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Abstract In the local rank modulation (LRM) scheme, a sliding window produces a sequence of permu-

tations by moving over a sequence of variables. LRM has been presented as a method of storing data in

flash memory, which represents a natural generalization of the classical rank modulation scheme. In this

paper, we present a study on Gray codes over certain run-length sequences for the (1, 2, n)-LRM scheme to

simulate virtual multilevel flash memory cells while maintaining the advantages of LRM. Unlike previous

studies on the LRM scheme, we present Gray codes over certain run-length sequences in the (1, 2, n)-LRM

scheme. This class of Gray codes can overcome the drawback of the many distinct charge levels required

in the rank modulation scheme and in certain Gray codes for LRM. Furthermore, we demonstrate that the

proposed codes have an asymptotically optimal rate.
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1 Introduction

Flash memory is a nonvolatile type of memory that is electrically programmable and erasable. It is widely

used for its high storage density and relatively low cost. For exactly and efficiently representing data

in flash memory, the rank modulation scheme was presented and studied in a recent series of papers,

specifically [1–4]. In the rank modulation scheme [1], a permutation induced by the relative charge levels

of certain cells represents stored information. In this scheme, programming operation is restricted to the

“push-to-the-top” operation. Specifically, in the rank modulation framework, a single cell is programmed

by raising its charge level above that of all others. Therefore, in this scheme, over-programming (increasing

the charge level of a cell above the desired amount) is not an issue. Additionally, this scheme can reduce

corruption and speed up cell programming [1].

In the rank modulation scheme for flash memory, a set of n cells is utilized to simulate a single virtual

multilevel flash cell with n! levels. Jiang et al. [1] utilized a Gray code to traverse the n! states, where

the transition between two adjacent states in the Gray code was facilitated by utilizing a single “push-

to-the-top” operation. However, the Gray code was first presented in [5] as a sequence of distinct binary

vectors of fixed length, where adjacent vectors differed in only a single coordinate. In practice, they are

widely used in many applications, such as storage and retrieval applications [6], processor allocation [7],
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signal encoding [8], and data compression [9]. A thorough survey of Gray codes was presented in [10].

In the context of flash memory, Gray codes for the rank modulation scheme were studied in [1, 2].

Furthermore, various generalizations of Gray codes for rank modulation include Gray codes for local

rank modulation [11, 12] and snake-in-the-box codes for rank modulation [13–16].

One drawback of the rank modulation scheme is the fact that a large number of comparisons are

required to obtain a single permutation induced by a set of n charge levels. In order to acquire a permu-

tation from the n charge levels, at least Ω(n logn) comparisons are required, which requires significant

storage space and computation time. To overcome this drawback, local rank modulation (LRM) was

proposed in [4,11,12]. In the LRM scheme, only local comparisons are required. These comparisons yield

a sequence of small permutations instead of a single large permutation. En Gad et al. [11, 12] presented

Gray codes for the LRM scheme.

However, there is another drawback of the rank modulation scheme. Assume that δ is the minimum

charge difference required to distinguish two distinct levels and D is the gap between the minimum and

maximum charge levels of a flash memory cell. For a group of n flash memory cells, n distinct charge

levels of these cells are required to induce one permutation over {1, 2, . . . , n} in the rank modulation

scheme. Furthermore, two distinct charge levels represent two distinguishable levels, meaning the differ-

ence between the two distinct charge levels must be at least δ. In order to obtain n distinct charge levels,

this value increases to D > nδ. Therefore, the requirement for n distinct charge levels prohibits the use

of large values of n.

However, in the LRM scheme, a small permutation induced by local charge levels only requires distinct

charge levels for the corresponding local cells. En Gad et al. presented constant-weight Gray codes in [12]

and generalized Gray codes for LRM in [11]. However, for n flash memory cells, there must be certain

code words in these Gray codes that require at least
√
n distinct charge levels.

The LRM scheme with a sequence of n permutations over two elements is called the (1, 2, n)-LRM

scheme. To overcome the above drawbacks, in the (1, 2, n)-LRM scheme, we consider a set of sequences,

denoted R(1, 2, n; d), in which each sequence requires at most d distinct charge levels, where d is a

constant. In this paper, we propose a class of Gray codes over R(1, 2, n; d) by utilizing “push-to-the-top”

operations. This class of Gray codes has an asymptotically optimal rate. Furthermore, this class of Gray

codes only requires at most d distinct levels, which is much less than
√
n (the Gray codes in [11,12] require

at least
√
n distinct charge levels). Therefore, the proposed Gray codes can maintain the advantages of

LRM, overcome the drawback of requiring a large number of distinct levels, and have an asymptotically

optimal rate.

The remainder of this paper is organized as follows. In Section 2, we define some basic concepts of the

LRM scheme and provide some useful notations for readers. In Section 3, various properties of run-length

sequences are presented. In Section 4, we present a construction of Gray codes over R(1, 2, n; d) for the

(1, 2, n)-LRM scheme. Section 5 concludes this paper.

2 Preliminaries

In this section, we will introduce some notations and definitions for LRM and Gray codes. Some notations

and definitions were presented in [11, 12].

2.1 Local rank modulation

Let Sn be the set of all permutations over [n] = {1, 2, . . . , n}. Denote π = [π(1), π(2), . . . , π(n)] as a

permutation over [n] (i.e., π ∈ Sn). Given t flash memory cells, we number these cells as 1, 2, . . . , t.

Let c = (c1, c2, . . . , ct) ∈ R
t be a vector of t real-valued variables, where ci is the charge level of the

i-th cell for all i ∈ [t]. Assume that δ is the minimum charge difference required to distinguish two

distinct levels and ci 6= cj for all i 6= j (i.e., |ci − cj | > δ for all i 6= j). For convenience, if not specified

otherwise, we refer to the two distinguishable charge levels as two distinct levels (values). The t distinct
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variables c1, . . . , ct (i.e., c) induce one permutation, denoted fc = [fc(1), fc(2), . . . , fc(t)] ∈ St, such that

cfc(1) > cfc(2) > · · · > cfc(t).

For a set of n flash memory cells, consider a vector of n real-valued variables c = (c1, c2, . . . , cn) ∈ R
n,

where ci is the level of the i-th cell for all i ∈ [n]. From a local perspective, we define a window of size t

at position p to be

cp,t = (cp, cp+1, . . . , cp+t−1),

where the indices are taken modulo n, 1 6 p 6 n, and 1 6 t 6 n.

Let s, t, and n be positive integers such that s 6 t 6 n and s|n. The (s, t, n)-LRM scheme is defined

by utilizing the demodulation process from [11]. Given a vector of n distinct real-valued variables c =

(c1, c2, . . . , cn), the demodulation maps c to a sequence of n/s permutations from St, denoted fc, where

fc = (fc1,t , fc1+s,t
, . . . , fcn−s+1,t). (1)

In other words, by utilizing windows of size t to scan the n variables, a sequence of n/s permutations

from St is obtained in the (s, t, n)-LRM scheme. For example, if s = 1, t = 2, n = 3 and c = (0.5, 2.5, 1.5),

then, by the definition of fc, fc1,2 = [2, 1], fc2,3 = [1, 2], fc3,1 = [1, 2], and fc = ([2, 1], [1, 2], [1, 2]).

A sequence g of n/s permutations from St is (s, t, n)-LRM realizable if there exists a c ∈ R
n such that

g = fc (i.e., g is the demodulated sequence of c in the (s, t, n)-LRM scheme). Except for the degenerate

case of s = t, not every sequence is realizable [12]. For the number of distinct levels of n flash memory

cells, we define a function Ψ : Rn → [n], where for every c = (c1, . . . , cn) ∈ R
n, Ψ(c) is the number of

distinct components of c. Similarly, a sequence g of n/s permutations over St is (s, t, n; d)-LRM realizable

if there exists a c ∈ R
n such that g = fc and Ψ(c) 6 d. In other words, g is the demodulated sequence

of c in the (s, t, n)-LRM scheme, where the number of distinct components of c is at most d.

For convenience, let R(s, t, n) be the set of all (s, t, n)-LRM realizable permutation sequences. Let

R(s, t, n; d) be the set of all (s, t, n; d)-LRM realizable permutation sequences. It follows thatR(s, t, n; d) ⊆
R(s, t, n) and R(s, t, n;n) = R(s, t, n). If d1 6 d2 are positive integers, then R(s, t, n; d1) ⊆ R(s, t, n; d2).

For each fc = (fc1,t , fc1+s,t
, . . . , fcn−s+1,t) ∈ R(s, t, n), a compact representation of fc may be de-

rived by utilizing (mixed-radix) factoradic notation (see [1, 17]). Specifically, for any permutation f =

[f(1), . . . , f(t)] ∈ St, this permutation can be represented utilizing a sequence of integers dt, dt−1, . . . , d1,

where dt+1−i is the number of entries f(j) for j > i such that f(j) < f(i). Specifically,

dt+1−i = |{j > i|f(j) < f(i)}|.

Here, we refer to dt as the most-significant digit and d1 as the least-significant digit. Based on the overlap

between adjacent local views, the local permutation fci·s+1,t can be represented utilizing only the s most-

significant digits in its factoradic notation for every 0 6 i 6 n/s − 1. This representation is denoted

f̄ci·s+1,t and referred to as the condensed factoradic representation. Accordingly, we define

f̄c = (f̄c1,t , f̄c1+s,t
, . . . , f̄cn−s+1,t),

and the set of all such presentations as R̄(s, t, n). Similarly, let R̄(s, t, n; d) = {f̄c|fc ∈ R(s, t, n; d)}.
For example, if s = 3, t = 5, n = 6, and c = (2, 0.5, 1.5, 2.5, 1, 3), then, by the definition of fc and f̄c,

fc =
(
[4, 1, 3, 5, 2], [3, 1, 4, 2, 5]

)
and f̄c =

(
(3, 0, 1), (2, 0, 1)

)
. Throughout the remainder of this paper, we

will only consider the condensed factoradic representation and omit the term “condensed” for the sake

of brevity. For convenience, we will make no distinction between f̄c and fc.

When s = t = n, the (n, n, n)-LRM scheme degenerates into the rank modulation scheme, where we

obtain a single permutation from Sn. The case s = t < n was discussed by Ferreira et al. [18] in the

context of permutation trellis codes, where a binary code word was transformed tuple-wise into a sequence

of permutations with no overlap between adjacent tuples. Furthermore, Wang et al. [4] discussed the

general case of s 6 t < n (in this case, indices are not taken modulo n). Finally, En Gad et al. proposed

Gray codes for the cases of (1, 2, n)-LRM [11] and (s, t, n)-LRM [12].

In the (1, 2, n)-LRM scheme, the demodulated sequences of permutations comprise the permutations

[1, 2] and [2, 1]. In the following explanation, we will represent the permutation [1, 2] with the logical
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value 1 and [2, 1] with 0, thereby forming a one-to-one mapping between binary sequences from R̄(1, 2, n)

and permutation sequences from R(1, 2, n). It can be easily verified that R̄(1, 2, n) includes all binary

sequences of length n, excluding all-ones and all-zeros sequences (i.e., R̄(1, 2, n) = {0, 1}n − {0n, 1n}).
Therefore,

R̄(1, 2, n; d) ⊂ R̄(1, 2, n) ⊂ {0, 1}n.
For convenience, we will make no distinction between R(1, 2, n) and R̄(1, 2, n). Similarly, we utilize the

notation R(1, 2, n; d) for R̄(1, 2, n; d) later.

2.2 Gray codes for LRM

Generally speaking, given a set S and subset of transformations T ⊂ {g|g : S → S}, a Gray code over S
of size M utilizing transformations from T is a sequence C = (c0, c1, . . . , cM−1) of M distinct elements

from S, referred to as code words, such that for each i ∈ [M − 1], there exists some t̃i ∈ T for which

ci = t̃i(ci−1).

In the context of LRM for flash memory, consider S = R(1, 2, n; d), which is the set of all realizable

sequences in the (1, 2, n; d)-LRM scheme.

In the rank modulation scheme, Jiang et al. [1] utilized the “push-to-the-top” operation to transform

a permutation into an adjacent permutation. In other words, the charge level of a single cell was raised

above that of all others. However, in the LRM scheme, the “push-to-the-top” operation merely raises the

charge level of a single cell above that of the cells that are comparable to it [12].

We now prove a concrete definition of the “push-to-the-top” operation in the (1, 2, n; d)-LRM scheme.

Assume that c = (c1, c2, . . . , cn) ∈ R
n, where c1, c2, . . . , cn are the charge levels of n flash memory cells.

Let δ be the minimum charge difference required to distinguish two distinct levels. A “push-to-the-

top” operation performed on the i-th cell changes the cell levels c = (c1, c2, . . . , cn) to the cell levels

c′ = (c′1, c
′
2, . . . , c

′
n) ∈ R

n, defined by

c′j =

{

cj , if j 6= i,

max{ci−1, ci+1}+ δ, if j = i,
(2)

where i − 1, i + 1 should be taken modulo n and 0 is considered as n modulo n. Specifically, in the

(1, 2, n)-LRM scheme, the charge level of the i-th cell is pushed above the charge levels of the cells that

are comparable to it.

Let fc = (f1, f2, . . . , fn) and fc
′ = (f ′

1, f
′
2, . . . , f

′
n) be the demodulated sequences of permutations

for c and c′, respectively, in the (1, 2, n)-LRM scheme. Then, fc,fc
′ ∈ R(1, 2, n). From (2), a single

“push-to-the-top” operation is performed on the i-th cell to change fc into fc
′ . Therefore, we define

the set of allowed transitions over R(1, 2, n) as T = {τ1, τ2, . . . , τn}, which is a set of functions τi :

R(1, 2, n) → R(1, 2, n), where τi represents a “push-to-the-top” operation performed on the i-th cell such

that fc
′ = τi(fc). Specifically,

f ′
j =







0, if j ≡ i− 1 (mod n),

1, if j = i,

fj , otherwise.

For example, if fc = (1, 0, 1, 0, 1, 0), there exists one transition τ4 performed on fc to obtain another

sequence fc
′ , where fc

′ = (1, 0, 0, 1, 1, 0). In this paper, we will present Gray codes over R(1, 2, n; d) by

utilizing “push-to-the-top” operations such that each code word is realized by at most d distinct levels.

Definition 1. A Gray code G over R(1, 2, n; d) is a sequence of distinct length-n binary code words,

denoted G = (g0, g1, . . . , gM−1), where gi ∈ R(1, 2, n; d) for all 0 6 i 6 M − 1, such that for all

0 6 i 6 M − 2, there exists some ji ∈ [n] for which gi+1 = τji(gi). The Gray code G is cyclic if there

exists some l ∈ [n] such that g0 = τl(gM−1) and optimal if M = |R(1, 2, n; d)|.
In the following explanation, if not specified otherwise, we simply refer to a cyclic Gray code as a Gray

code.
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Definition 2. Let {Gi}∞i=1 be a family of Gray codes where Gi is a Gray code over R(1, 2, n(i); d(i)) of

size Mi, and n(i+1) > n(i) and d(i+1) > d(i) are positive integers. We define the rate of the code Gi as

R(Gi) =
log2 Mi

n(i) . Then, we state that {Gi}∞i=1 is asymptotically rate-optimal if limi→∞ R(Gi) = 1.

3 Run-length sequences

In this section, we will discuss some properties of R(1, 2, n; d). Note that each element of R(1, 2, n; d)

can be considered as a certain run-length sequence. Therefore, to define the asymptotic property of

|R(1, 2, n; d)|, some notations and definitions for run-length binary sequences are introduced below.

Let u = (u0, u1, . . . , un−1) ∈ {0, 1}n be a binary vector of length n. In this paper, u0 and un−1 are

considered to be adjacent. Next, we provide definitions of a run, run length, and maximum run length.

Definition 3. Suppose u is defined as above. If ui−1 6= ui = ui+1 = · · · = uj−1 6= uj, then (ui, . . . , uj−1)

is a run of u, and (j − i) mod n is the run length of (ui, . . . , uj−1), where the indices i− 1, i, . . . , j − 1, j

should be taken modulo n.

Definition 4. Suppose u is defined as above. Denote RL(u) as the maximum run length of u.

For example, if u = (1, 0, 0, 0, 1, 1, 0, 0, 1), then u has a run of zeros of length 3, a run of zeros of length

2, and two runs of ones of length 2. Therefore, RL(u) = 3. From Definition 4, we establish a relationship

between certain run-length sequences and R(1, 2, n; d) in the following lemma.

Lemma 1. For any u ∈ R(1, 2, n; d), we have that RL(u) 6 d − 1. Furthermore, for any u ∈ {0, 1}n,
if RL(u) 6 d− 1, then u ∈ R(1, 2, n; d). Therefore,

R(1, 2, n; d) = {v ∈ {0, 1}n|RL(v) 6 d− 1}.

Proof. First, we prove that if u = (u0, u1, . . . , un−1) ∈ R(1, 2, n; d), then RL(u) 6 d − 1. From the

definition of R(1, 2, n; d), if there exists a vector c ∈ R
n such that Ψ(c) 6 d and fc = u. If RL(u) > d,

then there exists a run of u, denoted (ui, . . . , uj−1), such that the run length (j− i) mod n > d. Because

ui = · · · = uj−1, it follows that the substring of c, written (ci, ci+1, . . . , cj), can be demodulated into a

sequence of permutations

([1, 2], . . . , [1, 2]
︸ ︷︷ ︸

(j−i) mod n

) or ([2, 1], . . . , [2, 1]
︸ ︷︷ ︸

(j−i) mod n

).

Then, (ci, ci+1, . . . , cj) is an increasing or decreasing sequence. From the definition of Ψ(·), we have that

Ψ(c) > Ψ((ci, ci+1, . . . , cj)) = ((j − i) mod n) + 1. (3)

From (3), Ψ(c) > d+ 1, which results in a contradiction. Therefore, RL(u) 6 d− 1.

Next, we prove that for any u ∈ {0, 1}n, if RL(u) 6 d− 1, u ∈ R(1, 2, n; d). Therefore, we only need

to prove that there exists a vector c ∈ R
n such that fc = u and Ψ(c) 6 d. Without loss of generality,

suppose

u = (0, 0, . . . , 0
︸ ︷︷ ︸

d1

, 1, 1, . . . , 1
︸ ︷︷ ︸

d2

, . . . , 0, 0, . . . , 0
︸ ︷︷ ︸

d2l−1

, 1, 1, . . . , 1
︸ ︷︷ ︸

d2l

),

i.e., u has some runs of zeros of length d1, d3, . . . , d2l−1 and some runs of ones of length d2, d4, . . . , d2l,

where l is a positive integer and di 6 d−1 for all i ∈ [2l]. Let c = (1, 1+δ, . . . , 1+(d1−1)δ, 1+max{d1, d2}·
δ, 1+(d2−1)δ, . . . , 1+δ, 1, . . . , 1, 1+δ, . . . , 1+(d2l−1−1)δ, 1+max{d2l−1, d2l} ·δ, 1+(d2l−1)δ, . . . , 1+δ),

where δ is the minimum charge difference required to distinguish two distinct levels. That is to say,

we denote the substring of c that generates a run of zeros of length d2i−1 as an increasing sequence

(1, 1 + δ, . . . , 1 + (d2i−1 − 1)δ) and denote the substring of c that generates a run of ones of length d2i
as a decreasing sequence (1 + max{d2i−1, d2i} · δ, 1 + (d2i − 1)δ, . . . , 1 + δ, 1) for all i ∈ [l]. From the

construction of c, Ψ(c) = maxi∈[2l]{di + 1} and fc = u. Because di 6 d − 1 for all i ∈ [2l], we obtain

Ψ(c) 6 d. Therefore, u ∈ R(1, 2, n; d).
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In [19], the author presented an enumeration of certain run-length sequences. Let u = (u0, u1, . . . ,

un−1) ∈ {0, 1}n be a binary vector of length n. In the following definition, consider a class of runs of u,

(ui, . . . , uj−1), where 0 6 i 6 j 6 n (i.e., the indices i− 1, i, . . . , j − 1, j are not taken modulo n).

Definition 5. Suppose u is defined as above. Let Tu = {(ui, . . . , uj−1)|(ui, . . . , uj−1) is a run of u, and

i 6 j}. Denote RL̃(u) as the maximum run length of u in Tu.
For example, let u = (1, 1, 0, 0, 1, 1) and n = 6. If the indices of runs are taken modulo n, then there

exists a run of zeros of length 2 and a run of ones of length 4. Otherwise, we can obtain a run of zeros

of length 2 and two runs of ones of length 2. From the definitions of RL(u) and RL̃(u), we have that

RL(u) = 4 and RL̃(u) = 2. Therefore, RL̃(u) 6 RL(u).

For convenience, we denote W (n, d) = {u ∈ {0, 1}n|RL̃(u) 6 d} as the set of these run-length se-

quences. In [20], the author proposed a relationship between some compositions of n and sequences from

W (n, d). In the following explanation, the notation of composition will be introduced. A composition of

the positive integer n is an ordered collection of positive integers, called parts, whose sum is n [19]. For

convenience, let Cd(n) be the number of compositions of n, no part of which is greater than d. Let Ce
d(n)

be the number of compositions of n with an even number of parts, no part of which is greater than d.

Similarly, let Co
d(n) be the number of compositions of n with an odd number of parts, no part of which

is greater than d.

Proposition 1 ([19]). Suppose that Cd(n), C
e
d(n), and Co

d(n) are defined as above. LetGd(t), G
e
d(t), and

Go
d(t) be the generating functions of these sequences, respectively (i.e., Gd(t) =

∑∞
n=1 Cd(n)t

n, Ge
d(t) =∑∞

n=1 C
e
d(n)t

n, and Go
d(t) =

∑∞
n=1 C

o
d(n)t

n). Then, we have that

Gd(t) =
t− td+1

1− 2t+ td+1
, Ge

d(t) =
t2(1− td)2

(1− t)2 − t2(1− td)2
, and Go

d(t) =
t(1− t)(1 − td)

(1− t)2 − t2(1− td)2
. (4)

For example, if n = 5 and d = 2, we can write all the compositions as follows: (1, 2, 2), (2, 1, 2), (2, 2,

1), (2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2), (1, 1, 1, 1, 1). Therefore, C2(5) = 8, Ce
2(5) = 4, and Co

2 (5) =

4. From the relationship between certain compositions of n and sequences from W (n, d), Kautz [20]

demonstrated that |W (n, d)| = 2Cd(n).

When d = 2, from (4), we have that

G2(t) =
t− t3

1− 2t− t3
= −1 +

1

1− t− t2
= −1 +

1
(
1− 1−

√
5

2 t
)(
1− 1+

√
5

2 t
)

= −1 +

√
5− 1

2
√
5

· 1

1− 1−
√
5

2 t
+

√
5 + 1

2
√
5

· 1

1− 1+
√
5

2 t

(a)
= −1 +

√
5− 1

2
√
5

·
∞∑

i=0

(

1−
√
5

2

)i

ti +

√
5 + 1

2
√
5

·
∞∑

i=0

(

1 +
√
5

2

)i

ti

=
∞∑

i=1





√
5− 1

2
√
5

·
(

1−
√
5

2

)i

+

√
5 + 1

2
√
5

·
(

1 +
√
5

2

)i


 · ti

=
1√
5
·

∞∑

i=1





(

1 +
√
5

2

)i+1

−
(

1−
√
5

2

)i+1


 · ti (5)

for all |t| <
√
5−1
2 , where

(a)
= follows from the power-series expansion of 1

1−x
for x = 1−

√
5

2 t or 1+
√
5

2 t.

From (5), we have that

|W (n, 2)| = 2C2(n) =
2√
5





(

1 +
√
5

2

)n+1

−
(

1−
√
5

2

)n+1


 . (6)

Therefore, from (6),

lim
n→∞

log2 |W (n, 2)|
n

= log2
1 +

√
5

2
≈ 0.6942.
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For d > 2, Blake [19] derived the asymptotical property of Cd(n) through the following lemma.

Lemma 2 ([19, Lemma]). Suppose that αd is the largest root of the polynomial f(t) = td− td−1−· · ·−
t− 1. Then, we have that

lim
n→∞

log2 |W (n, d)|
n

= log2 αd.

The asymptotical property of αd will be provided in the following lemma.

Lemma 3. Suppose that αd is as defined in Lemma 2. Then, we have that 1 6 αd 6 αd+1 6 2 for all

d > 2 and limd→∞ αd = 2.

Proof. From the definition of W (n, d), W (n, d) ⊆ W (n, d + 1). Therefore, |W (n, d + 1)| > |W (n, d)|.
From Lemma 2, αd 6 αd+1. From the definition of f(t), we obtain that f(t) = td+1−2td+1

t−1 for all t 6= 1.

Then, αd is also the largest root of td+1 − 2td + 1, denoted g(t). From the definition of g(t), g(t) > 0 for

all t > 2 and g( 2d
d+1 ) < 0. Then, we have that

2d

d+ 1
< αd 6 2. (7)

Therefore, from (7), 1 6 αd 6 αd+1 6 2 and limd→∞ αd = 2.

To discuss the asymptotical property of |R(1, 2, n; d+ 1)|, we present the following lemma.

Lemma 4. Suppose R(1, 2, n; d+ 1) and W (n, d) are defined as above. If n > 2, then

|W (n− d, d)| 6 |R(1, 2, n; d+ 1)| 6 |W (n, d)|.

Proof. First, we prove that |R(1, 2, n; d+1)| 6 |W (n, d)|. For any u ∈ R(1, 2, n; d+1), from Lemma 1,

RL(u) 6 d. Then, RL̃(u) 6 RL(u) 6 d and u ∈ W (n, d). Therefore, we obtain that R(1, 2, n; d+ 1) ⊆
W (n, d) and |R(1, 2, n; d+ 1)| 6 |W (n, d)|.

Next, we prove that |W (n − d, d)| 6 |R(1, 2, n; d + 1)|. Let us define the function φ : W (n − d, d) →
R(1, 2, n; d + 1) in the following manner: for each v = (v1, v2, . . . , vn−d) ∈ W (n − d, d), we set u =

(u0, u1, . . . , un−1) = φ(v) such that

uj =







(1 + v1) mod 2, if j = 0,

vj , if 1 6 j 6 n− d,

(1 + vn−d) mod 2, if n− d+ 1 6 j 6 n− 1.

(8)

From (8) and the definition of v, it is easily verified that u ∈ R(1, 2, n; d+1) and φ is injective. Therefore,

|W (n− d, d)| 6 |R(1, 2, n; d+ 1)|.
Based on Lemma 4, we will present one asymptotical property of |R(1, 2, n; d + 1)| in the following

theorem.

Theorem 1. Suppose αd is as defined in Lemma 2. Then, we obtain that

lim
n→∞

log2 |R(1, 2, n; d+ 1)|
n

= log2 αd

for all d > 2.

Proof. From Lemmas 2 and 4,

lim
n→∞

log2 |R(1, 2, n; d+ 1)|
n

6 lim
n→∞

log2 |W (n, d)|
n

= log2 αd

for all d > 2. Furthermore, we obtain that

lim
n→∞

log2 |R(1, 2, n; d+ 1)|
n

> lim
n→∞

log2 |W (n− d, d)|
n− d

· n− d

n
= log2 αd

for all d > 2. Therefore,

lim
n→∞

log2 |R(1, 2, n; d+ 1)|
n

= log2 αd

for all d > 2.
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4 Gray codes over certain run-length sequences

In this section, we will describe the construction of Gray codes for (1, 2, n; d)-LRM. We will propose Gray

codes over certain run-length sequences R(1, 2, n; d) by utilizing “push-to-the-top” operations such that

each code word is exactly realized by at most d distinct levels. Let c = (c1, . . . , cn) be the charge levels

of n cells and let c represent a vector u (i.e., u = fc). Here, let the cell configuration of u be c. Assume

that δ is the minimum charge difference required to distinguish two distinct charge levels and that all

charge levels are positive. For convenience, let δ = 1. For each vector u ∈ R(1, 2, n; d), we have the

following property.

Lemma 5. For each vector u ∈ R(1, 2, n; d), there must exist a vector c ∈ R
n such that u = fc and

Ψ(c) = n.

Proof. Without loss of generality, let

u = (0, . . . , 0
︸ ︷︷ ︸

d1

, 1, . . . , 1
︸ ︷︷ ︸

d2

, . . . , 0, . . . , 0
︸ ︷︷ ︸

d2l−1

, 1, . . . , 1
︸ ︷︷ ︸

d2l

)

and
∑2l

i=1 di = n. We partition [n] into 2l disjoint sets such that each set induces a run. Specifically, let

c =

(

1, 2, . . . , d1
︸ ︷︷ ︸

d1

, n, n− 1, . . . , n− d2 + 1
︸ ︷︷ ︸

d2

, d1 + 1, . . . , d1 + d2
︸ ︷︷ ︸

d2

, . . . ,

l−1∑

i=1

d2i−1 + 1, . . . ,

l∑

i=1

d2i−1

︸ ︷︷ ︸

d2l−1

, n−
l−1∑

i=1

d2i, . . . , n−
l∑

i=1

d2i + 1

︸ ︷︷ ︸

d2l

)

.

In other words, {1, 2, . . . ,∑l

i=1 d2i−1} is divided into l disjoint sets such that each set can produce a run

of 0s and {
∑l

i=1 d2i−1 + 1, . . . , n} is divided into l disjoint sets such that each set can produce a run of

1s. From the construction of c, u = fc and Ψ(c) = n.

For example, let u = (0, 0, 1, 0, 0, 1) ∈ R(1, 2, 6; 3). Then, there exists a vector c0 = (1, 2, 6, 3, 4, 5) such

that u = fc0
and Ψ(c0) = 6. Therefore, from Lemma 5, for any u ∈ R(1, 2, n; d), u can be realized by n

distinct levels. Let v = (0, 0, 1, 0, 1, 1) ∈ R(1, 2, 6; 3) and let c = (1, 2, 3, 1, 2, 3) be the cell configuration

of u. Next, we can transform u into v by utilizing one “push-to-the-top” operation on the 5-th cell such

that the cell configuration c is changed into another cell configuration ĉ = (1, 2, 3, 1, 4, 3). Then, ĉ is the

cell configuration of v and Ψ(ĉ) > 3. Therefore, for a Gray code over R(1, 2, n; d), the number of distinct

components of the cell configuration of each code word may be greater than d. In order to construct

a Gray code over R(1, 2, n; d) for (1, 2, n; d)-LRM, we must set a proper initial cell configuration and

choose an appropriate set in R(1, 2, n; d), as well as a sequence of “push-to-the-top” operations. A rough

description of one construction of a Gray code over R(1, 2, n; d) is provided below.

First, we consider n = m ·n1 cells and partition the n cells into m blocks such that each block contains

n1 cells, where m and n1 are positive integers. We denote the charge levels of the cells in block i as ci,

where ci = (ci,1, . . . , ci,n1) for i ∈ [m]. Next, we will utilize fci
to represent the information for each

block ci. Here, each block can be considered as an element of a binary vector set Σ of size M , denoted

Σ = {u0, . . . ,uM−1}.
Now, consider any De-Bruijn sequence S of orderm−1 over Σ. That is to say, S is a sequence of Mm−1

elements vs0 ,vs1 , . . . ,vs
Mm−1

−1
over Σ such that the subsequences vsi ,vsi+1 , . . . ,vsi+m−2 of S cover all

the (m−1)-tuples of Σ exactly once, where the sub-indices of s are taken modulo Mm−1. In [21], Golomb

proved that the sequence S exists.

In the following explanation, one construction of a Gray code G for (1, 2, n; d)-LRM is presented in

two steps. First, we utilize the method proposed by En Gad et al. [11] to construct the anchor elements

of G, defined as G̃ = {g0, g1, . . . , gL−1}, where L = lcm(m,Mm−1). Furthermore, the elements of G̃ will
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generate a Gray code over Σm. Specifically, let g0 be the first m elements of S. In the transition from gi

to gi+1, we transform vsi into vsi+m
. A detailed description of the code G̃ is provided below.

g0 = vsm−1 vsm−2 · · · vs1 vs0 ,

g1 = vsm−1 vsm−2 · · · vs1 vsm ,

g2 = vsm−1 vsm−2 · · · vsm+1 vsm ,

...

gL−2 = vsL−1 vsL−2 · · · vs1 vs0 ,

gL−1 = vsL−1 vsm−2 · · · vs1 vs0 ,

where the sub-indices of s are taken modulo Mm−1. The underlined block in each element is the block

that is changed in the following element.

By utilizing the properties of the De-Bruijn Sequence S, En Gad et al. [11] proved that G̃ is a Gray

code over Σm. However, G̃ is not a Gray code over R(1, 2, n; d) because the transition between gi and

gi+1 may require many “push-to-the-top” operations.

Next, another code G can be obtained by adding different elements between each pair of adjacent

elements from G̃ such that G is a Gray code over R(1, 2, n; d).

The above two steps are a rough description of the construction of G. For each anchor element, it is

crucial to identify which block is the underlined block. We then add two auxiliary bits to each block.

Specifically, we add 00 to the underlined block and 01 to the other blocks.

In order to guarantee G for (1, 2, n; d)-LRM, we consider the initial cell configuration of g0 and tran-

sitions between gi and gi+1. Without loss of generality, we will only analyze the cell configuration of

v0 and the transitions from vs0 to vsm . Let c(0) and c(m) be the cell configurations of vs0 and vsm ,

respectively. Suppose vs0 ,vsm ∈ R(1, 2, n1; d̂), where d̂ > 2. Note that vs0 and vs0 differ only in the

final bit and that the last two bits of vs0 are 00. The last two bits 00 of vs0 and the first run of the right

adjacent block of vs0 may generate a large run. To avoid this issue, let the first bit of each block be 1.

Similarly, the first bit 1 of vs0 and the last run of the left adjacent block of vs0 may produce a large run.

To avoid this issue, let the second bit of each block be 0.

For the initial cell configuration c(0), we will set the cell configuration c(0) based on all the runs of vs0 .

From the definition of f
c
(0) , a run of zeros (ones) corresponds to one increasing (decreasing) subsequence

of c(0). Therefore, the first 1 in a run of ones is induced by the locally highest cell and the first 0 in

a run of zeros corresponds to the locally lowest cell charge level. In the following explanation, we will

set the locally highest cell and locally lowest cell to be the highest cell and lowest cell among all cells,

respectively. Then, let the second run of zeros in each block be the single longest run and let the first

cell in each block be the second highest. Because the last two bits of each block except the underlined

block are 01, the last cell among these blocks is the highest. Therefore, the last cell can yield 1 (the first

cell in each block is the second highest). Here, because the last cell in the underlined block corresponds

to 0, this cell must be lower than the first cell (the second highest). For example, when n1 = 8, d̂ = 4,

and vs0 = (1, 0, 0, 0, 1, 1, 0, 0), we set the cell configuration c(0) = (3, 1, 2, 3, 4, 2, 1, 2). Based on the

above explanation, we can choose an appropriate set Σ and set an initial cell configuration c(0) utilizing

Algorithm 1 for (1, 2, n; d)-LRM.

We transform vs0 into vsm by utilizing a sequence of “push-to-the-top” operations such that the initial

cell configuration c(0) is changed into another cell configuration c(m). In the following explanation, a

rough description of the transitions from vs0 to vsm will be provided. In order to construct this sequence

of operations, we first push all the locally lowest cells in vsm to the highest level in c(0) by comparing them

to the first cell in c(0) (since the first cell in c(0) is the second highest). Next, all other cells except the cells

that are the highest in vsm and the first cell are pushed by utilizing runs of vsm . We then push the first cell

to the current highest level (i.e., it is the second highest in c(m)). Finally, all remaining cells are pushed to

the highest level by comparing them to the first cell. Furthermore, Algorithm 2 is proposed to transform
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Algorithm 1 Set the initial cell charge levels c(0,0) = (c1
(0,0)

, c2
(0,0)

, . . . , cn
(0,0)

) such that fc(0,0)
= g0

0 and c(0,0) ∈

(0, d+1
2

]n

Input: current cell configuration 0n, the initial value g0 = vsm−1vsm−2 · · · vs1vs0 .

Output: new cell configuration c(0,0) = (c1
(0,0)

, c2
(0,0)

, . . . , cn
(0,0)

).

k ⇐ 0, T ⇐ ∅, i ⇐ 3, s ⇐ 0, t ⇐ 0, j ⇐ 0

repeat

c
kn1+2
(0,0)

⇐ 1 (let the lowest charge level be 1).

while (3 6 i 6 n1){

case 1: (s = 0 and g0
0(kn1 + i) = 0)

c
kn1+i

(0,0)
⇐ c

kn1+i−1
(0,0)

+ 1 (δ = 1 is the minimum charge difference required to distinguish

two distinct charge levels and this cell corresponds the bit 0).

case 2: (s = 0 and g0
0(kn1 + i) = 1)

s ⇐ i, T ⇐ T ∪ {i} (T is the set of cells with the highest level).

case 3: (s 6= 0 and g0
0(kn1 + i) = 0){

t ⇐ i, j ⇐ (t − 1), ckn1+i

(0,0)
⇐ 1 (this cell has the lowest level);

while (s+ 1 6 j 6 t− 1)

c
kn1+j

(0,0)
⇐ c

kn1+j+1
(0,0)

+ 1, j ⇐ j − 1 (this cell corresponds to the bit 1).

s ⇐ 0.}

i ⇐ i+ 1.

}

c
kn1+1
(0,0)

⇐ c
kn1+1+d1
(0,0)

+ 1 (push first cell in each block to the next-highest level);

while (l ∈ T ){

c
kn1+l

(0,0)
⇐ max{ckn1+1

(0,0)
, c

kn1+l−1
(0,0)

, c
kn1+l+1
(0,0)

}+ 1 (push this cell to the highest level);

T ⇐ T \ {l}}.

i ⇐ 3, T ⇐ ∅, s ⇐ 0, k ⇐ k + 1 (initially, set some parameters for block k + 1).

until k = m− 1.

vs0 into vsm as follows. Suppose that n1 = 8, d̂ = 4, vs0 = (1, 0, 0, 0, 1, 1, 0, 0), vsm = (1, 0, 0, 0, 1, 0, 0, 1),

and c(0) = (2, 1, 2, 3, 4, 2, 1, 2). From the above explanation of the transformation from vs0 to vsm ,

c(m) = (6, 4, 5, 6, 7, 5, 6, 7).

Because vs0 ∈ R(1, 2, n1; d̂), from the initial cell configuration c(0), we have that c(0) ∈ [1, d̂]n1 (i.e.,

the charge level of each cell is within [1, d̂]). Through the transitions from vs0 to vsm , we obtain that

c(m) ∈ [d̂, 2d̂ − 1]n1 . Therefore, to construct a Gray code G for (1, 2, n; d)-LRM, let d = 2d̂ − 1. In the

following explanation, one construction of a Gray code G over R(1, 2, n; d) for (1, 2, n; d)-LRM will be

provided.

Construction. In the (1, 2, n; d)-LRM scheme, let n = m · n1, d = 2d1 + 3, n1 > 2d1 + 4, and d1 > 3.

Based on the above explanation, we choose an appropriate set Σ, where

Σ = {(1, 0, . . . , 0
︸ ︷︷ ︸

d1+1

, 1, u1, u2, . . . , un1−d1−5, 0, 1)|(u1, u2, . . . , un1−d1−5) ∈ R(1, 2, n1 − d1 − 5; d1 − 1)}.

Note that for each v ∈ Σ, v and v differ only in the final bit. Furthermore, the last two bits of v are 00.

From the construction of Σ, for each v ∈ Σ, we obtain that RL(v) = d1 + 1 and RL(v) = d1 + 1 (the

second run of 0s of v or v is the single longest run and its length is exactly d1 + 1). Therefore, |Σ| =
|R(1, 2, n1−d1−5; d1−1)|. For convenience, let |R(1, 2, n1−d1−5; d1−1)| = M , Σ = {u0,u1, . . . ,uM−1},
and L = lcm(m,Mm−1).

Let S be a De-Bruijn sequence of order m− 1 over Σ, S = vs0 ,vs1 , . . . ,vs
Mm−1

−1
(i.e., S is of length

Mm−1 and vi ∈ Σ). The Gray code G̃ of the anchor elements is a sequence of L vectors of length

n = mn1, denoted G̃ = g0, g1, . . . , gL−1. Specifically, let g0 be the first m elements of S, meaning

g0 = vsm−1 vsm−2 · · · vs1 vs0 .

Furthermore, in the transition from gi to gi+1, we transform vsi into vsi+m
. A detailed description of
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Algorithm 2 Transform the cell configuration csi into another cell configuration csi+m
such that fcsi

= vsi and

fcsi+m
= vsi+m

Input: Current cell configuration csi , the initial value vsi , new block value vsi+m
.

Output: New cell configuration csi+m
.

k ⇐ 0, T ⇐ ∅,H1 ⇐ ∅,H2 ⇐ ∅, j ⇐ 3, s ⇐ 0, t ⇐ 0

csi+m
(2) ⇐ max{csi (1), csi(3)} + 1 (push the 2nd cell to the highest level in csi ).

while (3 6 j 6 n1){

case 1: (j 6 d1 + 2)

csi+m
(j) ⇐ max{csi+m

(j − 1), csi (j + 1)} + 1 (push the jth cell in a run of 0s).

case 2: (s = 0 and vsi+m
(j) = 1)

s ⇐ j, T ⇐ T ∪ {j} (this cell is the highest in csi+m
).

if t 6= 0 then

H2 ⇐ H2 ∪ {(t, s)} (H2 is a set of runs of 0s).

case 3: (s 6= 0 and vsi+m
(j) = 0){

t ⇐ j (t represents the position of the lowest cell in vsi+m
).

H1 ⇐ H1 ∪ {(s, t)} (H1 is a set of runs of 1s).

if vsi (j − 1) = 0 and vsi (j) = 1 then

csi+m
(j) ⇐ csi (j) (this is the highest cell in csi . Let the charge level of this

cell remain unchanged);

else

csi+m
(j) ⇐ max{csi (1), csi (j − 1), csi (j + 1)}+ 1.

s ⇐ 0}.

j ⇐ j + 1.

}

csi+m
(1) ⇐ csi+m

(1 + d1) + 1 (push the first cell to next-highest level in the changed block);

while
(

A = (s1, t1) ∈ H1

)

{

k ⇐ (t1 − 1)

if (s1 + 1 6 k 6 t1 − 1)

csi+m
(k) ⇐ max{csi (k − 1), csi+m

(k + 1)} + 1, k ⇐ (k − 1); H1 ⇐ H1 \ {A}}.

while
(

B = (t1, s1
)

∈ H2){

k ⇐ (t1 + 1);

if (t1 + 1 6 k 6 s1 − 1)

csi+m
(k) ⇐ max{csi+m

(k − 1), csi (k + 1)} + 1, k ⇐ (k + 1); H2 ⇐ H2 \ {B}}.

while (l ∈ T ){

csi+m
(l) ⇐ max{csi+m

(1), csi+m
(1 − 1), csi+m

(1 + 1)} + 1 (let the charge level of this cell be the highest in

the changed block); T ⇐ T \ {l}}.

the code G̃ provided below.

g0 = vsm−1 vsm−2 · · · vs1 vs0 ,

g1 = vsm−1 vsm−2 · · · vs1 vsm ,

...

gL−2 = vsL−1 vsL−2 · · · vs1 vs0 ,

gL−1 = vsL−1 vsm−2 · · · vs1 vs0 ,

where the sub-indices of s are taken modulo Mm−1. The underlined block in each element is the block

that is changed in the following element.

Next, a sequence of “push-to-the-top” operations are utilized to transform one anchor gi into the next

anchor gi+1. The sequence of “push-to-the-top” operations applied to the cells of the changing block will

generate a sequence of auxiliary vectors, denoted gi, g
1
i , g

2
i , . . . , g

li
i , i ∈ {0, 1, 2, . . . , L− 1}. Therefore, the
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entire Gray code G is constructed by the following sequence:

g0, g1
0 , g2

0 , . . . gl0
0 ,

g1, g1
1 , g2

1 , . . . gl1
1 ,

...

gL−1, g1
L−1, g2

L−1, . . . g
lL−1

L−1 .

To complete the construction of G, we present Algorithm 1, which determines the initial cell configu-

ration of g0. We also present Algorithm 2, which transforms vsi into vsi+m
. During the process of this

transformation, vsi+1 (the left adjacent block of vsi) is transformed into vsi+1 . In other words, Algo-

rithm 2 specifies the sequence g1
i , g

2
i , . . . , g

li
i that allows us to move from one state gi to another state

gi+1.

In order to present Algorithms 1 and 2, some notations are provided. For convenience, let g0
i = gi for all

i ∈ [L−1]. Let the cell configuration of gj
i be c(i,j) = (c1(i,j), c

2
(i,j), . . . , c

n
(i,j)) for all 0 6 i 6 L−1, 0 6 j 6 li.

For example, let n = 20, n1 = 10, d = 9 and g0 = (1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0).

From Algorithm 1, c(0,0) = (4, 1, 2, 3, 4, 5, 1, 5, 1, 5, 4, 1, 2, 3, 4, 5, 2, 1, 2, 3). For convenience, let vsi =

(vsi(1), . . . ,vsi(n1)) and vsi+m
= (vsi+m

(1), . . . ,vsi+m
(n1)). Let csi = (csi(1), . . . , csi(n1)) and csi+m

=

(csi+m
(1), . . . , csi+m

(n1)) be the cell configurations of vsi and vsi+m
, respectively. Now, Algorithm 2 is

defined as follows.

For example, let n1 = 10, d = 9, d1 = 3,vsi+m
= (1, 0, 0, 0, 0, 1, 0, 1, 0, 1),vsi = (1, 0, 0, 0, 0, 1, 1, 0, 0, 0),

and csi = (4, 1, 2, 3, 4, 5, 2, 1, 2, 3). From Algorithm 2, T = {6, 8, 10}, H1 = {(6, 7), (8, 9)}, and H2 =

{(7, 8), (9, 10)}. Therefore, csi+m
= (8, 5, 6, 7, 8, 9, 6, 9, 5, 9). In the following example, a Gray code over

R(1, 2, n; d) is derived by utilizing Algorithms 1 and 2.

Example 1. Let d1 = 3, d = 9, n1 = 10, and m = 2, then n = 20. From the definition of R(1, 2, 2; 2), we

have that R(1, 2, 2; 2) = {(0, 1), (1, 0)}. Therefore, Σ = {(1, 0, 0, 0, 0, 1, 0, 1, 0, 1), (1, 0, 0, 0, 0, 1, 1, 0, 0, 1)}.
Then, we have that M = |Σ| = 2 and L = lcm(2, 21) = 2. For convenience, let v0 = (1, 0, 0, 0, 0, 1, 1, 0, 0,

1) and v1 = (1, 0, 0, 0, 0, 1, 0, 1, 0, 1). Therefore, Σ = {vi|0 6 i 6 1}.
In order to construct G̃1 over Σ, we utilize a De-Bruijn sequence of order 2 and an alphabet set of

size 2, denoted S, where S = v0,v1. Then, the list of G̃1 is g0 = v1 v0, g1 = v1 v0.

From the construction of g0. Then, g0 = 1000010101 1000011000. Therefore, from Algorithm 1,

c(0,0) = (4, 1, 2, 3, 4, 5, 1, 5, 1, 5, 4, 1, 2, 3, 4, 5, 2, 1, 2, 3). Furthermore, g1 = 1000010100 1000011001. Then,

we utilize Algorithm 2 to obtain that the transition from g0 to g1 is (changed digits are underlined):

g0
0 =1000010101 1000011000,

g1
0 =1000010101 0100011000,

g2
0 =1000010101 0010011000,

g3
0 =1000010101 0001011000,

g4
0 =1000010101 0000111000,

g5
0 =1000010101 0000110100,

g6
0 =1000010101 0000101100,

g7
0 =1000010101 0000101010,

g8
0 =1000010100 1000101010,

g9
0 =1000010100 1000011010,

g1 =1000010100 1000011001.

Let c1 be the cell configuration of g1. From the above transitions and c(0,0), c1 = (4, 1, 2, 3, 4, 5, 1, 5, 1, 5, 8,

5, 6, 7, 8, 9, 6, 5, 6, 9). Similarly, we can utilize Algorithm 2 to generate a sequence g1
1 , g

2
1 , . . . , g

l1
1 that

allows us to transform from g1 into g0. Therefore, we obtain a Gray code G1 = (g0, g
1
0 , . . . , g

9
0 , g1, g

1
1 , . . . ,

gl1
1 ) over R(1, 2, 20; 9) for (1, 2, 20; 9)-LRM.
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Now, we will prove that G is a Gray code over R(1, 2, n; d) for (1, 2, n; d)-LRM. In order to prove this

result, we require the following lemmas.

Lemma 6. Algorithm 1 initially sets the cell configuration c(0,0), which represents g0. Additionally,

Algorithm 2 changes a block with the cell configuration csi representing vsi into another block with the

cell configuration csi+m
representing vsi+m

.

Proof. Let c(0,0) = (c1(0,0), c
2
(0,0), . . . , c

n
(0,0)) and g0 = (g0(1), . . . , g0(n)). When g0(i) = 0 and g0(i+1) =

0 for some i ∈ [n], from Case 1 of Algorithm 1, we have ci+1
(0,0) > ci(0,0), which will represent 0 in the position

i. If g0(i) = 0 and g0(i+1) = 1 for some i ∈ [n], from Algorithm 1, the cell i+1 is pushed to the highest

level. Then, we also have ci+1
(0,0) > ci(0,0), which will represent 0 in the position i. Similarly, if g0(i) = 1

for some i ∈ [n], then ci(0,0) > ci+1
(0,0), which will represent 1 in the position i. Therefore, we utilize c(0,0)

to represent g0.

Similarly, Algorithm 2 can change the cell configuration csi representing vsi into another cell configu-

ration csi+m
representing vsi+m

.

Let the cell configuration of gi be (c1(i,0), c
2
(i,0), . . . , c

n
(i,0)), denoted c(i,0), for all 0 6 i 6 L− 1. Further-

more, let i = km+ t, where 0 6 k, 0 6 t 6 m− 1.

Lemma 7. If i = km, then c(i,0) ∈ (k · d−1
2 , k · d−1

2 + d+1
2 ]n. Furthermore, if i = km+t and 0 < t 6 m−1,

then c(i,0) ∈ (k · d−1
2 , k · d−1

2 + d]n.

Proof. Because RL(g0) = d1 +1 (i.e., d−1
2 ), from Algorithm 1, we can obtain that the highest value of

all the coordinates of c(0,0) is d1 + 2 and the lowest value of all the coordinates of c(0,0) is 1. Therefore,

c(0,0) ∈ (0, d+1
2 ]n. To move from g0 to g1, we only need to change vs0 into vsm . For convenience, let

cs0 = (cs0(1), . . . , cs0(n1)) and csm = (csm(1), . . . , csm(n1)) be the cell configurations of vs0 and vsm ,

respectively. From Algorithm 1, the first d1+3 coordinates of cs0 are (1+d1, 1, 2, . . . , d1+2). Furthermore,

from Algorithm 2, we can change the cell configuration cs0 into csm such that the first d1+3 coordinates

of csm are (2d1+2, d1+2, d1+3, . . . , 2d1+3). Note that Algorithm 2 pushes each cell of cs0 to be higher

than cs0(1) (i.e., d1 + 1), except for the cells that are the highest level in cs0 , but which are the lowest

level in csm . Therefore, the lowest value of the coordinates of csm is d1 + 2. Because RL(g1) = d1 + 1,

the highest value of the coordinates of csm is 2d1 + 3. Then, we have that csm ∈ (d1 + 1, 2d1 + 3]n (i.e.,

(d−1
2 , d]n). Therefore, c(1,0) ∈ (0, d]n.

When 1 6 i 6 m − 1, we can transform gi into gi+1 by changing only vsi into vsi+m
. Similarly,

csi ∈ (0, d−1
2 ]n and csi+m

∈ (d−1
2 , d]n. Then, we have that c(i,0) ∈ (0, d]n for all 1 6 i 6 m − 1.

Furthermore, c(m,0) ∈ (d−1
2 , d]n.

Similarly, by induction, we have that c(i,0) ∈ (k · d−1
2 , k · d−1

2 + d+1
2 ]n for all i = km and c(i,0) ∈

(k · d−1
2 , k · d−1

2 + d]n for all i = km+ t and 0 < t 6 m− 1.

From Lemma 7, for each anchor gi, 0 6 i 6 L − 1, the number of distinct coordinates of the cell

configuration c(i,0) is at most d. Between gi and gi+1, the auxiliary vectors g1
i , g

1
i , . . . , g

li
i can be obtained

by Algorithm 2. Let c(i,j) be the cell configuration of g
j
i for all 1 6 i 6 li. Then, we can obtain

Ψ(c(i,j)) 6 d (Ψ(·) represents the number of distinct components of some vector) through the following

corollary.

Corollary 1. Suppose c(i,j) is as defined above for all 0 6 i 6 L − 1 and 0 6 j 6 li. Then, we have

that Ψ(c(i,j)) 6 d for all 0 6 i 6 L− 1, 0 6 j 6 li.

Proof. If i = km, then, by Lemma 7, c(i,0) ∈ (k · d−1
2 , k · d−1

2 + d+1
2 ]n and c(i+1,0) ∈ (k · d−1

2 , k ·
d−1
2 + d]n. We can change c(i,0) into c(i+1,0) by utilizing a sequence of c(i,1), c(i,2), . . . , c(i,li). Therefore,

c(i,j) ∈ (k · d−1
2 , k · d−1

2 + d]n for all 1 6 j 6 li. Similarly, if i = km + t and 1 6 t 6 m − 1, then

c(i,j) ∈ (k · d−1
2 , k · d−1

2 + d]n for all 1 6 j 6 li. Because (k · d−1
2 , k · d−1

2 + d] represents at most d distinct

values, we have that Nd(c(i,j)) 6 d for all 0 6 i 6 L− 1 and 0 6 j 6 li.

From Corollary 1, G is a code over R(1, 2, n; d) for (1, 2, n; d)-LRM. In the following proof, we will only

prove that G is a Gray code.

Lemma 8. All the anchors of G are distinct.

Proof. Through the construction of all the anchors of G, we can determine the underlined block that
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will be changed. Specifically, the last two bits of the underlined block are 00. From the properties of the

De-Bruijn sequence S, all the anchors of G are distinct.

Lemma 9. All the code words in the code G are distinct.

Proof. For each non-anchor code, there exists a block with a first bit of 0 or two blocks with last bits

of 10. However, for every anchor codes, there exists only a block with the last bits 00 and the first bit of

each block is 1. Therefore, we can distinguish anchor codes from non-anchor codes. From the De-Bruijn

sequence S, for all 0 6 i1, i2 6 L − 1, 0 6 j1 6 li1 , and 0 6 j2 6 li2 . If i1 6= i2, then g
j1
i1

6= g
j2
i2
, where

g0
i = gi for all 0 6 i 6 L− 1.

Now, we only need to prove that for all 0 6 i 6 L − 1 and 1 6 j1 < j2 6 li, we have g
j1
i 6= g

j2
i . By

utilizing Algorithm 2, we transform gi into gi+1 by transforming vsi into vsi+m
. For convenience, let

v
j
i be the changing block of gj

i for all 1 6 j 6 li. Assume that the k-th “push-to-the-top” operation is

applied to the first cell of the changed block. If 1 6 j < k, then v
j
i (1) = 0. Otherwise, if k 6 j 6 li, then

v
j
i (1) = 1. Therefore, if j1 < k 6 j2, then g

j1
i 6= g

j2
i .

Prior to the k-th operation (the “push-to-the-top” operation), we push each cell that is the lowest level

in vsi+m
, except for cells whose positions are between 3 and d1 + 2 (here, the lowest level cell is lower

than its two adjacent cells). For all of the first k − 1 elements, given a cell configuration, let j be the

next cell that will be pushed, where cj is the current charge level of cell j. Because cell j will be pushed,

there exists one adjacent cell ĵ such that cĵ > cj, where cĵ is the charge level of cell ĵ. Following the

“push-to-the-top” operation, c̃j > cĵ , where c̃j is the changed level of cell j. Because there exists at least

one cell between the two lowest levels in vsi+m
, cell ĵ will not be pushed in the first k − 1 operations.

Therefore, gj1
i 6= g

j2
i for all 1 6 j1 < j2 6 k − 1.

After all of the lowest cells in vsi+m
are pushed, if cell j is pushed, then there exists one cell ĵ that

is higher than cell j and cell ĵ will not be pushed. Similarly, we also have that g
j1
i 6= g

j2
i for all

k 6 j1 < j2 6 li. Therefore, g
j1
i 6= g

j2
i for all 1 6 j1 < j2 6 li, meaning all the code words in the code G

are distinct.

By combining Corollary 1 and Lemma 9, we present the following theorem.

Theorem 2. The code G is a Gray code of size N for (1, 2, n; d)-LRM, where L 6 N 6 n1L.

Proof. First, by combining Corollary 1 and Lemma 9, the code G is a Gray code of size at least L

for (1, 2, n; d)-LRM. Furthermore, we can transform one anchor into another anchor by changing a block

and each cell in the changed block is pushed at most once. Because the length of each block is n1, the

number of auxiliary vectors between any two adjacent anchors is at most n1. Therefore, L 6 N 6 n1L.

Next, we consider the asymptotical property of the Gray code G in the following theorem. For conve-

nience, let d1 and m be integers such that d1 > 3 and m > 2, and let d = 2d1+3. Suppose that {n(i)
1 }∞i=1

and {n(i)}∞i=1 are infinite integer sequences such that n
(i+1)
1 > n

(i)
1 , n

(1)
1 > 2d1 + 4, and n(i) = m · n(i)

1 .

Furthermore, αd1−2 in Theorem 3 is defined in Lemma 2.

Theorem 3. There exists a family of codes, denoted {Gi}∞i=1, whereGi is a Gray code overR(1, 2, n(i); d)

of size Ni for (1, 2, n; d)-LRM. Therefore, we have that

lim
i→∞

R(Gi) = lim
i→∞

log2 Ni

n(i)
=

m− 1

m
log2 αd1−2, (9)

where R(Gi) is the rate of Gi defined in Definition 2.

Proof. From the construction of L andM in the Gray code G, Li andMi are defined in the construction

of Gi. Then, Ni > Li = lcm(m,Mm−1
i ) and Mi = |R(1, 2, n

(i)
1 − d1 − 5; d1 − 1)|, and we obtain that

lim
i→∞

log2 Ni

n(i)
> lim

i→∞

(m− 1) log2 |R(1, 2, n
(i)
1 − d1 − 5; d1 − 1)|

mn
(i)
1

= lim
i→∞

(m− 1) · (n(i)
1 − d1 − 5)

mn
(i)
1

· log2 |R(1, 2, n
(i)
1 − d1 − 5; d1 − 1)|

n
(i)
1 − d1 − 5

(b)
=

m− 1

m
log2 αd1−2,
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Table 1 Parameters of G,G1, and G2

Gray code n N Ψ(·) Parameter constraint

G1 [12] m2 lcm(
(

m

w

)m−2
,m) · (w + 2) ·m > m m > w,w is a positive integer

G2 [11] m2 O(2(m−1)(m−3)) > m m > 4

G m2 O(2m
2
·log2 αd ) d d = 2d1 + 3, d1 > 3, m > 2d1 + 4, αd is defined in Lemma 2

where
(b)
= follows from Theorem 1. Similarly, limi→∞

log2 Ni

n(i) 6 limi→∞
log2 (n1Li)

n(i) = m−1
m

log2 αd1−2.

Therefore, limi→∞ R(Gi) =
m−1
m

log2 αd1−2.

Furthermore, suppose {mi}∞i=1, {d
(i)
1 }∞i=1, and {d(i)}∞i=1 are integer sequences such that mi+1 > mi,

d
(i+1)
1 > d

(i)
1 , n

(i)
1 > 2d

(i)
1 + 4, and d(i) = 2d

(i)
1 + 3. Furthermore, let n(i) = mi · n(i)

1 and

lim
i→∞

d
(i)
1

n
(i)
1

= 0.

Corollary 2. Suppose {Gi}∞i=1 is as defined in Theorem 3, whereGi is a Gray code overR(1, 2, n(i); d(i))

of size Ni for (1, 2, n
(i); d(i))-LRM. Then, we have that limi→∞ R(Gi) = 1, where R(Gi) is the rate of Gi

defined in Definition 2.

Proof. From Theorem 3 and Lemma 3, we can obtain that limi→∞ R(Gi) = 1.

Next, we compare our results to those in [11, 12]. En Gad et al. [12] presented constant-weight Gray

codes for the (1, 2, n)-LRM scheme and [11] proposed generalized Gray codes for the (s, t, n)-LRM scheme

(here, consider s = 1 and t = 2). When n = m2, we partition the n cells into m blocks such that each

block contains m cells. In this case, for the above two classes of Gray codes, there always exists an anchor

code, denoted v = vm vm−1 · · · v1, such that

vk = (0, . . . , 0
︸ ︷︷ ︸

m

)

for some k ∈ [m]. Therefore, RL(v) >
√
n, where RL(v) represents the maximum run length of v.

Furthermore, let cv ∈ R
n be the cell configuration of v. That is to say, fcv

= v. Because RL(v) >
√
n,

from Lemma 1, we can obtain Ψ(cv) >
√
n, where Ψ(cv) is the number of distinct components of cv.

Therefore, to construct the two classes of Gray codes proposed by En Gad et al. [11, 12], there exists

some code word that requires a large number of distinct charge levels.

However, in the (1, 2, n; d)-LRM scheme, we can construct a Gray code G such that Ψ(cu) 6 d for

each code word u ∈ G, where cu is the cell configuration of u. In other words, for each code word of G,

at most d distinct charge levels are required.

Furthermore, En Gad et al. [12] chose a set Σ1 to construct a Gray code G1 with length n = m2

of size N1, where Σ1 is a set of constant-weight code words of length m and weight w, and N1 =

lcm(
(
m
w

)m−2
,m) · (w + 2) · m. En Gad et al. [11] also utilized another set Σ2 to construct another

Gray code G2 with length n = m2 of size N2, where Σ2 = R(1, 2,m − 3;m − 3)
⋃{0m−3, 1m−3} and

lcm
(
2(m−3)(m−1),m

)
6 N2 6 m · lcm

(
2(m−3)(m−1),m

)
. In this study, we chose a set Σ to construct

the Gray code G with length n = m2 of size N0, where lcm
(
|R(1, 2,m − d1 − 5; d1 − 1)|m−1,m

)
6

N0 6 m · lcm
(
|R(1, 2,m− d1 − 5; d1 − 1)|m−1,m

)
. Because |R(1, 2,m− d1 − 5; d1 − 1)| < 2m−d1−5 and

m2 < 22(m−1), we obtain that N0 6 m2 · |R(1, 2,m− d1− 5; d1− 1)|m−1 < 2(m−3)(m−1) 6 N2. Therefore,

the size of G2 is larger than the size of G. Table 1 summarizes some parameters of our Gray code G, as

well as the Gray codes G1 [12] and G2 [11], where n is the length of a code, N is the size of a code, and

Ψ(·) is the number of distinct levels that a code requires.

From the definition of αd in Lemma 3, we obtain log2 α2 = 0.6942, log2 α3 = 0.8543, log2 α4 = 0.9468,

and log2 α5 = 0.9752. When d1 = 7 and d = 2d1 + 3 = 17, from Theorem 3, there exists a family of

{Gi}∞i=1 such that its asymptotical rate is at least 0.9752, where Gi is a Gray code over R(1, 2, n(i); 17)

for the (1, 2, n(i); 17)-LRM. Therefore, when d = 17 (i.e, d is very small), there exists a family of Gray

codes such that its asymptotical rate is close to 1. If d
(i)
1 = ⌈log2 n(i)⌉ and d(i) = 2⌈log2 n(i)⌉ + 3, from

Corollary 2, there exists a family of {Gi}∞i=1 such that its asymptotical rate is 1, where Gi is a Gray code
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Table 2 Rates of our Gray code G with respect to d

d R =
log2N

n

13 log2 α3 = 0.8543

15 log2 α4 = 0.9468

17 log2 α5 = 0.9752

d → ∞ 1

over R(1, 2, n(i); d(i)) for the (1, 2, n(i); d(i))-LRM. Therefore, when d is very large, there exists a family

of Gray codes such that its asymptotical rate is 1. Table 2 summarizes the rates of our Gray code G with

respect to d, where n → ∞.

5 Conclusion

For the (1, 2, n)-LRM scheme, we studied Gray codes over certain run-length sequences such that each code

word is exactly realized by the bounded number of distinct charge levels. In this paper, we established a

relationship between certain run-length sequences and (1, 2, n; d)-LRM realizable permutation sequences,

and proposed an asymptotical property of |R(1, 2, n; d)|. Furthermore, we presented Gray codes over

R(1, 2, n; d) for (1, 2, n; d)-LRM by utilizing a De-Bruijn sequence. Finally, we constructed a family of

Gray codes such that its asymptotical rate is 1.
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