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Dear editor,
In order to accommodate the sharp increase in en-
ergy consumption and environmental pollution, it
is important to coordinate the supply and the de-
mand. This has become a key feature in a cyber-
physical energy system (CPES), where the energy
consumer and supplier share information with each
other to improve the overall energy efficiency and
therefore to reduce the environmental pollution.
Shared economy has risen sharply across the globe
and becomes an effective model to improve the effi-
ciency in an investment. Examples include but are
not limited to shared electric vehicles (EVs [1]) and
bicycles. It is of great practical interest to schedule
these shared objects to maximize the social welfare
and sustainability.

This problem usually faces the following chal-
lenges. First, the curse of dimensionality. The
state space increases exponentially with respect to
(w.r.t) the system scale. Second, the curse of mod-
eling. It is usually difficult to specify parameter
settings in practical application. Third, the un-
certainty. The demand and the supply in a shared
economy are highly uncertain. For example, the
demand on shared EVs and the availability of idle
EVs depend on the individuals’ behavior and are
highly uncertain. Fourth, the system dynamics in
multiple spatial and temporal scales. For example,
there are forecasting models for renewable power

generation such as wind power and solar power at
different temporal scales. There also exist models
to predict the demand and supply of shared EVs
at different spatial resolutions. But it is not clear
how to merge these models for system-level opti-
mization.

Many efforts have been devoted to address these
challenges, which can be roughly classified into
two categories. First, explore structural property
to reduce the state and action space. Examples
include state aggregation [2] and time aggrega-
tion [3]. These methods could be very effective
but are usually problem dependent. Second, de-
velop approximate solutions to the optimal pol-
icy. Examples include approximate dynamic pro-
gramming [4] and event-based optimization (EBO)
[5,6]. Among these efforts, EBO has an appealing
feature since the number of events may increase
only linearly w.r.t. the system scale or even stay
as a constant [7].

We consider the optimization for shared econ-
omy in CPES in this study, and make the following
major contributions. First, we formulate the prob-
lem as a distributed EBO to exploit the similar-
ity among the shared objects (e.g., EVs). Second,
we develop a distributed Q-learning algorithm to
solve this large-scale optimization problem. Third,
we demonstrate the performance of this algorithm
on the scheduling of shared EVs to satisfy the trip
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demands integrated with renewable energies like
wind power.

Problem formulation. To demonstrate the ad-
vantages of the proposed algorithm, we apply it to
solve the problem of scheduling shared EVs intro-
duced in [8]. It is assumed that there are sev-
eral independent high-rising buildings, mounted
with wind turbines that generate electricity. Wind
power storage is not considered. So the generated
wind power will not be stored or transferred to
the grid and can only be used instantly. There is a
parking lot under each building where the shared
EVs are parked and charged. The batteries of the
EVs can be charged either by electricity bought
from the grid market or the wind power generated
from the turbines. The driving demand from the
users is stochastic, which is from one building to
another. The goal is to maximize the income of the
operator of the shared EVs by properly scheduling
the EVs to pick up users and for charging. We for-
mulate the problem as a Markov decision process
(MDP) and provide more details in Appendix A.

The system state St consists of the wind power
Wt, the user demand Dt, and the state of EVs Vt:

St = (Wt, Dt, Vt). (1)

The EVs’ state Vt consists of the state of charge
(SoC) Ct, the ranking of SoC Rt, the location Lt,
and the remaining driving/parking time τt. The
state of wind power Wt is discretized to represent
the number of EVs that may be charged. In order
to develop a scalable problem formulation, we nor-
malize Wt and Rt to [0,1] and discretize into finite
(say 10) disjoint intervals.

Event definition. In EBO, an event et is a set of
state transition pairs:

et = {〈St, St+1〉}. (2)

We use the number of events to quantify the com-
plexity of an event-based policy. We consider the
definition of two types of events, namely the macro
events eM and the micro events em, where the
macro events may describe the fluctuation of the
wind power and the micro events may describe the
change of the ranking of the local SoC.

e = {eM , em} = {〈Wt,Wt+1〉, 〈Rt, Rt+1〉}. (3)

Distributed Q-learning for EBO. We developed
a distributed optimization framework for EBO. In
this framework a central operator collects infor-
mation (including wind power, user demand, the
state of EVs, and reward) and distribute to the
EVs. Then each EV conducts policy optimization
in a distributed manner. In this study, we propose

a Q-learning algorithm to solve the multi-stage de-
cision making problem. To coordinate the global
and local objectives, we introduce a weighted re-
ward for the optimization at each EV. Detailed
description on the algorithm can be found in Ap-
pendix B.

Numerical results. We apply the proposed
method to solve a shared EVs scheduling problem
with 3 buildings and 50 EVs. The experiments are
run on a computer with CPU as Intel (R) Core
(TM) i5-4460 and RAM memory as 8 GB. We list
some important results here. More numerical re-
sults can be found in Appendix C.

We design 11 experiments with micro-events
and macro-events under different complexities
(i.e., discretization level of the state space). The
event definitions in the 11 experiments are listed
in Table C2. From Experiment Nos. 1–11, the
complexity decreases. Figure 1 shows the policy
performance and the average time for each itera-
tion in each experiment.
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Experiment Nos. 1-7 and 9

Figure 1 (Color online) Policy performance. (a) Perfor-
mance of the objective function; (b) average run time in
each iteration.

The objective performances of the policy are
shown in Figure 1(a) and may be classified into 3
groups. Experiment No. 11 has the poorest perfor-
mance as it has the lowest event complexity. The
middle are the performance curves in Experiment
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Nos. 8 and 10. The micro-event em complexity is
2 (low complexity) in both experiments. The per-
formances are improved compared to Experiment
No. 11, but are far from satisfaction. The top
are a bunch of curves in Experiment Nos. 1–7 and
9. The micro-event em complexity is larger than 5
(high complexity) in these experiments. The pol-
icy performances in this group are satisfying and
is much better than the other two groups.

We further focus on the performance curves in
Experiment Nos. 1–7, which can be classified into
4 groups according to the convergence rates. Ex-
periment No. 1 with the highest event complexity
has the lowest convergence rate among others. It
is observed that in a certain range, it takes shorter
iterations for the policy to converge to a satisfac-
tory performance when the events become simpler.

Another important issue is the average time in
each iteration, which is shown in Figure 1(b). The
results suggest that the average time in each it-
eration may be saved by properly defining events
with lower event complexity. This is because the
scale of Q-table is reduced with lower complexity,
which leads to faster retrieval time. While the av-
erage iteration time does not continue to decrease
when the complexity drops to a certain level. This
is because of the faster policy improvement rate
under lower event complexity. Detailed explana-
tion can be found in Appendix C.

Based on the numerical results shown above, we
draw the remarks as follows.

Remark 1. Different ways to defining events
may lead to large difference in policy perfor-
mances.

Remark 2. It is possible that events with lower
complexity reduce the computation budget while
reserve the satisfying policy performance.

Remark 3. Event definitions (e.g., macro event
and micro-event) even with the same complexity
may have divergent policy performance.

More discussion on policy performance under
various event definitions is referred in Appendix C.

Conclusion. We develop a distributed event-
based optimization method for scheduling shared
EVs in CPES. We show that the scheduling pol-
icy converges to a satisfactory performance by ap-
plying our method. Various event definitions are
tested and numerical results show that the perfor-
mances diverge under different event definitions.
Even under the same event complexity, the way
that we define events influences the performance
a lot, including the policy improvement rate, the

iteration time and the objective value. We show
that in our shared EVs scheduling problem, micro-
event achieves better performance than macro-
event when the event complexity is the same. Fur-
ther study may focus on event selection and quan-
titative analysis in distributed event-based opti-
mization. It is also an interesting research topic
to combine game theory [9] with the distributed
algorithm in this study to better improve the per-
formance of the overall system.
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