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Abstract Model-based diagnosis (MBD) has been widely acknowledged as an effective diagnosis paradigm.

However, for large scale circuits, it is difficult to find all cardinality-minimal diagnoses within a reasonable

time. This paper proposes a novel method that takes a significant step in this direction. The idea is to divide

a circuit into zones and compute the cardinality-minimal diagnoses by finding subset-minimal diagnoses with

cardinality-minimal via a maximum satisfiability (MaxSAT) solver on an abstracted circuit that is composed

of these zones instead of all components. We also propose a new propagate-extend method for extending

the seed-TLDs to obtain all cardinality-minimal diagnoses efficiently. We implement our method with a

state-of-the-art core-guided MaxSAT solver, and present evidence that it significantly improves the diagnosis

efficiency on ISCAS-85 circuits. Our method outperforms SATbD, which was recently shown to outperform

most complete MBD approaches using satisfiability (SAT).
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1 Introduction

In general, diagnosing a system refers to identifying the root causes of encountered errors. Model-based

diagnosis (MBD) is a well-known diagnosis paradigm. Given a system model and an observation of the

system’s inputs and outputs, not consistent with the expected behavior, the task of MBD is to compute

a subset of the components that explain the observed behavior, according to some minimality criterion.

It plays an important role in many approaches to knowledge representation and reasoning [1–7].

Previous approaches to the MBD problem can be categorized into several classes, including conflict-

based [8–10], constraint-based [11–15], compilation-based [16,17], and the use of duality in conflict-based

approaches [18].

Recently, the use of satisfiability (SAT) (or MaxSAT) solvers in constraint-based MBD approaches

has emerged as a new paradigm that is usually referred to as the SAT-based (or MaxSAT-based) [19–22]

approach to MBD. In these approaches, cardinality-minimal diagnoses are computed by iterative SAT

(or MaxSAT) solvers. Given a propositional formula in conjunctive normal form (CNF), the SAT

problem [23,24] is to determine whether there is an assignment to the variables such that the formula is
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evaluated as true, and the MaxSAT problem is to find an assignment that satisfies as many clauses as

possible. In particular, in the partial MaxSAT problem, clauses are divided into hard and soft clauses,

and the goal is to satisfy all the hard clauses and as many soft clauses as possible. MBD can be encoded

into a partial MaxSAT problem.

Because of its high efficiency and high adaptability, MaxSAT has become a popular method of solving

MBD. An algorithm for compiling the MBD problem for MaxSAT was first presented in [25]. Subse-

quently, several MaxSAT-based methods have been proposed for MBD. Kutsuna et al. [26] used a partial

MaxSAT algorithm to solve several diagnostic automotive control problems. Similarly, Chen et al. [27]

used a partial MaxSAT to debug sequential circuits. Stochastic local search MaxSAT algorithms can also

be used for computing cardinality-minimal diagnoses [12, 28]. In a recent study on the MaxSAT-based

MBD method, Marques-Silva et al. [29] provided a method to downscale the MBD problem via filtering

the circuit using observations. However, this method only obtained one top-level diagnosis (TLD) in the

experiments.

Empirical evidence shows that although MaxSAT-based solvers can compute diagnoses in many cases,

their performance degrades when the circuit size or number of injected faults increases. A typical method

for improving the performance of MBD solving on large circuit is the hierarchical diagnosis method [17].

In this method, the circuit is abstracted using the concept of a dominator [30]. The TLDs are obtained

using HD05 [31] for the abstracted circuit. Then, the diagnosis of the abstracted subcircuit replaces

the dominator in the TLDs to generate a new diagnosis. This iterative diagnosis process is very time-

consuming. Nevertheless, thanks to the theory in [17], it has been shown to significantly reduce the scale

of the problem and thus can deal with larger circuits. Metodi et al. [13, 14] presented the concept of a

section into which a circuit is divided, where the components that have the same system outputs are in

the same section. A section is used to estimate the size of the cardinality-minimal diagnosis. In terms

of downscaling circuits, the approach proposed by Metodi et al. is the same as the hierarchical diagnosis

method [17]. Next, the TLDs are obtained using SAT for the sections and cones (as described below),

and then all cardinality-minimal diagnoses are acquired by an iterative enumeration of the replacements

while consistency is checked using SAT.

However, the complexity of the iterative process is subject to combinatorial explosion and moreover,

consistency checking can be computationally expensive. Hence, as mentioned above, Marques-Silva et

al. [29] provided a method to further downscale the problem by filtering the circuit with observations.

They also demonstrated the equivalence between the primary circuit and the filtered one.

In this paper, we propose a novel MaxSAT-based approach to MBD. First, we propose a novel method

that substantially downscales the problem. The key idea is to divide a circuit into zones that are extended

with seed-components. Then, the seed-TLDs are acquired for the zones instead of all the components via

a MaxSAT solver. In addition, we obtain these seed-TLDs in order of cardinality. Namely, our approach

obtains seed-TLDs that are cardinality-minimal diagnoses.

Second, we propose a new propagate-extend method for extending the seed-TLDs to efficiently obtain

all cardinality-minimal diagnoses. Note that for previous SAT/MaxSAT-based MBD methods, after

obtaining TLDs, it is necessary to call a SAT solver to obtain all the cardinality-minimal diagnoses from

the TLDs. In contrast, our propagate-extend method can obtain all cardinality-minimal diagnoses from

the TLDs without calling a SAT solver. The zone-minimal diagnoses are sufficient to obtain the opposite

output of the expected value.

Finally, the corresponding element in the seed-TLD is replaced to obtain all cardinality-minimal di-

agnoses. This process is cost effective. More importantly, to obtain cardinality-minimal diagnoses, we

abandon the extended diagnoses that are not cardinality minimal. Experiments show that extending

100 seed-TLDs to all the cardinality-minimal diagnoses that they represent only takes 0.1 s. Compared

with the time needed to compute the seed-TLDs, this time can be ignored in most cases. In addition,

we compare our approach to the state-of-the-art algorithm using SAT for MBD SATbD [13, 14]. Our

approach outperforms it by one to two orders of magnitude in terms of runtime.

The paper is organized as follows. Section 2 introduces some preliminaries. Section 3 presents the

zonal diagnosis (ZD) approach and the details of the main process. Section 4 compares the ZD approach
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with the latest version of SATbD [13,14], a state-of-the-art solver for computing all cardinality-minimal

diagnoses. Finally, we conclude the paper in Section 5.

2 Preliminaries

The MBD problem appears when the normal behavior of a system is observed to be violated because

of some faulty components in the circuit. The weak fault model is considered in this paper, which

ignores the mode of abnormal behavior of the components. An MBD problem can be represented as a

3-tuple 〈SD,Comps,Obs〉, where SD is a system description, Comps is a set of components, and Obs

is a given observation. In the MBD problem, some components might be unhealthy. An unhealthy

component c ∈ Comps can be stated as a unary predicate Ab such that Ab(c) is true when the behavior

of component c is abnormal. A system description SD is defined in [32]. When c behaves correctly,

denoted as propositional formula ϕc, SD can be defined as a conjunction of (¬Ab(c) → ϕc). In other

words, each healthy component is consistent with its correct behavior. A description of the diagnosis

problem and related concepts can be found in [32, 33].

Definition 1 (Diagnosis problem). Given an MBD problem 〈SD,Comps,Obs〉, the diagnosis problem

appears when, under the assumption that all components are declared healthy, there is an inconsistency

between the system description and the given observation, i.e., SD ∪ {¬Ab(c) |c ∈ Comps} ∪ Obs is

inconsistent.

Definition 2 (Diagnosis). Given an MBD problem 〈SD,Comps,Obs〉, ∆ ⊆ Comps is a diagnosis when

SD ∪Obs ∪ {Ab(c) |c ∈ ∆} ∪ {¬Ab(c) |c ∈ Comps \∆} is consistent. In addition, ∆ is a subset-minimal

diagnosis when any ∆′ ⊂ ∆ is not a diagnosis and is a cardinality-minimal diagnosis when any |∆′|<|∆|

is not a diagnosis.

Obviously, the cardinality-minimal concept is stricter than subset-minimal. Namely, a cardinality-

minimal diagnosis is a subset-minimal diagnosis, while a subset-minimal diagnosis is not necessarily

a cardinality-minimal diagnosis because its size may not minimal. In this paper, cardinality-minimal

diagnoses are obtained by obtaining subset-minimal diagnosis in order of cardinality and then discarding

those with sizes that are not cardinality minimal based on their definitions.

MBD can be encoded into the partial MaxSAT problem, where the system description and observation

are modeled as hard clauses while the components are represented as soft clauses. Previous MaxSAT-

based MBD methods focus on dividing the circuit into cones according to dominators, which are described

as follows. Let O denote a special component to which every circuit output is connected. Component v is

a dominator of component u if all paths from u to O include v. Component v is an immediate dominator

of u if every other dominator of u is also a dominator of v. That is, the dominator is related on path

which is from the component to the system outputs.

Definition 3 (Cone [17]). Given a circuit, each dominator and all components dominated by it compose

a cone. The dominator represents the corresponding cone.

The abstracted circuit can be obtained by abstracting the components into “top-level” cones. The

abstraction process downscales the original circuit. A component may have more than one dominator

and may also be a dominator of other components according to the definition of dominator. Hence, in

practice, the cones used in the abstraction process may have more than one dominator. For example, c2
is an immediate dominator of c1, c3 is an immediate dominator of c2, and c1 is not a dominator (we only

consider the components c1–c3). Components c1, c2, and c3 compose a cone and c3 represents this cone

in the abstraction process.

Definition 4 (TLD). A cardinality-minimal diagnosis is TLD if it does not contain any dominated

component.

Previous MaxSAT-based MBD methods (Table 1) obtain either a TLD or partially cardinality-minimal

diagnoses that need consistency checking. There are two main approaches to the TLD expansion process,

as described above. One is to search for subcircuits according to the dominators; then, all cardinality-

minimal diagnoses can be obtained on each subcircuit to replace the corresponding dominator in TLD.
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Table 1 Previous MBD to MaxSAT method

Previous MBD to MaxSAT method (SD,Comps,Obs)

1 FindDominator()

2 CircuitAbstraction()

3 ObtainTLDbyMaxSAT()

Table 2 Previous TLD expansion process

Previous TLD expansion process (TLD)

1 ObtainSubCircuitDiagnoses(Dominator in TLD) or ObtainDominatedComponent(Dominator in TLD)

2 IterationEnumerationReplaceTLD(SubCircuitDiagnoses) or IterationEnumerationReplaceTLD(DominatedComponent)

3 CheckConsistency(each extended TLD)

Figure 1 Example circuit, where seed-components are indicted by circles and zones are indicated by rectangles.

The other focuses on enumerating the replacements iteratively according to the domination relationships

and checking consistency. Previous expansion processes on the TLD (Table 2) all need to be checked for

consistency for each extended diagnosis, while our algorithm obtains all cardinality-minimal diagnoses

without checking consistency in the expansion process.

3 Efficient zonal MBD with MaxSAT

In this section, we propose a new MBD method based on ZD. We first introduce the formal notions and a

theorem that is used in our method. Next, we present our ZD algorithm and the propagate-extend method

for obtaining all cardinality-minimal diagnoses. In addition, we describe how we obtain subset-minimal

diagnoses in order of cardinality, hence obtaining the cardinality-minimal diagnoses.

3.1 Formal notions and theoretical basis

To introduce our ZD method, we first define some concepts.

Definition 5 (Seed-component). Given an MBD problem 〈SD,Comps,Obs〉, a component is a seed-

component if output(c) is system output or output(c) acts as the input of at least two components.

In the example circuit shown in Figure 1, o1 and o2 are components directly connected to the system

output and hence are both seed-components (indicated by circles). Moreover, the outputs of z2 and z3

both act as the inputs of two components, and therefore they are also seed-components.

Definition 6 (Zone). Given an MBD problem 〈SD,Comps,Obs〉, a disjoint partitioning Comps =

Z1 ∪ Z2 ∪ · · · ∪ Zk is defined, where each Zi has only one seed-component as a root node and is called a

zone.

Each zone uses the only seed-component to represent itself. Other components in the zone are expanded

by searching for the nonseed-components for which the output can reach the seed-component. The process

is iterated until each component belongs to a zone.

To illustrate the utility of zones, consider again the circuit shown in Figure 1, where the zones are

indicated by rectangles. We first find all seed-components, each of which is then extended to a zone.
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For instance, nonseed-component z1 can reach seed-component o1, so o1 expands its zone from {o1} to

{z1, o1}.

Definition 7 (Seed-TLD). Given an MBD problem 〈SD,Comps,Obs〉, a cardinality-minimal diagnosis

is a seed-TLD if it does not contain nonseed-component.

As described above, we compute the seed-TLDs for the seed-components without considering the

nonseed-components. Seed-components represents zones. Because the definition of a diagnosis is based

on consistency, it would be meaningless to say that the output of a component is same as its expected

output when it is abnormal. Namely, an abnormal seed-component output leads to the abnormal output

of the corresponding zone. Note that previous methods [13, 14, 17, 34] focus on computing TLDs, while

we use zones rather than cones to replace the whole circuit. The differences between these two methods

are detailed in Subsection 3.4.

Note that we obtain seed-TLDs in order of cardinality via the MaxSAT solver and discard any diagnosis

with a size that is not cardinality minimal.

Definition 8 (Zone-minimal diagnosis). Given zones Z1, Z2, . . . , Zk, a minimal component set ZDiag ⊂

Zi is a zone-minimal diagnosis that results in an output of Zi that is contrary to the predicted one.

Namely, by flipping the values of the components in zone-minimal diagnosis ZDiag ⊂ Zi, we obtain

the output of Zi that is opposite to the predicted one. Let ∆ = {Q1, Q2, . . . , Qk} be a seed-TLD that

consists of k seed-components from the corresponding zones Z1, Z2, . . . , Zk. That is, the components in

{Q1, Q2, . . . , Qk} are abnormal, leading to abnormal outputs for {Z1, Z2, . . . , Zk}.

Definition 9 (Sensitive input). Given a component c with i1, i2, . . . , ik as inputs, im (m ∈ {1, . . . , k})

is a sensitive input of c if its value can determine the output of c.

Namely, an AND gate is sensitive to 0 as an input while an OR gate is sensitive to 1 as an input.

Obviously, 0 AND R = 0 and 1 OR R = 1 (where R denotes either 0 or 1).

When we search for a zone-minimal diagnosis, the number of sensitive inputs is an important factor.

We explain this further in Subsection 3.3.

Theorem 1. Let ∆ = {Q1, Q2, . . . , Qk} be a seed-TLD that consists of k seed-components from

corresponding zones Z1, Z2, . . . , Zk. After replacing Qi in seed-TLD with the zone-minimal diagnosis

ZDiag ⊂ Zi, the resulting seed-TLD is a subset-minimal/cardinality-minimal diagnosis.

Proof. Let S = {Q1, Q2, . . . , Qi−1,ZDiag, Qi+1, . . . , Qk} be a set extended by Zi.

(S is a diagnosis.) According to Definition 8, the components in ZDiag are abnormal, leading to the

abnormal output of Zi. In addition, the components in {Q1, Q2, . . . , Qi−1, Qi+1, . . . , Qk} are abnormal,

leading to the abnormal outputs of {Z1, Z2, . . . , Zi−1, Zi+1, . . . , Zk} according to Definitions 7 and 8.

Namely, the components in {Q1, Q2, . . . , Qi−1,ZDiag, Qi+1, . . . , Qk} are abnormal, leading to abnormal

outputs of {Z1, Z2, . . . , Zk}. Hence, S is also a diagnosis.

(S is minimal.) Reduction to absurdity. Note that If ZDiag just has one component, the “minimal”

proving process mentioned below means cardinality minimality. Otherwise, the “minimal” proving process

mentioned below means subset minimality. Let c ∈ S. Suppose S \ c is also a diagnosis.

(1) When c ∈ {Q1, Q2, . . . , Qi−1, Qi+1, . . . , Qk}, the components in {Q1, Q2, . . . , Qi−1, Qi+1, . . . , Qk}\c

are abnormal, leading to abnormal outputs of {Z1, Z2, . . . , Zk}. In addition, the components in Qi are

abnormal, leading to abnormal outputs of Zi. Then, {Q1, Q2, . . . , Qk} \ c becomes a diagnosis. However,

this contradicts Definition 7, which states that ∆ = {Q1, Q2, . . . , Qk} is a seed-TLD.

(2) When c ∈ ZDiag, the components in ZDiag \ c are abnormal, leading to the abnormal output of

Zi. However, this contradicts Definition 8, which states that ZDiag is zone-minimal diagnosis.

More importantly, our approach obtains subset-minimal diagnoses in order of cardinality. Namely, we

obtain cardinality-minimal diagnoses by obtaining subset-minimal diagnoses in order of cardinality and

discarding those that are not cardinality minimal.

According to Theorem 1, we can extend the seed-TLDs to all cardinality-minimal diagnoses efficiently

via the propagate-extend method without checking consistency. We present its completeness later.
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3.2 Zonal MBD with MaxSAT

The key idea behind our algorithm is to start by obtaining all seed-components SeedC in the circuit. We

then acquire the zones of the circuit by extending the seed-components. The abstracted circuit can be

obtained with zones and is used in the diagnosis process to replace the original circuit. Hence, diagnosis

must be created using the components in SeedC. This technique can significantly reduce the scale of the

system model, thus allowing it to compile and diagnose larger circuits.

In particular, rather than checking consistency, we propose a new method called the propagate-extend

method to expand the seed-TLDs to all cardinality-minimal diagnoses, which expands the seed-TLDs

directly according to Theorem 1.

We now present in detail our ZD algorithm. The pseudo code of ZD is given in Algorithm 1.

Algorithm 1 ZD: zonal diagnosis algorithm (SD, Obs)

Input: SD, Obs;

Output: D: set of cardinality-minimal diagnosis.

1: C ← Components(SD);

2: Out ← Outputs(Obs, SD); # find system outputs and each component outputs

3: SeedC ← FindSeedComponents(C, Out);

4: Zones ← GetZones(C, Out, SeedC);

5: P ← Model(Zones, SD);

6: STLDs ← GetSeedTLDs(P , C, SeedC);

7: D ← ∅;

8: STLD ← GetOneSTLD(STLDs);

9: while true do

10: if all STLD ∈ STLDs are visited then

11: break;

12: else

13: D ← D ∪ Extend(STLD);

14: STLD ← NextSTLD(STLDs);

15: end if

16: end while

Step 1 (Find seed-components). The ZD algorithm starts by identifying all seed-components in

the circuit. First, the fan-out components of every component are acquired. This is accomplished by a

breadth-first traversal of the circuit starting from the outputs. Then, we identify the number of seed-

components by checking the fan-out components of every component: components with two or more

fan-out components are seed-components and components whose output is a system output are also

seed-components. FindSeedComponents implements this procedure on line 3 of Algorithm 1.

Take Figure 1 for example. The seed-components are o1, o2, z2, and z3. Components o1 and o2 are

connected to the system output directly. Moreover, the outputs of z2 and z3 both act as the inputs of

two components.

Step 2 (Find zones and model the circuit). Each seed-component represents a zone. Zones are

extended using seed-components by searching for the nonseed-components whose outputs can reach at

least one seed-component. This procedure can be implemented by a depth-first traversal of the circuit.

GetZones implements this procedure on line 4 of Algorithm 1.

After dividing the circuit into zones, the new circuit is modeled. The nonseed-components do not

participate in the computation of the seed-TLDs. The CNF file is modified accordingly. The Model

function implements this procedure on line 5 of Algorithm 1.

In our example in Figure 1, the circuit is divided into zones o1, o2, z2, and z3, which represent {o1, z1},

{z2}, {z3}, and {o2, z4}, respectively.

Step 3 (Compute seed-TLDs). After the circuit has been divided into zones, the seed-TLDs are

computed for the seed-components using a MaxSAT solver. More importantly, we obtain seed-TLDs in

order of cardinality and discard those diagnoses that are not cardinality minimal. Hence, the cardinality-

minimal diagnoses are obtained. We added a cardinality-order constraint to the MaxSAT solver we used

so that we obtain the diagnoses in order of cardinality. The seed-components are declared as soft clauses
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while the rest are declared as hard clauses. Algorithm 2 implements this procedure.

In our example, given observation {1, 1, 1, 1, 1} as the input and {0, 1} as the output, {o1, o2} is a

seed-TLD.

Algorithm 2 GSTLDs: GetSeedTLDs(P ,C,SeedC) # obtain seed-TLDs in order of cardinality and discard those diagnoses

that are not cardinality-minimal

Input: P : file of CNF, C, SeedC: set of components;

Output: STLDs: set of seed-TLDs.

1: SCs ← SoftClauses(SeedC);

2: HCs ← HardClauses(C\SeedC);

3: HCs ← HCs ∪ HardClauses(P );

4: W ← HCs ∪ SCs;

5: STLDs ← ∅;

6: while STLD ← MaxSAT(W ) do

7: W ←W ∪ (∞, ¬STLD); # avoid repetitive solutions;

8: STLDs ← STLDs ∪ STLD;

9: end while

Step 4 (Extend seed-TLDs). The seed-TLDs need to be extended to obtain all cardinality-minimal

diagnoses. This procedure is implemented in Algorithm 3. Previous studies on extending TLDs [13, 14,

17,34] focus on iterative enumeration of the replacements and need to check consistency, which is a time-

consuming process. We propose a new method for extending the seed-TLDs called propagate-extend.

This method expands the seed-TLDs directly without having to check consistency. Its details are given

in Subsection 3.3.

Algorithm 3 Extend(STLD)

Input: STLD: set of components;

Output: ETLDs: set of extended seed-TLDs.

1: Comp ← GetOneComp(STLD); # the Comp is a seed-component

2: while true do

3: if all Comp ∈ STLD are visited then

4: break;

5: else

6: SeedComp ← Comp;

7: ETLD← PropagateExtend(SeedComp,Comp); # the first Comp is to retain the seed-component in each iteration

of PropagateExtend

8: ETLDs ← ETLDs ∪ ETLD;

9: Comp ← NextComp(STLD);

10: end if

11: end while

3.3 Propagate-extend method

The propagate-extend method extends the seed-TLDs by traversing the zones depth-first according to

Theorem 1 rather than calling a solver to check the consistency. The seed-component is its input. This

method is outlined in Algorithm 4 and described as follows.

For the current component Comp under consideration, the PropagateExtend algorithm starts by check-

ing whether the component has fan-in components. If this is the case, the algorithm calls the FlipValue

function for each of its fan-in components.

The algorithm distinguishes two different cases.

(1) Comp has no sensitive inputs. In this case, for each fan-in component, the algorithm determines

whether it can form a zone-minimal diagnosis that can replace the current component (lines 2–9). In

addition, this propagate-extend method is executed iteratively (line 6). If Comp is a fault with no sensitive

inputs, flipping each non-sensitive input changes the output of Comp to the opposite of its expected value.

In addition, we check whether this flip operation causes the output of the seed-component to change from

its expected value.
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Algorithm 4 PropagateExtend: diagnosis of zone (SeedComp,Comp)

Input: SeedComp: a seed-component, Comp: a component;

Output: ZDiag: set of cardinality-minimal/subset-minimal diagnosis.

1: if HasFaninComp(Comp) = true then

2: if Comp has no sensitive inputs then

3: FIComp ← GetOneNonSensitiveFIComp(Comp);

4: if flipping the value of FIComp can make the output of SeedComp opposite with its expected value then

5: ZDiag ← ZDiag ∪ FIComp;

6: FIZDiag ← PropagateExtend(SeedComp,FIComp);

7: ZDiag ← ZDiag ∪ FIZDiag;

8: FIComp ← NextSensitiveFIComp(Comp);

9: end if # the later steps (lines 10–26) will be passed when we want cardinality-minimal diagnoses

10: else

11: FIComps ← GetAllSensitiveFIComp(Comp);

12: if flipping all value of FIComps can make the output of SeedComp opposite with its expected value then

13: ZDiag ← ZDiag ∪ {FIComps};

14: end if

15: SubFIComp ← GetOneComp(FIComps);

16: SubZDiag ← ∅;

17: while true do

18: if all SubFIComp ∈ FIComp are visited then

19: break;

20: else

21: SubZDiag ← SubZDiag ∪ Propagate(SubFIComp); # search for the minimal sets that flipping the value of

them in it can lead to the output of SubFIComp opposite with its expected value

22: end if

23: end while

24: if flipping all value of each set CartesianProduct(SubZDiag) can make the output of SeedComp opposite with its

expected value then

25: ZDiag ← ZDiag ∪ CartesianProduct(SubZDiag);

26: end if

27: end if

28: end if

(2) Comp has sensitive inputs. In this case, the algorithm determines whether the sensitive fan-

in components as a whole can form a zone-minimal diagnosis that can replace the current component

(lines 10–26). If Comp is a fault with sensitive inputs, only flipping all sensitive fan-in component will

change the output of Comp from its expected value. We also check whether this flip operation can

change the output of the seed-component from its expected value. In addition, for each sensitive fan-in

component, we search for the minimal set such that flipping the values of the components in the set

changes the output of the fan-in component from the expected value on line 21. This step is similar to

the propagate-extend process, but it only propagates without extending. We need to check whether each

set in the Cartesian product of these minimal sets can become a zone-minimal diagnosis.

In addition, the second case means that the current diagnosis is not cardinality minimal. Hence,

we discard this extended diagnosis. Note that these steps (lines 10–26) are executed when we want

cardinality-minimal diagnoses.

To illustrate the process of this algorithm, consider the partial circuit given in Figure 2, which denotes

a zone. Obviously, z9, an AND gate, is the only seed-component of the zone. In this zonal structure, we

regard the seed-component as the root node of a tree structure, and z6, z7, and z8 are the fan-in nodes

of z9.

The algorithm finds the number of sensitive fan-ins to z9 because it is an AND gate. The rest of the

algorithm proceeds according to two cases. For our example, we introduce the two cases separately.

(1) Suppose the values of f17, f18, and f19 are 1, 1, and 1, respectively; thus, z9 has no sensitive inputs.

The algorithm then flips the value f17 of z6. If this flip makes output f20 of seed-component z9 change

from its expected value, then f17 is flipped and z6 comprises the zone-minimal diagnosis according to

Theorem 1. The algorithm executes iteratively using z6 and seed-component z9 as its inputs. Note that

the following iteration may be the first case or the second case, depending on the number of sensitive
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Figure 2 Example of a zone in a circuit.

inputs of z6.

The algorithm then flips the value of f18. If this makes f20 of seed-component z9 change from its

expected value, then f18 is flipped, and z7 composes the zone-minimal diagnosis according to Theorem 1.

The algorithm then executes iteratively with z7 and seed-component z9 as inputs. As above, the next

iteration may be the first or second case, depending on the number of sensitive inputs of z7.

The algorithm then flips the value of f19. If this changes f20 of seed-component z9 from its expected

value, then f19 is flipped, and z8 composes the zone-minimal diagnosis according to Theorem 1. The

algorithm executes iteratively using z8 and seed-component z9 as inputs. As above, the next iteration

may be the first or second case, depending on the number of sensitive inputs of z8.

(2) Suppose the values of f17, f18, and f19 are 0, 0, and 1, respectively; thus, z9 has two sensitive

inputs f17 and f18.

Then, the algorithm tries to flip the value f17 and f18. If this flipping makes the output f20 of seed-

component z9 change from its expected value, z6 and z7 compose the zone-minimal diagnosis according

to Theorem 1. We then search for the minimal sets for z6 such that flipping all the values of the members

of the set changes the output of z6 from its expected value. In addition, z7 undergoes same process. We

check whether each set in the Cartesian product of these minimal sets could be a zone-minimal diagnosis

on line 24 of Algorithm 4.

Note that when zone-minimal diagnosis consisting of a single component replaces a seed-component,

the extended diagnosis remains cardinality minimal. When zone-minimal diagnosis consisting of multiple

components replaces a seed-component, this case will be discarded if we only want cardinality-minimal

diagnoses.

Completeness of the propagate-extend method. The propagate-extend method searches for a

zone-minimal diagnosis to replace the seed-component in each zone. Note that the seed-TLD is cardinality

minimal, as above. Finding a zone-minimal diagnosis starts by verifying the number of sensitive inputs.

When a zone-minimal diagnosis has only one component, the extended diagnosis is also a cardinality-

minimal diagnosis according to Theorem 1. We traverse the zone depth-first to ensure we access the

components in order and explore all possibilities. Hence, we can obtain all cardinality-minimal diagnoses.

In contrast, when the zone-minimal diagnosis has more than one component, the Cartesian product

operation in the propagate-extend method ensures that the power set of the components is enumerated.

In this case, we obtain a diagnosis that is subset minimal rather than cardinality minimal. In addition,

this process is executed when we want cardinality-minimal diagnoses only.

3.4 Differences with dominator and TLD

To reduce the scale of the circuit, our method uses an approach that is different from previous methods

that are based on the domination relationship. We extend the seed-components to zones, and the whole

circuit is eventually replaced by zones. Some specific differences are as follows.

D1. Seed-components vs. dominators. From our definition, a seed-component is related to the

number of fan-out components. However, the concept of a dominator [17] is related to the paths from



Liu M, et al. Sci China Inf Sci November 2018 Vol. 61 112101:10

a component to the system output. The intersections of these paths are dominators. Obviously, the

concept of a dominator is stricter.

D2. Seed-TLDs vs. TLDs. Our method uses the seed-TLD, while previous methods use the TLD.

D3. Zones vs. cones and sections. The concept of a cone is based on a dominator while our zone

is based on a seed-component. Some components in a cone that can reach the same circuit system output

compose a section [13, 14]. In contrast, our zone is based on a seed-component, which is related to the

number of fan-out components. Namely, a zone only has one output, which is the output of corresponding

seed-component. Moreover, zones and cones are used to downscale the circuit while a section is used to

estimate the size of the cardinality-minimal diagnosis.

More importantly, the propagate-extend method cannot be used on cones. The dominator is the

component that appears in each path from the component to system outputs. It is possible that some

components in a cone cannot reach the dominator via the internal cone connections. Namely, a cone does

not necessarily have complete internal connections. However, our propagate-extend method is based on

the complete internal connections within a zone. Hence, the propagate-extend method cannot be used

on cones because this case could occur.

We consider a simple example. Suppose component c1 has three paths to the system output {c1, c2, c3,

c4, c7}, {c1, c5, c3, c4, c7}, and {c1, c6, c3, c4, c7}. Further, the output of c1 only reaches c2, c5, and c6

directly, the output of c3 only reaches c4 directly, the output of c4 only reaches c7 directly, and the

output of c7 reaches more than one component directly. The outputs of c2, c5, and c6 only reach c3

directly. In addition, we only consider the components c1–c7.

In the cone method, obviously, c3 is the immediate dominator of c1 because all paths from c1 to the

system outputs contain c3, c4, and c7 and both c4 and c7 are a dominator of c3. Moreover, c4 is the

immediate dominator of c3 and c7 is the immediate dominator of c4. Hence, c1, c3, c4, and c7 compose

a “top-level” cone in the abstraction process and c7 represents this cone. In this cone, c3, c4, and c7

have complete connections while c1 and c3 do not. Namely, the internal connections in the cone are not

complete.

In contrast, in our approach, c1 and c7 are seed-components. Namely, c1 is in a different zone from c3,

c4 and c7. In addition, c2, c5, c6, c3, c4, and c7 compose a zone. The internal connections in this zone

are complete. Our propagate-extend approach is based on such complete internal connections. Hence the

propagate-extend approach cannot be used on cones.

D4. Obtaining all cardinality-minimal diagnoses. Previous methods for obtaining all cardinality-

minimal diagnoses focus on extending TLDs, which are subcircuit diagnosis, and iterative enumeration

of replacements. A drawback of these techniques is the time consumed to check consistency. Our method

extends the seed-TLDs without checking consistency. It only takes 0.1 s to extend 100 cardinality-minimal

diagnoses.

4 Experimental evaluations

This section evaluates our ZD approach to computing all cardinality-minimal diagnoses. We first compare

the scalability of our approach with that of hierarchical diagnosis [17], which is a state-of-the-art approach

for downscaling circuits in the diagnosis problem. We then compare our approach to a state-of-the-art

MBD solver for computing all cardinality-minimal diagnoses as well as a degraded version of our approach

that works without the strategies presented in this paper.

4.1 Experiment preliminaries

Implementation. Our approach was implemented in C++ and compiled with the g++ compiler.

Moreover, we adopted the open-wbo-inc (wboinc) solver [35] as the MaxSAT solver in our approach, as

it is one of the best performing MaxSAT solvers for partial MaxSAT instances. Note that we use the

MaxSAT solver to obtain subset-minimal diagnoses in order of cardinality to obtain cardinality-minimal
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Table 3 Comparing reducing power of cones and zones on ISCAS-85 circuits

Circuit Components
Hierarchical diagnosis ZD

Health vars Reduce (%) Zones Reduce (%)

c432 160 59 63.1 65 59.4

c499 202 58 71.3 66 67.3

c880 383 77 79.9 132 65.5

c1355 546 58 70.3 266 51.3

c1908 880 160 57.5 392 55.5

c2670 1193 167 86.0 399 66.6

diagnoses. Namely, we obtain cardinality-minimal diagnoses by obtaining subset-minimal diagnoses in

order of cardinality and discarding those that are not cardinality minimal.

Competitors. We first compare the scalability of our approach with that of hierarchical diagnosis [17],

which represents the best method for scale reducing. We then focus on comparing our solver with the

latest version of SATbD [13,14], which was recently shown to outperform most complete MBD approaches

using SAT.

Note that we do not compare our approach with MaxSAT-based MBD algorithms because previous

studies on MBD using MaxSAT focus on obtaining one or partial cardinality-minimal diagnosis, while

our approach acquires all cardinality-minimal diagnoses. Instead, a simple complete algorithm for solving

MBD with the MaxSAT solver open-wbo-inc is also implemented, called MM, which does not contain

any strategies.

Benchmarks. We ran 5506 instances on a series of ISCAS-85 circuits using random observations.

For each circuit, we randomly generated the expected observations according to the normal behavior of

the circuit, then we flipped t outputs randomly, for values of t from 1 to 8, so as to obtain abnormal

observations. Note that, in most cases, neither our approach nor SATbD compute all cardinality-minimal

diagnoses within the time limit for the larger circuits (i.e., c5315, c6288, and c7552, where we used a very

large diagnosis number limit, such as 105 or 106). Hence, we do not list these results.

Experimental setup. The experiments were performed on a 32-bit Ubuntu machine equipped with

one Intel i5-4590 3.30 GHz processor and 1 GByte of physical memory. For all experiments, the time

limit was set to 1500 s.

4.2 Experimental results

This subsection reports the results of our experiments, which consist of two parts: scalability and effi-

ciently.

(a) Scalability. First, we compare the scalability of our approach with that of [17] on ISCAS85

circuits. As the method in [17] only returns one TLD rather than all cardinality-minimal diagnoses, we

cannot compare our method with it directly. Instead, we compare the reducing power of our abstracting

method based on zones with the method based on “health vars” in [17].

The experimental results are reported in Table 3. Because [17] reports the scalability for six circuits,

we compare the reducing power for these six circuits. The results show that the reducing power of our

abstracting approach is weaker than the dominator-based approach. However, our propagate-extend

method in this paper is particularly suitable for the zone diagnosis approach. In addition, it cannot be

used on cones.

(b) Efficiency. A recent study presented empirical evidence suggesting that a “direct” search for

diagnoses is often better than conflict-directed diagnosis algorithms [36]. Hence, we compare the efficiency

of our approach with SATbD [13,14] on ISCAS85 circuits. SATbD is based on a complete algorithm for

finding all cardinality-minimal diagnoses directly. It was recently shown to outperform most complete

MBD approaches using SAT.

We tested 5506 instances on ISCAS85 circuits. The experimental results (Table 4) indicate that the

efficiency of our approach outperforms SATbD for most instances on the ISCAS85 circuits in Table 3

when the diagnosis number is limited to 101, 102, 103, and 104. As can be observed, the runtime of
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Table 4 Run time comparison for the ISCAS-85 circuits a)

Circuit
Diagnosis number 6 10 Diagnosis number 6 100

SATbD MM ZD SATbD MM ZD

c432 0 0.04 0 0.18 0.21 0.06

c499 0.01 0.05 0 0.16 0.36 0

c880 0.02 0.02 0 0.08 0.49 0.09

c1355 0.05 0.11 0 0.09 0.96 0.08

c1908 0.34 0.26 0.02 0.64 1.76 0.41

c2670 0.24 0.47 0.07 0.74 4.46 0.71

Diagnosis number 6 1000 Diagnosis number 6 10000

SATbD MM ZD SATbD MM ZD

c432 0.24 0.54 0.27 0.42 1.41 0.31

c499 0.74 1.01 0.41 1.74 1.84 0.95

c880 0.42 1.41 0.27 1.46 2.97 0.93

c1355 0.57 1.52 0.45 1.82 6.85 1.02

c1908 0.84 3.11 0.90 3.33 12.75 2.98

c2670 1.32 10.87 1.09 7.65 36.49 4.96

a) Bold: the winner for each scenario.
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Figure 3 (Color online) Run time comparison for the ISCAS-85 circuits (ZD vs. SATbD).

our approach (Table 4) is always less than 1.0 s. Hence, we tested ISCAS85 circuits without limiting

the number of diagnoses. The experimental results are reported in Figure 3. As can be observed, the

ZD approach is mostly one to two orders of magnitude faster than SATbD. In addition, from the data

in Figure 3, we randomly selected one case for each circuit to compare the runtime in order of circuit

size (Figure 4). As the number of diagnosis increases with the circuit scale, the impact of the expansion

process becomes more significant. Namely, the performance improvements of the ZD method are more

substantial as the circuits become larger. Moreover, the runtimes for some circuits are over the time limit

when SATbD is used, while our approach can deal with these circuits.

Typically, the diagnosis problem becomes harder as the number of diagnoses increases. The plot in

Figure 5 shows the results for c3540 for different numbers of diagnoses. As can be observed, our ZD

approach outperforms SATbD and can return larger numbers of diagnoses for a particular problem.

5 Conclusion

This paper presented a novel approach to solving MBDs with MaxSAT on a standard ISCAS-85 bench-

mark. This method downscales the problem and finds all cardinality-minimal diagnoses efficiently. We

use open-wbo-inc, a state-of-the-art MaxSAT solver. First, the concept of zones is used to downscale the
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Figure 5 (Color online) Run time comparison on c3540.

circuit. Second, the propagate-extend method is used to extend the seed-TLDs directly. The experimen-

tal evaluation focused on the ISCAS-85 benchmarks. We compared the efficiency of our approach with

that of SATbD and the scalability of our approach with that of hierarchical diagnosis. The results are

unequivocal: our approach outperforms SATbD in terms of run time, one to two orders of magnitude

within time limit.

In the future, we would like to seek further optimizations using the ZD approach.
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