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Abstract In this paper, we propose a novel autonomous Martian rock detection framework via superpixel

segmentation. Different from current state-of-the-art pixel-level rock segmenting methods, the proposed

method deals with this issue in region level. Image is splitted into homogeneous regions based on intensity

information and spatial layout. The heart of proposed framework is to enhance such region contrast. Then,

rocks can be simply segmented from the resulting contrast-map by an adaptive threshold. Our method is

efficient in dealing with large image and only few parameters need to set. Preliminary experimental results

show that our algorithm outperforms edge-based methods in various grayscale rover images.
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1 Introduction

Rock detection and recognition on Mars is the basis of hazard avoidance and path planning in Mars rover

missions. Using the grayscale images captured by the panoramic cameras, rocks can be detected by auto

rock detection algorithms. Current state-of-the-art image segmentation algorithms [1–3] usually use the

edge-based techniques to identify closed rock contours.

One of the most significant problems of such boundary-based detectors is the poor precision of rock

detection. It is difficult to extract rocks boundaries from intensity images. Different from relatively

regular craters, rocks exhibit diverse morphologies, textures or other properties against soil of Mars [4,5].

Such diversities are the leading cause of poor precision for edge-based visual segmentation techniques.

Meanwhile, impacts of complex illumination conditions and dust covering leads to shadows and boundary

blurring, which accentuated the predicament of rock detection techniques [6]. As a result, rock detection

still remains an interesting yet challenging topic in the past few decades.

The fundamental technique of edge extraction methods basically is local intensity-gradient operator.

Rock boundaries are firstly detected by gradient operator, after that edge-linking and gap filling pro-

cedures are used to group boundaries into contours. Such methods are well-performed detecting “dry”

rocks with totally closed and obvious contours. However, one of the major obstacles of local intensity-

gradient is the sensitivity to noise, which seriously affect the identification of rocks with dusty or blur

boundaries. Figure 1 shows some typical scenes that edge-based methods failed to segment evident rocks

(red rectangle) or occurred large portion of false (blue rectangle).

Several attempts have been made to solve this issue. Instead of extracting boundaries, some of them

utilized shadows to find rocks, such as the Marsokhod shadow detector [7]. Refs. [8,9] modeled rocks by
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Figure 1 (Color online) Some of the notable rocks on Mars that edge detection algorithms failed to attach contours or

generated false boundaries. From top to bottom: grayscale images taken by Spirit Rover’s pancam; edge maps obtained by

Sobel detector; results from Canny operator.

shadows for spacecraft safe landing missions. However, shadow-based detectors lack accurate boundary

attachment since they apply ellipse profile to roughly cover the rocks. Some studies [10,11] suggest that

the stereo-based approaches may play an alternative way to resolve this problem by providing depth

information which passive image lacked. Similar with this, 3D Lidar-based methods are also recorded in

recent work [12,13]. Moreover, there are efforts using supervised learning strategy [5,14], which explored

the redundant features associated with rocks. By manually marking the rocks, rock features are learned

by support vector machine (SVM) classifier or other classification algorithms, the resulting features are

applied to detect rocks. A key issue of supervised learning is the lack of a sufficient rock database. It is

impossible to obtain all the diverse rocks on Mars environment.

Because the visual detection literatures on object detection and segmentation are vast, in above dis-

cussion, we only focus on some typical papers for onboard application. Current state-of-the-art visual

detection or segmentation methods may also show some possibilities for onboard application with the

hardware improvement of onboard computer. Recently, self-paced learning methodologies [15, 16] show

significant potential to deal with complex detection issues. One of the major challenges is the variety

and complexity of practical images, it is very hard to well annotated such samples for training set es-

tablishment. Self-paced learning can effectively solve this issue by pseudo-labeling the images and then

feeding them back into training. There is a detail about current development or application of self-paced

learning on the web-page1) by Meng, who did a pioneer study on this topic.

Results from above studies demonstrate a strong and consistent association between detection precision

and the application of multi-sensors or multi-features. Since edge-based framework does not fully utilize

spatial layout and intensity relationship of pixels or regions, such multi-scale strategy may be better for

revealing inner difference between background and foreground.

In this paper, we propose a multi-scale rock detection method solely based on low-level features. Image

1) http://gr.xjtu.edu.cn/web/dymeng/6.
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Figure 2 (Color online) Superpixel of Mars images.

is grouped into perceptually meaningful atomic regions in multi-scale, on each scale, mean intensity and

standard variation of each region are measured. We deal with the rock detection as a result of contrast

enhancement, which is derived as the intensity difference of any pair of superpixels and weighted by the

integration of spatial location constraint and a smooth term. It is based on the fact that generally rocks

have higher reflectivity than background soil under strong Martian illumination environment. As a result,

the front side of rocks will get higher intensity values than the soil, while achieve lower pixel values at

their shading areas. Therefore, region contrast can be denoted as the measurement of possibility that a

specific superpixel belonging to rock or soil. To generate contrast map, resulting region contrast on each

scale is further normalized to [0, 1]. Rock regions will take large values close to 1, while background is

near 0 in resulting contrast map. Multi-scale superpixel segmentation is used to produce varying-scale

local contrast information, since fixed superpixel number strategy may face the dilemmas between the

over-segmentation and the under-segmentation. Contrast maps on each scale were calculated and then

fused together to produce the final map. Threshold the map using an adaptive threshold to obtain the

detection results.

The remainder of the paper is constructed as follows: in Section 2, we introduce the proposed method;

Section 3 shows the results and evaluates the performance using real Mars images; Section 4 concludes

the paper.

2 Methodology

2.1 Region generation

Image is firstly splitted into homogeneous subregions by intensity and spatial layout at a specific segmen-

tation scale k. Nk denotes the number of superpixels N at k. We utilize simple linear iterative clustering

(SLIC) method [17] to generate superpixels for its almost linear complexity O(N) and fine boundaries

adherence. The distance between two subregions is measured as

D =

√

d2I +

(

ds

S

)2

(mk)2, (1)

where dI denotes the intensity difference and ds measures the Euclidean distance, mk balances the

weight between intensity similarity and spatial proximity at scale k. Large mk demonstrates the spatial

proximity, and vice versa. dI and ds are defined as following formulas, respectively:

dI = |Ii − Ij |, (2)

ds =
√

(xi − xj)2 + (yi − yj)2. (3)

Figure 2 presents resulting superpixels of image in Figure 1 at different segmentation scales.

2.2 Superpixel contrast

After splitting, image I was transformed into a subregion set S = {S | Si, i = 1, 2, . . . , N}. Statistical

features involving mean intensity Ini and texture detector Smi are used to measure the characteristic of
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each Si.

Ini = mean(Si), (4)

Smi = 1−
1

1 + σ(Si)
, (5)

where σ(Si) denotes the variation of Si. Smi is normalized to [0, 1]. For subregions belong to flat

background, Smi is close to 0, while rocks with rich texture surface will achieve value near 1.

Spatial constraint is also taken into account, since the size of any rock in an image is limited. In order

to emphasize the locality of rock sizes, we define the spatial location factor of rock wd as follows:

wd = exp

(

−
ds

σs

)

, (6)

where ds denotes the Euclidean distance of each pair of superpixels’ center (xc
i , y

c
i ):

ds =
√

(xc
i − xc

j)
2 + (yci − ycj)

2. (7)

Superpixel contrast R is then derived as the integration of intensity difference and spatial factor, as

well as the texture descriptor

R(Si) =

N
∑

j=1

|Ini − Inj |Smiwd. (8)

2.3 Multi-scale fusion

In our latest study [18], we measure the contrast in fixed superpixel number and perform a favorable

detection result. However, such onefold superpixel segmentation may lead to false adherence at blurring

boundaries, which in turn results in detection errors involving the false detection and the missed detection.

Although over-segmentation can provide detailed contrast information for small regions, it fails to measure

the global or large-scale region contrast. On the contrary, under-segmentation gets the benefit of depicting

large-scale contrast, but suffers the missing of detailed difference. It is difficult to solve the contradiction

between the over-segmentation and under-segmentation by a regular scale. To handle this problem,

superpixels at k scales are applied in this paper. Region contrast is computed on each scale and the final

contrast map C is then fused by integrating such multi-scale results. Multi-scale segmentation can realize

the complementary advantage by measuring the varying-scale local contrast. We denote the optimized

multi-scale algorithm as RC*, and the initial specific scale version by RC.

C = norm

(

k
∑

i=1

Rk

)

. (9)

The final segmented rock image is obtained by cutting C map using an adaptive threshold T , in this

paper, we define T as

T = τ × ave(C), (10)

where τ = 2 in our following experiments. Denote the binarized images as (∗) cut.

3 Experimental result

To validate the efficiency of proposed algorithms, experiments detailed in this section involved images

drawn form both Spirit and Opportunity Mars rover pancams. Multi-scale superpixels parameters are

listed in Table 1.

Unfortunately, there is no automatic scheme to determine both the number of scales and the cor-

responding parameters for each scale. We manually set the total numbers of segmentation scales and

corresponding parameters N i and mi based on the sizes of obtained images. Since the sizes of images
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Table 1 Parameters setting for multi-scale superpixels segmentation

Scale 1 2 3 4 5 6 7 8 9 10 11 12

N
i 250 300 350 400 450 500 550 600 650 700 750 800

m
i 5.5 5.5 7 7 8.5 8.5 10 10 11.5 11.5 13 13

captured by pancams are under 1k×1k, the largest superpixel number should be smaller than 1000, other-

wise there will be no difference between proposed region-level method and current pixel-based algorithms.

We set the max-segmentation number to be 800. The numbers of rest scales are decreasing progressively

by 50 from initial 800 to the minimum number. In this paper, we set the min-segmentation number is

250.

As we mentioned in Subsection 2.1, m balances the weight between intensity difference and spatial

proximity. Large m will result in relatively regular and compact superpixels. With small m, the resulting

superpixels adhere more tightly to boundaries, yet have less regular size and shape [17]. In order to obtain

efficient and reliable statistical features, there should have sufficient pixel numbers in each superpixel. In

addition, the setting of m should guarantee each superpixel has approximate pixel numbers to reduce the

influence of superpixel size, especially when the segmentation scale is large. Based on that, we set larger

m in large-sale superpixel segmentation and smaller m for small-scale segmentation. In this paper, we

set the maximum of m is 13, while the minimum is 5.5 (the recommendatory interval of m is [1, 40] [17]).

The rest is decreasing progressively by 1.5 until the minimum m has been reached.

In order to quantitatively evaluate the performance of proposed algorithms, both precision-recall cure

(PRC) and area under receiver operating characteristics curve (AUC) are taken into consideration. We

generate the segmentation results of contrast map at different thresholds ranging from 0 to 255 and

compute the statistic metrics. AUC measures the probability that positive detection is ranked higher than

negative example. High AUC value means the algorithm achieves convincing rock segmentation results.

Precision is the percentage of true rocks to all the detected rocks, while the recall is the percentage of

rocks segmented from the total rocks actually present in the scene. High PRC means algorithms returned

substantially more relevant results than false ones. In addition, Fβ (Fmea) is also used to combine

precision and recall [18]:

Fβ =
(1 + β2)Precision× Recall

β2 × Preciison + Recall
. (11)

Set β2 = 0.3 to emphasize the precision than recall. Considering the difficulty of manually labeling

rocks in the real Martian images, only 21 images were used to verify the statistic performance.

Figure 3 presents the statistical results. As can be seen, both RC and its optimization RC* achieves

favorable results in PRC and AUC metrics. Maximum Fβ for each algorithm is larger than 0.7. Fβ of

RC* is better than RC, indicates the efficiency of proposed multi-scale fusion. There is a clear fact that

RC* does better than RC in PRC with any recall value, further manifesting the importance of taking

multi-scale strategy in a computationally feasible framework. Taking 40% recall as a illustration, 83.1%

in the precision of RC* was recorded, yet no statistically high precision of RC method was observed which

was less than 80%. Any of the two methods reaches high AUC value larger than 0.7. RC* ranks the top

with AUC 0.8072, Fβ 0.7609.

Figure 4 shows some segmentation results of panoramic images by proposed methods. It is apparent

that the detecting maps resulting from Canny operator does not achieve considerable performance as good

as region-based methods. The differences between RC and RC* are evident and indicate the efficiency of

multi-scale fusion as shown in the bottom of Figure 4. Meanwhile, the segmented comparisons between

Figure 4(c) and (e) show that proposed method can significantly reduce the false detection. In summary,

our method are well-performed in dealing with real Mars images.

To analysis the sensitivity of detection results to the above parameters, we carried more experiments

by changing the segmentation scale k and m. First, the influence of m is tested by calculating statistical

metrics under full scales (k = 1, . . . , 12) with fixed m = 5.5 and 13, respectively. And then, only half of

the total scales, under m shown in Table 1, is used to evaluate the effect of scale changing to the final

detection results. To such, we firstly set half scales k1 = 1, . . . , 6, ant then k2 = 7, . . . , 12.
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Figure 3 (Color online) Statistical performance on RC* and RC, respectively. (a) PRC curves; (b) AUC and Max-Fβ .

(a) Ori (b) RC (c) RCcut (d) RC* (e) RC*cut (f) Canny (g) GT

Figure 4 (Color online) Visual performance of proposed algorithm on real Martian images. (a) Original image; (b) and

(d) are contrast maps resulting from RC and RC*, respectively; (c) and (e) are corresponding cutting maps; (f) the detecting

results by Canny operator; (g) ground truth.

Figure 5 presents the statistical results compared with RC* and RC. As can be seen in resulting PRC

profiles (Figure 5(a)), despite there exist slight differences between all of the above tests, they achieve

consistent results with RC* (Figure 5(b)). Test with large m (m = 13) achieves higher PRC values than

that under small one, which gets the maximum Fβ 0.7615, slightly better than small one’s 0.7472. For
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Figure 5 (Color online) Statistical performance on tests with parameters changing. (a) PRC curves; (b) AUC and

Max-Fβ .

RC*, the corresponding Fβ value is 0.7609. On the evaluation of AUC, both of them are on par with

RC*, achieving AUC of 0.8074 and 0.8015, respectively, while AUC of RC* is 0.8072. Similarly, tests

with k changing is also taken into consideration. Statistical results under k1 and k2 are given in Figure 5.

There is a clear fact that results under k2 are better than those in k1, which demonstrates the key role

of large segmentation scales in multi-scale fusion algorithm like RC*. Test under k2 achieves on-par

performance with RC*, the corresponding AUC, Fβ values are 0.8053 and 0.7617, respectively. Test

under k1 is not well-performed as RC* does. It gets the Fβ of 0.7478 and the AUC value of 0.8015, both

of the two statistical metrics are smaller than those of RC*. Nevertheless, it still gets better detection

rate than RC. In fact, all the above statistical results are better than RC, demonstrating the superiority

of multi-scale fusion strategy.

Such consistent performance directly indicate the insensitivity of detection results to parameters’ chang-

ing. However, as we mentioned above, it will get better detection results under large segmentation scale

and weight factor m. Therefore, the principle of parameter setting for proposed algorithm is to enlarge

such scale and m, under allowed computational environment.

4 Conclusion and discussion

In this paper, we propose a novel rock detection method via multi-scale region contrast. Instead of

detecting rock boundaries, new method deals with the detection processing as foreground enhancement.

Only low-level features, mean intensity, standard variation and spatial constraint are utilized to model

superpixel contrast. Proposed method achieves consistent and favorable results through real Mars images,

demonstrating its efficiency in future Mars rover missions.
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