [17], the main contribution of this paper is to introduce the

new variable ζ2(t) captured the information from the leader’s controller w(s − h) (s > t). Accordingly,

the nonhomogeneous relationship (29) is established while it is homogeneous for the delay-free case.

3.5 Simulation

Let A = 0.12, Ā = 1, B = 0.17, B̄ = 0.21, C = 0.1, C̄ = 0.3, T = 0.1, h = 0.01, H1 = H2 = 1,

Q1 = Q2 = R1 = R2 = 0.1. From Theorem 1 and using the discretization technique, the open-loop

solution is given by Figure 1.

4 Conclusion

The open-loop strategy for a leader-follower stochastic differential game with time delay appearing in

the leader’s control has been studied in this paper. The main contribution of the paper is to illustrate

the explicitly optimal controller in terms of the decoupled and symmetric Riccati equations based on

the stochastic maximum principle. The key technique is to establish the nonhomogeneous relationship

between the forward variables and the backward ones. It is highly desirable to study the closed-loop

strategy for our problem, as well as the solvability of the Riccati equations. These topics will be considered

in our future study.
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7 Zhang H S, Xu J J. Control for Itô stochastic systems with input delay. IEEE Trans Autom Control, 2017, 62: 350–365

8 Wang T X, Shi Y F. Linear quadratic stochastic integral games and related topics. Sci China Math, 2015, 58:

2405–2420

9 Freiling G, Jank G, Lee S R. Existence and uniqueness of open-loop Stackelberg equilibria in linear-quadratic differential

games. J Optim Theory Appl, 2001, 110: 515–544

10 Papavassilopoulos G P, Cruz J B. Nonclassical control problems and Stackelberg games. IEEE Trans Autom Control,

1979, 24: 155–166

11 Simaan M, Cruz J B. On the Stackelberg strategy in nonzero-sum games. J Optim Theory Appl, 1973, 11: 533–555

12 Basar T. Stochastic stagewise Stackelberg strategies for linear quadratic systems. In: Stochastic Control Theory and

Stochastic Differential Systems. Berlin: Springer, 1979

13 Bensoussan A, Chen S, Sethi S P. The maximum principle for global solutions of stochastic Stackelberg differential

games. SIAM J Control Optim, 2015, 53: 1956–1981
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