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Abstract This paper addresses the learning control problem for a group of robot manipulators with ho-
mogeneous nonlinear uncertain dynamics, where all the robots have an identical system structure but the
reference signals to be tracked differ. The control objective is twofold: to track on reference trajectories
and to learn/identify uncertain dynamics. For this purpose, deterministic learning theory is combined with
consensus theory to find a common neural network (NN) approximation of the nonlinear uncertain dynamics
for a multi-robot system. Specifically, we first present a control scheme called cooperative deterministic
learning using adaptive NNs to enable the robotic agents to track their respective reference trajectories on
one hand and to exchange their estimated NN weights online through networked communication on the
other. As a result, a consensus about one common NN approximation for the nonlinear uncertain dynamics
is achieved for all the agents. Thus, the trained distributed NNs have a better generalization capability than
those obtained by existing techniques. By virtue of the convergence of partial NN weights to their ideal
values under the proposed scheme, the cooperatively learned knowledge can be stored/represented by NNs
with constant/converged weights, so that it can be used to improve the tracking control performance without
re-adaptation. Numerical simulations of a team of two-degree-of-freedom robot manipulators were conducted

to demonstrate the effectiveness of the proposed approach.
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1 Introduction

Over the past decades, applications of robots have been dramatically expanding and the complexity of
their tasks has increased with more stringent performance requirements. This has inspired researchers
to focus on using multiple general-purpose robots operating in a collaborative fashion to execute the
assigned tasks rather than a single complex customized robot. The main goal of employing multiple
robots is to divide complex tasks into smaller and simpler ones in order to save the time, energy, and
cost expended, while increasing the accuracy and efficiency of their performance. An additional merit
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of multi-robot systems is that they provide redundancy to resolve cases of failure [1,2]. These merits
have drawn the attention of many researchers and motivated them to develop various cooperative control
approaches for multi-robot coordination; see [3-5].

Considerable effort has been devoted to addressing the problem of multi-robot tracking control [3-9].
In particular, in the studies described in [6-8], barrier Lyapunov functions were incorporated in an adap-
tive algorithm to control state constrained nonlinear systems. The authors of [9] employed critic neural
networks (CNNs) and action neural networks (ANNs) to reinforce learning-based adaptive tracking con-
trol for multiple-input multiple-output nonlinear discrete-time systems. Despite the rich literature, many
challenges remain. One of these challenges is how to address the nonlinear modeling uncertainties that can
exert strong adverse effects on nonlinear distributed control systems [10]. Although some studies [2,11,12]
considered these nonlinear model uncertainties in the robot manipulator control problem, their authors
used a single robot manipulator and did not employ multiple robots. The leader-follower approach dis-
cussed in [3] assumed full knowledge about the system model and did not consider the nonlinear model
uncertainties in it. Although the studies presented in [1, 5,13, 14] considered the nonlinear uncertain
dynamics for multi-robot manipulator systems, decentralized learning to only locally approximate the
nonlinearities for each individual robot was employed. In the study in [15], a primal-dual neural net-
work (PDNN) was combined with neural-dynamic optimization-based nonlinear model predictive control
(NMPC) techniques for leader-follower mobile robot formation control. A control scheme for a tele-
operated single robotic manipulator with dual masters that is constrained by an unknown geometrical
environment was developed in [16], where radial basis function neural networks (RBF NNs) were used to
deal with system uncertainties. In [17], a decentralized adaptive fuzzy control for two cooperating robotic
manipulators moving an object with impedance interaction was presented. These approaches assume full
communication between the follower and the leader/masters or between all the robots involved in the
network. This was not our assumption in this study; however, a consensus between all the robots could
still be obtained. In the research presented in [13], the graph theory was employed to control a team of
robot manipulators in the presence of uncertainties and disturbances using velocity observers. However,
the use of a high-gain observer in the derived controller to estimate the manipulators’ velocity may ex-
cite unmodeled high-frequency dynamics and amplify measurement noise. This could negatively affect
the transient performance and generate high frequency control torques that would damage the system
actuators.

The deterministic learning theory using RBF NNs has been discussed in multiple papers, such as
[1,18-23]. However, in these studies the deterministic learning theory was used for each single agent
independently:; i.e., the agents did not share the NN learning knowledge with each other. In particular, our
previous study reported in [14] considered multi-robot manipulator systems with heterogeneous nonlinear
uncertain dynamics. Each robot in the team was considered a nonlinear uncertain system that was not
necessarily identical to the other agents (e.g., the masses, lengths, and materials of the links differed). The
NN learning /identification was performed in a fully distributed manner. One of the main challenges in this
approach is that the convergent NN is different for each single agent according to the reference trajectory
applied to it. This results in a convergent NN approximated for this specific reference trajectory, limiting
the generality of the NNs. To explore more advanced learning capabilities of NNs, motivated by [24], in
the study described in this paper we leveraged the deterministic learning theory to allow all the agents
to share their adaptive NN weights with their neighbors in the network. This unifies the convergent NN
weights of the agents to obtain a common approximation among all the robots and to broaden the scope
of the unknown functions that each agent can approximate.

Specifically, we aimed to address the problem of trajectory tracking control and uncertain dynam-
ics learning/identification for multi-robot manipulator systems with homogeneous nonlinear uncertain
dynamics. We combine the deterministic learning theory from [18] with the consensus control theory
from [25,26]. More specifically, all the robots in the team are considered identical nonlinear uncertain
systems and various reference trajectories are assigned to them. The proposed scheme, called cooperative
deterministic learning (CDL), utilizes RBF NNs to approximate the robots’ nonlinear uncertain dynam-
ics. The robots communicate with each other over an undirected topology to exchange their estimated
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NN weights. The weights of the RBF NNs obtained by our scheme are optimal over a domain covered by
the union of all system orbits. This implies that the learned RBF NN models have a better generalization
capability than those obtained by conventional deterministic learning mechanisms [1,14]. Moreover, the
accurate identification of the uncertainties introduced by our approach leads to the important property
that the learned experience can be stored/represented using constant/converged NNs. These constant
NNs can then be re-utilized to improve the system’s performance without re-adapting the NN weights
and learning knowledge exchange among the robotic agents. Extensive simulation studies were conducted
to demonstrate the effectiveness of the proposed results.

Our contributions in this paper are in the following aspects. (i) Generalization capabilities are intro-
duced into the learning scheme of a multi-robot system to approximate/identify the nonlinearities. The
NN weights learned by the proposed scheme are optimal in a larger approximation domain consisting of
the union of the state orbits of all robots. This scheme is more advanced than traditional decentralized
learning methods, where the weights are optimal only in local approximation domains along each agent’s
own state orbits. (ii) In the proposed scheme, cooperative identification of the robots’ nonlinear uncertain
dynamics and tracking control performance can be achieved simultaneously. (iii) The proposed scheme
affords a learning control law with distinctive capabilities of knowledge representation/storing and expe-
rience re-utilization. The results presented in this paper can be used to effectively improve multi-robot
manipulators learning control design.

The rest of the paper is organized as follows. Some preliminary reviews on graph theory, RBF NNs,
and the problem statement are given in Section 2. The main results of this study, including the CDL
control design and the learning control scheme that uses experience, are presented in Sections 3 and 4,
respectively. Our simulation results are provided in Section 5. Finally, in Section 6 the conclusion of the
study is presented.

2 Preliminaries and problem statement

2.1 Notation and graph theory

The following notations are used in the paper. R denotes the set of real numbers. Ry represents
the set of positive real numbers, R™*" the set of real m x n matrices, and R" the set of real n x 1
vectors. S", §%, and S denote the sets of real symmetric n x n matrices and the positive definite and
negative definite matrices, respectively. The identity matrix of an arbitrary dimension is denoted by
I. 1, denotes an n-dimensional column vector, where all elements are 1. A block diagonal matrix with
matrices X1, Xo, ..., X, onits main diagonal is denoted by diag{ X1, X, ..., X,,}. For a matrix A, Ais the
vectorization of A, obtained by stacking the columns of A. For a series of column vectors x1, s, ..., Ty,
col{x1,xa,...,2,} represents a column vector obtained by stacking them. For two integers ki < ko, we
denote I [k1, ko] = {k1,k1+1,...,ko}. For a matrix M, M™T denotes its transpose. For z € R", the norm
is defined as ||z|| := (2Tx) Y2 For a square matrix A, \;(A) denotes its ith eigenvalue with Apax(A) and
Amin (A) representing its maximum and minimum eigenvalues, respectively, and Re(\;(A)) represents the
real part of the ith eigenvalue of A. The notation A ® B represents the Kronecker product of matrices A
and B. We denote by B, the open ball of radius r > 0 such that B, := {x € R": ||z| < r}.

In the context of multi-robot manipulator systems with interconnected communication graphs, an
undirected graph G = (V, £) consists of a finite set of nodes V = {1,2,..., N} and an edge set £ CV x V.
An edge of £, whether from node 7 to node j or vice versa, is denoted by (4, j), where node i is called a
neighbor of node j; i.e., (i,5) = £(j,i) € £. Note that an undirected graph is said to be connected if
there is an undirected path between every pair of distinct nodes. The weighted adjacency matrix of the
undirected graph G is a non-negative matrix A = [a;;] € RV*N where a;; = 0 and a;; > 0 = (j,i) € €.
The Laplacian of the graph G is denoted by £ = [l;;] € RV*N | where [;; = Zjvzl a;; and l;; = —a;;
if i # j. Therefore, given a matrix A = [a;;] € RY*N satisfying a;; = 0, i € I[1,N] and a;; > 0,
i,7 € I[1, N], we can always define an undirected graph G such that A is the weighted adjacency matrix
of the graph G; we call G a graph of A. It is known that at least one eigenvalue of L is at the origin and
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all nonzero eigenvalues of £ have positive real parts [25,26]. Moreover, according to [24, Lemma 1], £
has one eigenvalue at the origin and all other (N — 1) eigenvalues have positive real parts if and only if
the undirected graph G is connected.

2.2 Radial basis function neural networks

A standard RBF NN can be described as
N
H(X) = wisi(X)=WTS(X), (1)
i=1

where W € RY is the weight vector, X € Qx C RP is the input vector, N is the number of neurons
(nodes) in the NN, S(X) € R¥ is the regressor vector of radial basis functions, and s; is defined by the
following common Gaussian function [27]:

<—<X—ui>T<X—m)]

si (| X = pal]) = e K ) (2)

where p; is the mean value of the function s; and g; is its width (standard deviation). The Gauss function
belongs to the class of localized RBF type, where s; (|| X — u;l|) — 0 as X — oo [27]. As shown in [27], for
any continuous function f(X): Qx — R and for an NN function approximator with a sufficient number
of neurons N, there exists an optimum constant weight vector W* such that

H(X)=W*TS(X)+e(X), VX €Qx, (3)

where |e(X)| < €* is the approximation error and €* is the upper bound of this error. In this study,
we used an important class of RBF NNs called the localized RBF NN, where each basis function can
only locally affect the network output [27]. This type of approximation is called spatially localized
approximation [18,27].

For any bounded trajectory X;(t) C Qx, the function H(X) can be approximated using a limited
number of neurons located in a local region along the trajectory,

H(X) =W/TS(X) + e(X), (4)

where S;(X) = [s;1(X), s2(X),...,s;:(X)]" € RN with N; < N and |s;;| > ¢, where ¢ > 0 is a small
positive constant. The weight vector W;* = [w;l, . ,w;l]T € RM and ¢ is the approximation error, where
the difference |e;(X)|—|e(X)] is small [27]. Based on the previous results on the persistent excitation (PE)
property of RBF networks [18,27], it is shown that for a localized RBF network defined by WTS(X), the
centers of which are placed on a regular lattice, almost any recurrent trajectory') X (t) can lead to the
satisfaction of the PE condition of the regressor sub-vector S;(X) [27]. The following important lemma
regarding the PE condition of the RBF NNs is recalled from [18].

Lemma 1. Consider any continuous recurrent trajectory X (¢) : [0,00) — RZ. X (t) remains in a
bounded compact set Qx C R?. Then, for the RBF NN defined by WTS(X) with centers placed on a
regular lattice (sufficiently large to cover the compact set Q2x), the regressor sub-vector S;(X) consisting
of the RBF's with centers located in a small neighborhood of X (t) is persistently exciting.

The following definitions and lemmas, which are important for the subsequent developments, are
recalled from [24].
Consider the system

T = f(t,I), I(to) = X, t> to, (5)

where f : [tg,00) x R™ — R" is piecewise continuous in ¢ and locally Lipschitz in  on [tg,c0) x R™ and
f(t,0) = 0. The solution of this system is simply denoted by ().

1) A recurrent trajectory represents a large set of periodic and periodic-like trajectories generated from linear/nonlinear
dynamical systems [28]. A detailed characterization of recurrent trajectories can be found in [18].
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Definition 1 ([29]). The origin = 0 of (5) is said to be uniformly locally exponential stable (ULES)
if there exist constants 1, 2, and r > 0 such that, for all t > tg and (o, x0) € Ry x B,., the solution
satisfies

lz(t, to, o) | < 7 ol ™21, vt >t (6)

Given all the above, let us consider the system [24]

@1

-
where the states z; € R™ and zo € R™, & = [x?,xg}T, and Vi > 0, A € R"™*™ B ¢ R™ " C ¢ R™*",
and D € R™*™ are the system matrices. Matrix D is assumed to be positive semi-definite. Let us assume
the following [24].
Assumption 1. There exist r > 0 and ¢y such that max{||B(¢,x)||, || D(t, x)]| , H%H} < ¢y for
all t > tg and (to,z0) € Ry X B,.
Assumption 2. There exist 7 > 0 and symmetric matrices P(t, z) and (¢, z) such that for all ¢t > ¢y and
(to, o) € Ry x B,., A(t,z)"P(t,x) + P(t,z)A(t,z) + P(t,x) = —Q(t, z), and P(t,z)B(t,z)T = C(t,z)".
Furthermore, there exist pp,, Gm,pa, and gpr such that p,, I, < P(t,z) < Py, and ¢nl, < Q(t,z) <
QMIn-

Under the above two assumptions, we have the following lemma [24].

: (7)

A(t,x) B(t,z)T | |z
—C(t,x) —D(t,x)

T2

Lemma 2. Considering Assumptions 1 and 2, the system (7) is ULES where r is any fixed constant, if
there exist two positive constants Ty and « such that for all (¢g,20) € Ry X By,

t+To
/ [B(T,:C(T, to, x0))B(T, x(T, to,:co))T + D(r, 2(r, to,:co))] dr > al,,, Vt>t. (8)
t

2.3 Problem statement

In this study, we aimed to address the problem of tracking control for a group of homogeneous robot
manipulator systems in the presence of nonlinear uncertain dynamics. To be more specific, each robot
is assigned to a different reference trajectory whereas all the robots have an identical system structure
and hence the same nonlinear uncertain dynamics. These uncertain nonlinearities are approximated by
utilizing the learning capability of neural networks (NNs) and the consensus theory, where the estimated
weights of RBF NNs for each robot are shared over the communication topology so that a consensus about
the optimum weight estimation can be reached among all agents; i.e., W, — W for all i € I[1, N], where
W; is the estimated weight vector for the ith agent and W is the commonly convergent weight vector. The
communication topology considered in our problem is an undirected connected graph. Motivated by [24],
we developed a cooperative deterministic learning scheme in which the agents exchange their estimated
NN weights so that all the estimated weights of the NNs can converge to small neighborhoods around their
optimal values over a domain consisting of the union of all state orbits. Thus, the generalization capability
of the learned controllers for accurate function approximation/identification via inter-agent collaboration
[1,25,26] is better than those obtained by regular decentralized learning methods [1,5,11, 14, 30].

To this end, we consider a multi-robot manipulator system consisting of N robotic manipulators with
homogeneous nonlinear uncertain dynamics, each of which can be modeled as [31]

M(qi)gi + C(gir Gi)gi + F(¢i) + G(qi) =7, i€I[l,N], 9)

where the subscript ¢ denotes the ¢th robotic agent in the group. For each i € I[1,N],
4% = lan ¢z~ ain )"
sent the velocity and acceleration vectors of the joints, respectively. 7; € R™ is the input torque. For any
¢;, the inertia matrix M (g;) is positive definite (i.e., M(g;) € ST*"), F(¢;) € R™ is the friction coefficient,
and G(g;) € R™ represents the gravitational force. The centripetal torque matrix C(g;,¢;) € R™ ™ is

€ R"™ represents the angular position of the joints, and ¢; and ¢; € R" repre-
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assumed to be unknown but is upper bounded by a constant matrix Y. This assumption is reason-
able and made without losing any generality, and was typically adopted in many previous studies. This
upper bound is local information, which is assumed to be available for the corresponding local robot.
Equivalently, the above system dynamics can be rewritten as

i1 = T4.2,

. : (10)
Tijo = Mﬁl(:ﬂi,l)['ri — C(X’L)ZZ,Q — G(l‘iyl) — F(I’iﬁg)], Viel [1, N] R

where x; = col{z;1,z;2} with 1, 2,2 € R", 2,1 = ¢, and ;2 = ¢;. The dynamics terms C(x;) +
G(zi1) + F(z;2) are assumed to be uncertain.

Let us consider the following reference dynamics for each robot ¢ to generate the position tracking
reference signals:

Tgi1 = Tdi,2,
Tai2 = fai (Xairt), VieI[l,N],

where xqi = col{xa;1,%ai2}, where x4,1 and z4;2 € R™ represent the desired position and velocity,
respectively, and fq; (xdi,t) is a known continuous nonlinear function.

(11)

Remark 1. The diversity in reference trajectories assigned to each robotic agent is useful, because this
may excite different unmodeled uncertain dynamics and thus broaden the search space for the optimum
RBF NNs weights.

Given the multiple robotic system consisting of N number of robot manipulators in (10) and the
reference trajectory in (11), we can find a non-negative matrix called the adjacency matrix A = [a;5],7,j €
I[1, N], such that all the elements of A representing the interconnection between the agents are arbitrary
non-negative numbers satisfying a; = 0, Vi € I[1,N]. Let G = (V,&) be an undirected graph with
respect to A. Then, V = {1,..., N} corresponds to all the nodes representing the N robotic agents, and
(1,7) € € if and only if a;; > 0. We consider the following assumptions regarding the reference trajectory
(11) and the communication graph G.

Assumption 3. All the states of the reference model (11) remain uniformly bounded; i.e., Vi €
I[1,N], xai = col{@g;1,2ai2} € Q, Vt > 0, where Q; C R?*" is a compact set. Moreover, the asso-
ciated reference trajectory denoted by ¢(x4i(0)), starting from the initial condition x4;(0), is a periodic
signal.

Assumption 4. The undirected graph G is connected.

The above assumptions are made without losing any generality. Assumption 3 helps us prove the partial
PE condition, the system stability, and estimated parameter convergence in the proposed distributed
adaptive control system. However, with Assumption 4, we can prove the generalization capability of the
NNs, as shown in the following.

The multi-robot manipulator control problem considered in this paper can be described as follows.

Problem 1. Given a system composed of a team of N identical robot manipulators (10) operating
in an undirected connected and weighted network topology G, our objective is to design a cooperative
deterministic learning scheme such that

(1) All N robots collaboratively estimate the nonlinear uncertain dynamics (C'(x;) +G(zi1) + F(2i2)),
as well as accurately tracking their respective reference trajectories;

(2) The learned knowledge can be re-utilized to achieve a better control performance for all the agents
without re-adapting to the nonlinear uncertain dynamics.

3 Cooperative deterministic learning using radial basis function neural net-
works

In this study, we assumed that each individual robotic agent can exchange its estimated knowledge with
its neighboring robots. This motivated us to design a CDL scheme to enable each robotic agent to
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estimate the nonlinear uncertainties and exchange estimated/learned information with the other robots.
To this end, let us consider the ith robotic agent and let a filtered output signal r; be defined as

ri =é; + N\e;, VieI[l,N], (12)
where )\; is a positive constant and e; € R" is the tracking error defined by

€ =X — Tain, VielI[l,NJ. (13)
From (10), (12), and (13), the derivative 7; is equal to

7i =€ + Ni€; (14)

=M Yz;1) (1 — C(xin, wi2)xio — Fwi2) — G(xi1)) — Zain + Niéi, Vi€ I[1,N].

Let the function H(x;) = [hi(xi) ha(xi) - hn(x:)]" include all the unknown parts of the model, so
that

H(xi) = C(xi)ziz + G(zin) + F(wi2), Vi€l[l,N], (15)

where x; = col{x; 1,22} € Q; C R?". We then employ the following RBF NNs to approximate this
unknown nonlinear function:

H(x;) =W7TS;(xi) +ei(xi), Vi €I[l,N], (16)

where W denotes the ideal constant weight vector and |e;(x;)| < €f
arbitrarily small constant € > 0. Let W; be the estimate of W for individual robotic agent 7; then, the

feedback control law is constructed as

is the approximation errors with an

Ty — WiTSi(X’L') + M(wi,l)(jdi,l — )\161) — Kﬂ“i, V’L S I [1, N] 5 (17)

where K; € S%, WESi(x) = [W i1 (x:) WhSia(xi) - W, Si(xi)I” is used to approximate the
unknown nonlinear function vector H(x;) in (15) along the trajectory yx; within the compact set ;. A
robust self-adaptation law for online updating W; is constructed using the g-modification technique [27]
and the consensus theory [24, 25,29, 32, 33] through a communication topology among the agents:

W; = W, =1y [Si(xi)m + O'iWi} — BzNjaij (WZ — W]) , Vielll,N], (18)
j=1

where W; = W, — W and T'; > 0 is the adaptation gain, o; is a modification scalar constant, and g > 0
is a design parameter. Substituting (15)—(17) into (14) yields
7 = M (1) (7 — Hy) — #ai1 + N,
= Mfl(ﬂfiJ)(WiTSi(Xi) + Mi(w51)8ai1 — Mi(zi1)Niéi — Kiri — WESi(xi) — €) — &ai1 + Niéi,
= Mz_l(xzyl)(WzTSZ(Xz) — €; — Kﬂ’i), Vi S I [1, N] . (19)

On the basis of the closed-loop dynamics (18) and (19), we first summarize the results of the overall
system stability and tracking control performance in the following theorem.
Theorem 1. Given the closed-loop system consisting of the agents system (10), the reference trajectories
(11), the control law (17), and the NN weight update law (18) under Assumptions 1-4, suppose the
communication topology is undirected and connected. If recurrent orbits ¢, for the states y; exist in a
sufficiently large compact set ; such that y, € €; for all i € I[1, N], then, starting from any initial
conditions x;(0) and W;(0), we have that (i) all the signals in the closed-loop system remain uniformly
bounded; (ii) the output tracking error x;1 — x4;1 converges exponentially to a small neighborhood
around the origin, by appropriately choosing the design parameters K; and o; for all ¢ € I[1, N]; and
(iii) the estimation of the NN weights W; partially converges to a small neighborhood of their common
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optimal value along a trajectory ¢;(x:(%)) |¢>, , and cooperative approximation of the nonlinear uncertain
dynamics H(x;) defined in (15) can be obtained by W;'S;(x;), as well as W;TS;(x;), where

7b]Wl(t)7 Vie I[lvN]a (20)

57T
W, = mean¢s,,

where [tiq, ti] (tip > tiq > T;) represents a time segment after a transient period.

Proof.  To prove the first point in the theorem, i.e., the boundedness of all the signals in the closed-loop
system, we use the Lyapunov stability method.
(i) Let a Lyapunov function candidate for the closed-loop system (18) and (19) be

M(x;q) ol T 1 & T
V = A1) E L. E [7[[, [7[[.
9 — T, T + 21_‘1 - i i (21)

Then, its derivative along the trajectory of (18) and (19) is

N N
1 ~ *
T § T E T
i + M(l‘iyl) r; 7’1 F_ . W,L Wz (22)

Given an appropriate definition of C(x;), the matrix %M (zi1) — C(xi) is a skew-symmetric matrix;
LN (2i1) — C(x:) = 0. This implies %M(zzl) = C(x;). Therefore, from (18) and (19),

ie, 5

V<Y 3 orTr 4 M) Yort [ My (@) (W Si00) = e = Kiry)|

L J=1
N
YZ?“ 7“1-1—27“ VVTS()@)—fZ K;r;)
=1
1 X
+F—Z_;W; T [Six)r + Wi - Zam (Wi 775) | (23)

where Y is the upper bound of the matrix C'(x;). Our objective is to select the constant K; = K;1+K;2+Y
such that K;; and K;o are positive definite, yielding

N N N N N
V<Y E T — E rie; — g ri Kar; — E TiTKzQ?"i*YE T
= i1 i1 i1 im1

1=1
N R 3 ~ N R
- ; Wz'TUin' - F_z ; WiT jzzlaij (Wz - )
N N
Z ; ez—i—r Kﬂm—i—r KQ?"Z —ZVVT
i=1 i=1
3 N N A R
F_Z Z i Z aij (VVZ — W]) . (24)

<.

i—1 j=1

However, the term £ Y0 WIS ag(Ws — W)l = £ S0 WL, ai; (Wi — Wi + W — W),
This implies
Wro,W; — FEWT (LoD)W (25)

1 K2

Mz

N
T T
— E (riei +r; Kpri +r; Kig’l“i)
i=1

3
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where W = [WIT V~V2T e Wg ]T and £ is the Laplacian matrix associated with the communication graph
G, of which all nonzero eigenvalues have positive real parts [25,26]. Because 8 and T'; are designed to be
greater than zero,

N N
—Z (TiGi +T?K¢17‘i +’I“;-TKZ‘2’I“,L') — ZWFU%’W'L’- (26)
=1 =

From the completion of squares, we can show that

N N
T 1% 0 5T Oi 17T
—ZWi oiWi < —5W W+Z§W W, (27)
where o = min{o1,...,0n}. Following the same methodology, we can show that

T .12

ri Kiori [l
— e < e 28
2 e 2)\max (Kz2) ( )

Substituting (27) and (28) into (30) yields

N *
vyl ?2” +22A el ZTTKﬂrﬁ—WTW+Z Tiyy Ty
=1

i—1 max ( 12

2Ky + K — —oWTW TWTW &
— 5 (2K + Kig) i U + = ;a +22>\max(Ki2)

- | H
. ) ZJZWTW+Z2)\ ¢

m'],x

VA
|
N =
[]=
=
=4

N
\

N |
hs
7N
=3
3
3
+
=
%

N

<

<

_|_

“o’] -

(29)

where p = min {2K;1, Ki2,0l'} and § = 3 ZZ LoiWEW + ZZ 1 #(”Kz) Then, Eq. (21) satisfies

0< V() < % +V(0)e ", (30)

which implies the boundedness of V(¢). Thus, r; and W; are uniformly bounded. In addition, from
(12) and (13) we obtain the boundedness of x;; and ;2. This implies the boundedness of the control
command 7; from (17). Therefore, all the signals from the closed-loop system are bounded. This proves
the first part.

(ii) According to (21) and (30), we have

N
2
0< > () <2V < 2+ Ve, (31)
=1

which implies that there exists a finite time 7; > 0 determined by ¢ and p such that V¢t > T;, r; converges
exponentially to a small vicinity close to zero. Hence, the tracking errors e; converge to a neighborhood
close to zero according to (12). This neighborhood can be made arbitrarily small, since §/p can be made
arbitrarily small by appropriately selecting the design parameters K;; and K,;3 with sufficiently large
Amax (K1) > 0 and Apax(Ki2) > 0 and small o;. This proves the second part.

(iil) From the definition of the localized NN Subsection 2.2 and (4), the system dynamics (14) can be
written as

Ywin) (e — H(x:) — Fai,1 + Niéi)

M~
M= (i) (Wi Su(xi) — Kiri + Wi Sg(xi) — WiSu(xi) — €a)
M (zi1) (Wi Su(xi) — Kiri — €), Vi € I[1,N], (32)
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where along the union of the tracking orbits ¢; = ¢;; U--- U ¢y after time T;; the subscript [ represents
parts related to regions close to the tracking orbits ¢, ¢1, ¢, . .., dn. Wi and Wy are the local estimated
neural weights and the local neural weights estimation error of each agent, respectively, the subscript [
represents parts related to regions far from the tracking orbits, and €}, = €;; — WESJ(M) = O(e;) is the

NN approximation error along the tracking orbit trajectory [18], € = [ey1 €2 -+ €irn )" and

T
W Su(xi) = {WflsﬂJ(Xi) WhSia(xi) - VVlTnSzln(Xz)} , VielI[l,N].

In addition, the NN weight update law (18) can be rewritten as

W'L’ = Wz =-I; {Szl(Xz)Tz + oWy } Za’l] ( il — Jl> Viel [17 N] . (33)
Since . .
B Zj\]:l ai; (Wu - sz)
: =B (L& )W,
B Zj\]:l anj (Wm - sz)
where W, = [WITZ ey W;\f,l]T, the overall closed-loop adaptive learning system can be described by
i ~MK M®T(r; —Meé,
. ) ] M (34)
Wi —T®(r;)) —B(LRI) W, —TAW,
where M = I @ M~ Y(z;1), K = diag{Kl,Kg,.;.,KN}A, D(r;) = diag {S1(x1),. .-, Sni(xn)}, A =
diag{—o011,...,—onI}, € = [¢};, - ,e'Nl]T and W, = [W}, ..., W3 ]T. Since € and o; can be made

arbitrarily small, and given the boundedness of Wu, we conclude that —M ’l(zm)e; and I‘Z—AVAVZ are also
arbitrarily small. Based on [34, Lemma 9.2], if the nominal part of (34), that is,

i B

is ULES, we conclude that (r;, Wl) converges to a neighborhood of the origin. Subsequently, Assumption 1
is verified based on the boundedness of V' and Assumption 2 can also be verified by taking P = I';I and
Q=T;(MK+KTM7 ). Then, according to Lemma 2, to prove (35) is ULES, we need only to prove that

MR MOT(r)
—Ii®(r;) —B(L&I)

t+To
/ [@(r(r))@(r(r))T +/(L® I)} dr > nly, Vt=tg, (36)

where nn € Ry. From the proof of the boundedness of r;, we have shown that, for all ¢ € I[1, N], there
exists a finite time 7; > 0 such that V¢ > T;, the tracking error e; tends to a neighborhood close to zero.
Moreover, since 4;,1 is a periodic signal according to Assumption 3, x; 1 is also a periodic signal after a
finite time 7;. Further, we can show from (12) that x; o converges to the periodic signal #4; 1 and thus z; o
is periodic. Consequently, since the RBF NN input x; = col{z; 1, ;2} constitutes a periodic signal for all
t > T;, by referring to Lemma 1, we conclude that ®(r(t)) is PE, i.e. fHTO [@(r(7)@(r(T))" ] dT = nlN
Yt > to, from the definition of PE [19]. Thus, the condition of (36) is satisfied since 8 > 0 is a design
parameter and £ has all the nonzero eigenvalues with positive real parts [25,26]. This means that the
estimation error of the NN weight Wi converges to a neighborhood close to zero. The definition of the
weight estimation error, i.e., Wi = Wil — W, implies that all the agents converge to a neighborhood close
to the common optimal weight W; and a consensus between all the agents is achieved. The convergence
of W; — W, implies that, along the periodic trajectory ¢ (xi(t) le>T; » we have

H(xi) = WESi(xi) + e = WESi(xi) = WESi(xi) + e
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=W/ Si(xi) + a1 = WESi(xi) + @2, Vi € I[1,N], (37)

where 1 = ¢ — W' Si(xi) = O(||et]]) because of the convergence of W,' — 0. The last equality is
obtained according to (20), where W; is the corresponding sub-vector of W along the periodic trajectory
#1(xi(1)) |e>7, and €2 is an approximation error using W,"S;(;). This apparently leads to €2 = O(e;1)
after a transient time.

However, from the definition of the localization of the Gaussian RBF NNs, after time 7; along the
tracking orbit ¢ (Xi)|t>T7,v we have

WTS(Xi) = VAVITSl(Xi) + VV[TSf(Xi)v Viel [L N] ) (38)

for the remaining neurons with centers far away from the trajectory ¢;(x;(t)) li>7; ; [|1S7(x:)|| becomes very
small because of the localization property of the Gaussian RBF NNs. From the adaptation law in (18)
with W(O) = 0, it can be seen that the small values of S;(y;) activate the adaptation of the associated
neural weights Wl—T only slightly. Thus, both Wl—T and Wl—T Si(xi), as well as VT/I—T and Wl—T S7(xi), remain
very small along the periodic trajectory ¢;(xi(t)) s>z, . This means that the entire RBF NN WTS(y;)
and WTS (xi) can be used to cooperatively approximate the unknown function H(x;) accurately along

the periodic trajectory ¢;(x;(t)) [>T, ; i-e.,

H(xi) = WSi(xi) + a0 = WS (xi) + e
=WrS(xi) + €12 = WES(xi) +e2, Viel[l,N],

with the approximation accuracy level of ¢1 = €1 — WZ—TS;(Xi) = O(e1) = O(e) and €2 = €2 —
WESi(xi) = Oler2) = O(e), ..., en = e1,n — WESi(xi) = O(e1,n) = O(e). This ends the proof.

Remark 2. Eq. (37) constitutes a key equation in our proof. The means of obtaining this equation
are clarified in the sentences below. Similar results have been frequently obtained in many existing
deterministic learning studies [1,8,29]. For a more quantitative analysis of the error terms, such as
€1, €1,1 and €2, readers are referred to [19,20].

Remark 3. In the case of a not-connected graph, where some nodes are separated from the others, the
information cannot be sufficiently exchanged, because these nodes cannot receive any information sent
from the others. Thus, their learning process is independent of the others and their NN weights converge
only to their local optimal values in the region of their neighborhood instead over a domain consisting of
the union of all state orbits. This means that the generalization ability of the NN cannot be improved.
Remark 4. The first part of the proof of Theorem 1 shows the boundedness of the closed-loop system
signals, including the system states and the control torque. The filter-based control we use is unlike
other techniques (e.g., backstepping) that may require dynamic surface control to overcome the explosion
of terms [35,36]. Additionally, the second part of the proof shows that a careful choice of the design
parameters guarantees the system stability, as well as the convergence of the error dynamics to a small
neighborhood close to zero. This achieves our objective in designing a stable tracking control and accurate
learning system without using dynamic surface control.

Remark 5. The proof of Theorem 1 shows that, by exchanging weight information among the robot
agents, a consensus is reached in a neighborhood close to the optimum weight. This can be achieved
provided that the reference trajectories are recurrent. Thus, a common optimum estimation about the
robots’ unknown function can be obtained. The common estimation results lead to a beneficial capability,
that is, to the use of the common optimized weights as a learned experience. This learned experience
can be used in different tasks with different reference trajectories without re-performing the NN learning
process. This property is explained in the following section.

4 Learning control using experienced neural networks

In this section, we further address the second objective of Problem 1, that is, to achieve an accurate control
performance without re-adapting the NNs to the nonlinear uncertain dynamics. To this end, consider the
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multiple robot manipulator system (10) and the reference models dynamics (11) with recurrent orbits
oda(xa). Now, we design an NN learning control scheme using the learned knowledge result of Section 3
such that all the signals in the closed-loop system remain bounded and the tracking error converges
exponentially close to zero using the control law (17) after replacing the dynamic NN term by W7TS(y;),
ie.,

=W7TS(xi) + M(2i1)(Fain — Niéi) — Kiri, Vi€ I[1, N, (39)

where WTS(x;) = [W'S1(xs) Wa Sa(xi) -+ W,ES,(xs)]" is the accurate RBF NN approximation of
the nonlinear uncertain function H(x;) along the recurrent trajectory ¢;(x;(¢)) [¢+>7,. On this basis, we
have the following theorem on learning control using experiences.

Theorem 2. Given the multi-robot manipulators system consisting of the plants (10) and the reference
models dynamics (11) with the network communication topology G under Assumptions 1-4, the tracking
control performance (i.e., the trajectory tracking error converges exponentially close to zero) can be
achieved using the constant RBF NN control law (39) with the constant weights obtained from (20).

Proof.  The closed-loop system of each robot can be formed by involving the local controller in (39), the
robotic system dynamics in (10), and the results shown in Theorem 1, in particular the result showing
that weights converge to a small vicinity of the optimum values W, (i.e., W; is approximately equal to Wi,
which pushes WW; to a negligible value). From (19), using the control law in (39), we have the closed-loop

system as
i = M, Y(2i) (—Kiri — ), VielI[l,N]. (40)
Considering the Lyapunov function candidate V, = zl M(@i1) Zz 17 Ty, the derivative V. is
. N N
M Z; .
‘/r = 7(2 ’1) ZT;-TT,L'+M(£L'Z"1)ZT;-TT1'. (41)
i=1 i=1

Following an argument similar to that used to prove Theorem 1 and inequality (29), we select the
constant K; = K;1 + K, + Y such that K;; and K;o are positive values,

N
‘./;« < — Z (7’1'61' + T?Kilri + T;IKZ'Q”I’Z') . (42)

i=1
Following the same procedures in Theorem 1, part (i), we can show that

! Kiory Jle*]”

i€ S o 43
2 e 2)\max (K’L2) ( )

Substituting (43) into (42) yields

. r r *
ng z2z+22)\||€”

m ax
1

Mz

E rTKlm

IIE*H
2)\max (K’L2)

.
Il

N
l\9l>—l
Mz

T (2K1+K12 rz‘f'z

i

b

1=1 =1

N

e |I?
g - T 5; 44
2)\max (K'LQ) pV T ( )

l\D|H

where p = min {2K;;, K;2} and 0 = vazl %L(”;?) Then, V,. satisfies

0
0< Vi(t) < =+ Vi(0)e 7", (45)
p
By following an argument similar to that used to prove part (i) of Theorem 1, we can conclude that all the

signals in the closed-loop system remain bounded and the position error of each agent e; = ;1 — i1
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Table 1 Parameters of the robot

Parameter Value

my (kg) 0.8

ma (kg) 2.3

11 (m) 1

lo (m) 1
I x 1073 (kg - m?) 61.25
I> x 1073 (kg - m?) 20.42

(Vi € I[1,N]) converges to a small neighborhood close to zero in a finite time, where the size of this
neighborhood can be determined by appropriately choosing Amax (K;1) and Apax (Ki2) for all 4 € I[1, N7
This ends the proof and fulfills the control objective of Problem 1.

Remark 6. As compared to the results shown in Section 3 using (10), (11), (17), and (33), the results
in this section do not require any online RBF NN adaptation for the robots. This notably reduces the
computational expense and hence facilitates the implementation of the controller. The simulations in the
following section provide further details.

5 Simulation studies

In this section, we demonstrate the effectiveness of the proposed approach by considering multiple ho-
mogeneous 2-DOF robot manipulator systems in the form of (10) with the associated parameters given
by

My Mo
Moy Moo

Cll 012
021 022

Gll
M(q’t) = ) C(q’taq’t) = ;
G21

. F@) = [F} Glas) =

Fy

with My = mllfl —+ mo (l% —+ ZEQ + 2l .9 COS(qig)) + I + Iz, Mis = ms (ZEQ + liles COS(qig)) + Iy, Moy =
ma (132 +l1lea COS(%Q)) + Iy, My = malZy + I, C11 = —maolileaGiosin(giz), Cia = —maliles (Gin+
Qig) sin(qig), Co1 = malileagin Sin(qu), Cy =0, Gy1 = (mllcg + mgll) gcos(qil) + lecgg Ccos (qﬂ + qig),
G2 = maleag cos (g1 + Giz), where Iy, I3, mq, and mgy are the lengths and masses of the first and second
links for the agents, respectively. [.; and .5 are the halves of these lengths, F}1, F5; are constants, and Iy
and I are the inertia of the first and second links, respectively; their values are shown in Table 1. We used
N = 10 manipulators exchanging their estimated weight information to obtain common accurate nonlinear
uncertain function approximation. The following signals were constructed to be periodic reference trajec-
tories for each individual robot to follow, z41.1 = [0.8sin(t), 0.8cos(t)]T, za2,1 = [cos(2t), sin(2t)]T, w431 =
[sin(0.5¢), cos(0.5t)]T, wasq1 = [sin(t),cos?(t)]", was1 = [0.5cos?(t),0.58in(t)]T, was1 = [0.5sin(t),
cos(t)]T, xg7 1 = [sin(t), 0.5c08? ()T, zas.1 = [0.5sin(2t), 0.5c082 (t)]T, 249 1 = [0.5sin(2t)+cos(t), 0.5cos(2t)
+sin(t)]T, 24101 = [cos(t),sin(¢)]T, where x4, 1 € R?, i € I[1,10] is the position of the desired trajectory.
From these reference signals, it can be shown that Assumption 3 is satisfied. A connected undirected
network topology G was considered, as shown in Figure 1 to satisfy Assumption 4.

5.1 Simulation for learning control

We first examined the learning control performance CDL based on the above system setup, using the
control law (17) and the RBF-NN weight update law (18). For each ¢ € I[1,10], we constructed the
Gauss RBF NN WiSi(Xi) using 21 x 21 = 441 neuron nodes with the centers evenly placed over a state
space of [ —1.2, 1.2] x [ —1.2, 1.2] that is determined to cover the state space of the robot manipulator
system. The widths ¢; were chosen as 0.6 to guarantee even distribution of the neurons. The con-
troller and update law parameters were selected as in other studies in the literature, e.g., [1,20], such
that T'; = 10, 8 = 5. K;; and K;s were selected to be sufficiently large to obtain accurate tracking as
proved in Theorem 1, that is, 40 and 100, respectively. A = 20 and o; = 0.00001 were chosen as in
most studies in the literature, e.g., [1,14]. The position initial conditions were z11(0) = [0.3 0.6]",
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Figure 1 Network topology G. Figure 2 (Color online) £2 norm of partial neural net-
work weights for Agent 1.
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Figure 3 (Color online) Phase plane trajectories of agents. (a) Robot 1; (b) Robot 10.

221(0) = [0.10.7]%, 251(0) = [0.502]", 241(0) = [0.8 0.4]", 251(0) = [0.7 0.4]7, 26.1(0) =
[0.05 0.05]T, 27.1(0) =[0.2 0.6]F, 25,1(0) = [0.5 0.5]T, 29.1(0) = [0.9 0.3]" and 210.1(0) = [0.9 0.9]T
and the initial conditions for the estimated weights Wz(O) = [Wll(O) Wi72(0)]T,Wi,1 and WLQ €
R Vi € 1[1,10] were Wy 1(0) = Wi2(0) = [0 0 --- 0]T, Wa1(0) = Wao(0) = [0.50.5 --- 0.5]7,
W51(0) = Ws2(0) = [0.1 0.1 -+~ 0.1]T, Wa1(0) = Wia(0) = [0.2 0.2 --- 0.2]T, W5.1(0)= W;52(0) =
(0.3 0.3 - 0.3]F, Ws.1(0) = Ws.2(0) = [0.7 0.7 --- 0.7]T, Wy 1(0)= Wy 2(0) = [~0.5 0.5 --- —0.5]T,
Wg1(0) = We2(0) = [—0.7 —0.7 --- —0.7]T, Wo1(0)= Wo2(0) = [-0.2 —0.2 --- —0.2]T, Wi.1(0) =
W1072(0) =[11---1]T. The simulation was run for 300 s. the results are plotted in Figure 2 through
6. The performance of the scheme in terms of estimating the optimal weight vectors W is shown in Fig-
ure 2, which indicates perfect convergence of the estimated weights, Wl,l and WLQ € R*!, for Robot 1
as an example, to the common optimum weight W € R**!. For simplicity of presentation, we decided
to demonstrate the results of two sample robots, Agents 1 and 10. In Figure 3, we show the reference
orbits and the actual trajectories of these robots. We show in Figure 4 the robot position tracking control
responses and the tracking errors for the two robots. It can be observed that the tracking performance
of the robots is satisfactory, despite the nonlinear uncertainties in the system. We also show the NN
approximation results of the unknown system dynamics H(x1) and H(x10) plotted in Figure 5 using
RBF NNs W35 (x1) and WipS10(x10), respectively. It is obvious that the cooperative learning succeeded

in achieving accurate approximation of the unknown uncertain nonlinearities and the learned knowledge
can be stored using constant NNs, as shown in Figure 6.
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Figure 4 (Color online) Position tracking control. (a) x1,1 — 2g1,1; (b) 3,1 = Z410,15 (€) 1,2 — 2g1,2; (d) 32 = T410,2-
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Figure 5 (Color online) Function approximation. (a) Wi1151(x1) — hi(x1); (b) Wio1Sio(x10) — hi(x10);
(¢) W1,251(x1) = h2(x1); (d) W1o,2510(x10) = h2(x10)-
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Robot 1 function approximation with constant NN Robot 10 function approximation with constant NN
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Figure 6 (Color online) Function approximation. (a) Wi1S1(x1) — hi(x1); (b) Wlo,lsm(xm) —  hi(x10);
(e) Wi,251(x1) = ha(x1); (d) Wio,2S10(x10) = h2(x10)-

5.2 Simulation for learning control using experience

We further examined the control performance of the multi-robot manipulator system using the experience
obtained from the cooperative learning results of the CDL control by employing the control law (39) with
no weight update law. To this end, we considered the same system dynamics (10), reference trajectories
(11), initial conditions, and control gains for fairness of comparison. The simulation results for the same
robots (i.e., Agents 1 and 10) are plotted in Figures 7 and 8. It can be seen in Figure 7 as compared
to Figure 4 that a much better performance is obtained despite the subtle difference between the two
control laws (17) and (39). Recall that these satisfactory results are obtained without recalculation/re-
adaptation of the NN weights, which is beneficial in that it reduces the computational complexity and
saves the system resources/energy, especially if a large number of neurons is involved in the control
process. Control input responses using the two different control laws (17) and (39) can be observed in
Figure 8.

6 Conclusion

This paper addressed the problem of trajectory tracking control of multi-robot manipulators in the
presence of homogeneous nonlinear uncertainties. The proposed approach is divided into two parts. The
first part comprises cooperative deterministic learning using RBF NNs. It estimates the NN weight
information via inter-agent communication to reach a common approximation of the uncertainties among
agents. The second part is aimed to re-utilize the learned knowledge in any given reference trajectory
and then regulate the robot’s position and velocity accordingly. In this part, no information exchange
or weight update occurs, and hence, the computational burden is reduced. This results in a reduction in
the required system resources/energy, especially if a large number of neurons is involved in the control
process. The CDL control law employs the cooperative learning concept to overcome the nonlinearity
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Figure 8 (Color online) Control torques (N-m). (a) Robot 1 control torque 71,1; (b) Robot 10 control torque 7i0,1;
(c) Robot 1 control torque 71,2; (d) Robot 10 control torque 710,2.



Abdelatti M, et al. Sci China Inf Sci  November 2018 Vol. 61 112201:18

and uncertainties in the robots model. Extensive numerical simulations for a team of 2-DOF robot
manipulators demonstrated the distinctive capabilities of the technique.
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