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Dear editor,
Deep convolutional neural networks (CNNs) have
become the dominant approach in various com-
puter vision tasks such as image classification [1–
4]. Despite the success of CNNs, it is impeded to
deploy such deep CNN models in real-time tasks
due to high computational complexity. To address
the problem, we propose GlanceNets with several
bypasses (Figure 1). In modern CNNs, it is be-
lieved that shallow layers provide lower-level fea-
tures, whereas deep layers correspond to higher-
level features. However, it is not always necessary
to classify a sample with the highest-level feature.
In many cases, easy samples can be correctly clas-
sified with low-level features, just as one can recog-
nize common items at a glance. Such observation
is the key motivation of proposed GlanceNets in
this study.

A bypass in proposed GlanceNets simply con-
sists of batch normalization (BN), rectified linear
unit (ReLU), global average pooling, fully con-
nected (FC), and softmax (Figure 1). In training
stage, losses of predictions are provided in all of the
bypasses and are optimized jointly. Inspired by ex-
isting hard example mining methods [5] and Focal-
Loss [6], an online hard example mining strategy
with hard example weight function (green boxes
in Figure 1) is designed to improve both accuracy
and speed. A threshold learning method (blue
boxes in Figure 1) is proposed to avoid thresh-
old search procedures as used in existing work.

In inference stage, predictions are given bypass-
by-bypass. And if any bypass classifies a sample
with much confidence, the prediction becomes fi-
nal and subsequent computation costs are saved
for the sample. In this way, the average runtime
of GlanceNets becomes less than that of the back-
bone CNN.

Hard example weight function. The online hard
example mining strategy is expected to enable
GlanceNets not only to early classify easy exam-
ples in preceding bypasses, but also to focus on the
hard samples (that is, incorrectly classified ones)
in the subsequent part. We carry out the goal by
designing a novel hard example weight function,
which is denoted as w.

In the i-th bypass, a hard example weight func-
tion of a sample is

wi = σ
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where σ(·) denotes the sigmoid function, y is the
one-hot column vector of the ground truth label,
pj is the column prediction vector of the j-th by-
pass, and I[·] is the indicator function that indi-
cates whether the prediction p is correct (denoted
as Ic) or not (denoted as Iic).

The proposed hard example weight function
is used as a coefficient of cross entropy loss in
GlanceNets, thus the final loss term becomes

JHEM,i = wi ·H, (2)
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Figure 1 (Color online) A GlanceNet consists of a backbone CNN architecture and several bypasses, in which the pro-
posed online hard example mining method (green boxes) and threshold learning method (blue boxes) are applied. Detail
compositions of a bypass are shown on the right.

where H is the widely used cross entropy loss of
Softmax in CNN models.

The comparison experiments of training
GlanceNets with or without the proposed hard
example weight function are conducted on CI-
FAR10 datasets to verify its effect (with α = 0.5).
The results demonstrate that the proposed hard
example weight function can improve both speed
(from 1.54 times faster to 1.69 times faster than
baseline DenseNet [1] in inference time) and ac-
curacy (from 89.12% to 89.84%). GlanceNets are
able to classify more samples in preceding by-
passes with the help of proposed hard example
weight function. That fact can be observed ob-
viously in the comparison experiments where the
first bypass predicts around 15% more samples
after exploiting the hard example weight function,
thus more average runtime is saved.

Threshold learning approach. To measure the
confidence of a prediction without ground truth
labels in inference stage, following [7], the entropy
of a prediction is used as the confidence metric.
The definition of a prediction entropy is

H (q) = −
∑

i∈C

qi ln qi, (3)

where q is the prediction vector (e.g., softmax out-
puts), qi denotes the i-th element in the vector q,
and C is the set of all classes in a dataset. The
lower the entropy becomes, the more confident the
prediction is. If the entropy of a prediction is lower
than the learned threshold HT, the prediction be-
comes final and subsequent computation will not
take place.

Thresholds have to be selected manually and
empirically for every single bypass with a stochas-

tic exhaustive search procedure in traditional
methods [7]. To avoid the complication, a thresh-
old learning method is proposed in this study to set
the thresholdHT adaptively with one single hyper-
parameter α, which represents a leverage between
speed and accuracy. In this way, thresholds for all
bypasses can be adaptively learned while training
the CNN with a least computational cost.

For the i-th bypass in a GlanceNet, the thresh-
old learning loss term JT,i is

JT,i =(1− α) ‖max {Ic [H (pi)]} −HT,i‖2
+ α‖min {Iic [H (pi)]} −HT,i‖2, (4)

where HT,i is the learned adaptive threshold of the
i-th bypass, max{Ic[H(pi)]} is the maximum in-
formation entropy within the correct predictions,
min{Iic[H(pi)]} is the minimum information en-
tropy within the incorrect predictions, and ‖ · ‖2
denotes L2-norm.

Eq. (4) suggests that α controls the balance of
distances from the threshold HT,i to the minimum
information entropy of incorrect predictions and
to the maximum entropy of the correct ones. The
larger α is set, the smaller will the learned HT,i

be, thus fewer samples will exit at the i-th bypass.
GlanceNets hold a threshold learner for each by-
pass (Figure 1), providing an adaptive threshold
for each bypass.

The hyper-parameter α, which is proposed to
enable adaptive threshold learning in GlanceNets,
is an important parameter that affects the effi-
ciency of GlanceNets. As described above, the
proportion of early classified samples lessens and
more prediction results are given by subsequent
bypasses with the increase of α.
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The accuracy, speed, and threshold of Glance-
Nets with various α are further experimented on
CIFAR10 dataset. The results show that: the
larger α is, the lower the learned thresholds be-
come, thus the overall accuracy becomes higher.
On the contrary, smaller α can lead to faster speed.
In practice, α should be picked according to the
characteristic of the task and the backbone CNN
architecture. Considering the trade-off between
accuracy and speed, we suggest the value of α be-
ing set to 0.5–1.0.

Results and discussion. The quantitative com-
parison experiments of GlanceNets (α = 0.9) and
original DenseNet [1] are performed on CIFAR10
dataset. The proposed GlanceNets achieve an ac-
curacy of 92.36% with computation complexity
(measured in the number of floating-point multi-
plication-adds, i.e., FLOPs) reduced from 276
MFLOPs to 186 MFLOPs (30.18% reduced),
which means 1.43 times faster than the baseline
DenseNet.

The main contributions of this study are as fol-
lows:

(1) An efficient CNN framework, GlanceNets.
The proposed GlanceNets are able to early classify
a number of samples in the added bypasses, thus
avoiding redundant computation of those samples.
When more samples are early classified, more run-
time can be reduced.

(2) Online hard example mining strategy with
hard example weight function. The hard example
weight function is designed to make each part of
GlanceNets focus more on hard examples, leading
to an overall classification accuracy raise.

(3) Threshold learning method as a term in loss
function. The threshold learning method based
on information entropy, the prediction confidence
metric, can learn all thresholds adaptively, which
avoids the complication of exhaustive search pro-
cedures.

(4) Compatibility with mini-batch SGD meth-
ods. The entire GlanceNets framework is compat-
ible with widely used mini-batch SGD methods in
modern CNNs, which means one can easy reuse
numerous CNN software frameworks when imple-
menting GlanceNets. Moreover, GlanceNets can
be trained in an end-to-end fashion, which means
it only requires a minor revision of an existing
CNN backbone architecture.

In the perspective of back-propagation algo-
rithm, bypass architectures as used in GlanceNets

have benefits for backward propagation of gradi-
ents in training stage [7, 8]. As a bonus advan-
tage, GlanceNets alleviate the gradient vanishing
problem with the help of losses on the bypasses,
thus suite training very deep CNNs. The exper-
imental results have demonstrated that proposed
GlanceNets have the capability of raising the ef-
ficiency of a CNN. Furthermore, GlanceNets can
be used in conjunction with existing CNN pruning
and compression methods. With the combination
of diverse acceleration methods, the runtime can
be further saved on the basis of GlanceNets. Be-
sides, GlanceNets, as a framework, could be fur-
ther utilized in semantic segmentation and object
detection tasks. Considering the characteristics
of various computer vision tasks, how to improve
GlanceNets in those tasks remains a piece of future
work.
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