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Abstract We study the problem of centralized exact repair of multiple failures in distributed storage.

We present constructions that achieve a new set of interior points under exact repair. The constructions

build upon the layered code construction by Tian et al., designed for exact repair of single failure. We

firstly improve upon the layered construction for general system parameters. Then, we extend the improved

construction to support the repair of multiple failures, with varying number of helpers. In particular, for some

parameters, we prove the optimality of one point in terms of the storage size and the repair bandwidth for

multiple erasures. Finally, considering minimum bandwidth cooperative repair (MBCR) codes as centralized

repair codes, we determine explicitly the best achievable region obtained by space-sharing among all known

points, including the MBCR point.
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1 Introduction

Driven by the growth of data-centric applications, efficient data storage and retrieval has become of crucial

importance for data storage providers. Distributed storage systems (DSS) are currently widely employed

for large-scale storage. DSS provide scalable storage and high level of resilience in the face of server

failures. To maintain the desired level of failure tolerance, DSS utilize a replacement mechanism known

also as the repair mechanism, that allows to recover the content of inaccessible/failed nodes. The repair

process of a failed node is performed by downloading data from accessible nodes (or a subset thereof)

in the system and recovering the lost data. In this work, we focus on two metrics in evaluating the

efficiency of DSS, namely, the overhead required for reliability and the amount of data being transferred

for a repair process. The seminal work in [1] proposed a new class of erasure codes, called regenerating

codes, that optimally solve the repair bandwidth problem for a single failure. It is shown in [1] that one

can significantly reduce the amount of bandwidth required for repair and the bandwidth decreases as

each node stores more information. In particular, the optimal tradeoff between the storage size and the

bandwidth is derived. Regenerating codes, as presented in [1], achieve functional repair. In this case, the

replacement nodes are not required to be exact copies of the failed nodes, but the repaired code should

satisfy reliability constraints. However, in practice, it is often more desirable to recover the exact same
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information as the failed node, which is called exact repair. Exact-repair codes are easier to implement

and maintain, and thus are of more interest.

For a single failure, extreme points on the functional repair tradeoff correspond to minimum storage

regenerating (MSR) codes and minimum bandwidth regenerating (MBR) codes. Interior points are points

that lie between the MSR and the MBR points, whose storage size is no less than the MSR point and

bandwidth is no less than the MBR point. There has been a flurry of interest in the achievability and

constructions of exact-repair regenerating codes for the aforementioned points. Several constructions

have been proposed for exact-repair MSR codes [2–10] and for exact-repair MBR codes [2], respectively,

hence proved the achievability of the extreme points under exact repair. The authors in [11] first showed

that most of the optimal functional repair interior points are non-achievable under exact repair, except

maybe for a small part close to the MSR point. Later, code constructions for exact-repair interior

points have been proposed in [12–17]. Moreover, there is a growing literature focused on understanding

the fundamental limits of exact-repair regenerating codes [18–21], as opposed to the well-understood

functional regenerating codes [1].

1.1 Multi-node recovery

In many practical scenarios, such as in large-scale storage systems with correlated failure patterns, multi-

ple failures are more frequent than a single failure. Moreover, many systems apply a lazy repair strategy,

which waits for several failures before repair and seeks to limit the repair cost of erasure codes. Indeed,

it has been demonstrated that jointly repairing multiple failures reduces the overall bandwidth compared

to repairing each failure individually [22–25]. We distinguish between two ways of repairing multiple

failures.

Cooperative regenerating codes. In this framework, each replacement node first downloads infor-

mation from d nodes (helpers). Then, the replacement nodes exchange information between themselves

before regenerating the lost nodes. Of interest to our work, we note that codes corresponding to the ex-

treme points on the cooperative tradeoff have been developed: minimum storage cooperative regenerating

(MSCR) codes [24, 26, 27] and minimum bandwidth cooperative regenerating (MBCR) codes [28].

Centralized regenerating codes. Upon failure of e nodes, the repair is carried out in a centralized

way by contacting any d helpers, and downloading β amount of information from each helper. We require

the content of any k out of n nodes in the system to be sufficient to reconstruct the entire data. Let α

be the size of each node, and F be the size of the entire data. A code satisfying the centralized repair

constraints is referred to as an (F, n, k, d, e, α, β) code. We also say it is a code of the (n, k, d, e) system.

In our previous work [25], we characterized the functional repair tradeoff between α and β for multi-node

recovery. Let g = ⌈k
e
⌉, t = k − (g − 1)e, where ⌈·⌉ is the ceiling function. The normalized functional

tradeoff can then be written as follows:

min(tᾱ, dβ̄) +

g−2
∑

p=0

min(eᾱ, (d− t− pe)β̄) > 1, (1)

where ᾱ = α
F
, β̄ = β

F
. Inequality (1) gives g − 1 linear bounds:

(t+ pe)ᾱ+

g−2
∑

i=p

(d− t− ie)β̄ > 1, p = 0, . . . , g − 2. (2)

In this paper, we are interested in designing centralized exact-repair regenerating codes for recovering

multiple failures. When e > k, the tradeoff reduces to a single point, which is trivially achievable [25].

We hereafter focus on the case e < k.

On the functional tradeoff, centralized minimum storage multi-node repair (MSMR) codes [9, 23, 29]

are of particular interest to this work, while the existence of exact-repair centralized minimum bandwidth

multi-node repair (MBMR) codes is an open problem [25]. MSMR and MBMR points are given by

(ᾱMSMR, β̄MSMR) =

(

1

k
,

e

k(d− k + e)

)

=

(

1

k
,

e

d− k + e
ᾱMSMR

)

, (3)
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(ᾱMBMR, β̄MBMR) =

(

2(d− k + gt)

gt(2d− k + t)
,

1

dg − e
(

g
2

)

)

. (4)

In this paper, we define interior points to be points that lie between MSMR and MBMR points. Precisely,

an (ᾱ, β̄) point is an interior point if it satisfies: ᾱ > ᾱMSMR, β̄ > β̄MBMR, (ᾱ, β̄) 6= (ᾱMSMR, β̄MSMR), (ᾱ, β̄)

6= (ᾱMBMR, β̄MBMR). We note that for single erasure, several studies have investigated construction of

exact-repair codes operating at interior points [12, 16, 17, 30]. Unlike previous studies, our main goal in

this paper is to construct codes operating at interior points for the multi-node exact-repair problem.

Remark 1. Note that the MBMR point defined in (4) may not be achievable under exact repair when

e > 2. In particular, in [25], it was shown that for e > 2, the functional MBMR point is not achievable

for linear exact-repair codes.

In [23], it is argued that cooperative regenerating codes can be used to construct centralized repair

codes. The total bandwidth in this case is obtained by taking into account the bandwidth obtained from

the helper nodes and disregarding the communication between the replacement nodes. In particular,

MSCR codes achieve the same performance as MSMR codes. Additionally, MBCR codes can be used as

centralized repair codes, but do not correspond to MBMR codes [25]. These points are given by

(ᾱMSCR, β̄MSCR) = (ᾱMSMR, β̄MSMR) =

(

1

k
,

e

k(d− k + e)

)

, (5)

(ᾱMBCR, β̄MBCR) =

(

2d+ e− 1

k(2d− k + e)
,

2e

k(2d− k + e)

)

. (6)

It can be checked that MBCR codes correspond to an interior point [31]1).

1.2 Existing universal MSMR constructions

Constructions for MSMR codes have been presented in the literature for specific (n, k, d, e) systems

[23, 29, 32]. In this paper, we are interested in universal MSMR codes. Universal MSMR codes achieve

simultaneously the optimal repair bandwidth for all e 6 n − k, k 6 d 6 n − e. Universal MSMR codes

are the building blocks in our construction in this paper. Based on subspace interference alignment, the

authors in [7] presented a maximum distance separable (MDS) code with asymptotic optimal repair for all

e 6 n−k and k 6 d 6 n−e simultaneously. In [9], the authors presented two families of universal MSMR

codes. Given integers n and n−k, the first family of codes satisfy α = sn, where s = lcm(1, 2, . . . , n−k),

lcm being the least common multiple, and they can be constructed over any base field F of size |F| > sn.

The second family of codes satisfy the optimal access property. That is, the repair can be accomplished

by accessing the amount of data that equals the optimal βMSMR in (3). The codes in the second family

satisfy also α = sn, where s = lcm(1, 2, . . . , n− k), and they can be constructed over any base field F of

size |F| > n+ 1.

As pointed out in the previous subsection, MSCR codes are in particular MSMR codes. The authors

in [26] constructed universal MSCR codes. The code can be constructed over a base field of size |F| >
(n− k)n, with α =

∏

16e6n−d6n−k((e + s− 1)(s− 1)e−1)(
n

e
), where s = d− k + 1.

Note that for the particular case of n = k + 2, universal MSMR code are simply MSR codes with

d = k + 1 = n− 1. Several MSR code constructions exist in the literature.

Example 1. We provide an example of an MSR code with (n, k, d) = (4, 2, 3) in Table 1. Since n = k+2,

this is also a universal MSMR code. The construction is known as EVENODD code [33]. We refer to

the codeword symbols as symbols. Each symbol is a binary vector of length 2, namely, an element of F2
2.

The information bits are a, b, c, d ∈ F2.

It can be checked that from any 2 symbols, all the information bits can be recovered. Therefore, k = 2.

Moreover, the repair of EVENODD code in Table 1 satisfies (3). Indeed, the repair of each of the 4

symbols can be carried out as follows.

1) In [31], it was shown that for e > 2, when k is a multiple of e, β̄MBCR = β̄MBMR, ᾱMBCR > ᾱMBMR; otherwise,

β̄MBCR > β̄MBMR.
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Table 1 EVENODD code: an example of an MSR codea)b)

Symbol 1 Symbol 2 Symbol 3 Symbol 4

a c a+ c a+ d

b d b+ d b+ c+ d

a) The code uses the binary field F2. b) “+” denotes XOR.

• To repair symbol 1, symbol 2 sends c, symbol 3 sends a+c, and symbol 4 sends (a+d)+(b+c+d) =

(a+ c) + b.

• To repair symbol 2, symbol 1 sends b, symbol 3 sends b+ d and symbol 4 sends b+ c+ d.

• To repair symbol 3, symbol 1 sends b, symbol 2 sends d and symbol 4 sends (a+ d) + (b+ c+ d) =

(a+ c) + b.

• To repair symbol 4, symbol 1 sends b, symbol 2 sends c+ d and symbol 3 sends a+ c.

Since each helper contributes 1
2 of its size, we say that each helper contributes 1

2 symbol in F
2
2 in the

repair process. More generally, the contribution of a helper in the repair process is a fraction of a symbol,

given by β̄MSMR

ᾱMSMR
= e

d−k+e
in (3). We use the EVENODD code in Table 1 as the underlying MSMR code

in our subsequent illustrative examples.

1.3 Contributions and organization of the paper

The main contributions of this paper are summarized as follows.

• We improve upon the layered construction presented in [17], which is concerned with single node

repair, to construct a family of regenerating codes that is capable of repairing multiple failures. To the

best of our knowledge, this is the first known construction for multiple erasures in the interior points of

the tradeoff. Moreover, our code possesses the universal repair property: it allows a varying number of

failures and a varying number of helpers, such that 1 6 e 6 n− k, k 6 d 6 n− e.

• We illustrate our code construction via different examples and evaluate its performance under various

scenarios.

• For the (k+e, k, k, e) system, we first prove the optimality of a particular constructed code using the

functional repair tradeoff (1); combining the achievable points via our construction and also the MBCR

point, we then determine the best achievable region obtained by space-sharing among all known points.

The remainder of the paper is organized as follows. A description of our code construction is provided

in Section 2. In Section 3, we analyze the achievability region of the (k + e, k, k, e) system. The last

section concludes the paper.

Notation: we denote by [i] the set of integers {1, 2, . . . , i} for i > 1. The notations ⌈·⌉, ⌊·⌋ represent

the ceiling and the floor functions.

2 Code construction

Exact-repair regenerating codes are characterized by parameters (F, n, k, d, e, α, β). We consider a dis-

tributed storage system with n nodes storing F amount of information. The data elements are dis-

tributed across the n storage nodes such that each node stores up to α amount of information. We use

ᾱ = α
F
, β̄ = β

F
to denote the normalized storage size and repair bandwidth, respectively. The system

should satisfy the following two properties:

Reconstruction property. By connecting to any k 6 n nodes it should be sufficient to reconstruct

the entire data.

Repair property. Upon failure of e nodes, 1 6 e 6 n − k, a central node is assumed to contact d

helpers, k 6 d 6 n− e, and download β amount of information from each of them. The exact content of

the failed nodes is determined by the central node. β is called the repair bandwidth.

We first describe the code construction which is an improvement upon [17]. The construction is based

on a collection of subsets of [n], called a Steiner system. Information is first encoded within each subset,

and then distributed among the n nodes. We recall the definition of Steiner systems.
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Definition 1. A Steiner system S(t, r, n), t 6 r 6 n, is a collection of subsets of size r, included in [n],

such that any subset of [n] of size t appears exactly once across all the subsets.

The existence of Steiner systems is not known in general when t < r < n. But for large n, Ref.

[34] proved the existence of Steiner systems as long as the parameters t, r, n satisfy certain divisibility

conditions. When t = r, Steiner systems always exist, and the subsets in this case are all r-combinations

of the set [n]. We call this case trivial Steiner systems. The family of (F, n, k, d, e, α, β) codes we describe

below is parameterized by t,m, r, for e 6 m < r 6 n, t 6 r, where

F = N(r −m), N =

(

n
t

)

(

r
t

) , α =

(

n−1
t−1

)

(

r−1
t−1

) , k = n−m. (7)

Note here that N is the number of subsets in the Steiner system S(t, r, n), and the integrality of N and

α follows from properties of Steiner systems [35].

Construction 1. Precoding step. We consider a Steiner system S(t, r, n) and generate N =
(

n
t

)

/
(

r
t

)

subsets, also referred to as blocks, such that each block is indexed by a set J ∈ S(t, r, n). Block J

corresponds to r − m information symbols over an alphabet of size q, which is then encoded using a

universal MSMR code with length r and dimension r − m over an alphabet of size q. The MSMR

codeword symbols, called the repair group J , is comprised of {cx,J : x ∈ J}. The total number of

information symbols is F = N(r −m), each symbol being of size log2 q bits.

The code matrix. The code structure can be described by a code matrix C, of size n × N . The

rows of C are indexed by integers in [n], corresponding to the different storage nodes, and its columns

are indexed by sets in S(t, r, n), arranged in some arbitrary chosen order. We formally define C as

Cx,J =

{

cx,J , if x ∈ J,

−, otherwise,
(8)

where “–” denotes an empty symbol. Node i ∈ [n] stores all the non-empty symbols of row i in the code

matrix C. It can be checked that the storage per node is given by α = Nr
n

=
(

n−1
t−1

)

/
(

r−1
t−1

)

.

By abuse of notation, the terms block and repair group are used interchangeably. For each block, the

universal MSMR code possesses the optimal repair bandwidth (3) for any number of erasures l, 1 6 l 6 m,

and any number of helpers d, r −m 6 d 6 r − l. The requirement on the alphabet size q is dictated by

the existence of a universal MSMR code. Such MSMR codes are known to exist (see Subsection 1.2).

Example 2. Consider a Steiner system S(t, r, n) = S(3, 4, 8). So the number of blocks is N = 14 and

each node number appears in α = rN
n

= 7 blocks. The 14 blocks are given by

J1 = {1, 2, 4, 8}, J2 = {2, 3, 5, 8}, J3 = {3, 4, 6, 8}, J4 = {4, 5, 7, 8}, J5 = {1, 5, 6, 8},
J6 = {2, 6, 7, 8}, J7 = {1, 3, 7, 8}, J8 = {3, 5, 6, 7}, J9 = {1, 4, 6, 7}, J10 = {1, 2, 5, 7},
J11 = {1, 2, 3, 6}, J12 = {2, 3, 4, 7}, J13 = {1, 3, 4, 5}, J14 = {2, 4, 5, 6}.

The code matrix is given by (9).

C =



































c1,J1
− − − c1,J5

− c1,J7
− c1,J9

c1,J10
c1,J11

− c1,J13
−

c2,J1
c2,J2

− − − c2,J6
− − − c2,J10

c2,J11
c2,J12

− c2,J14

− c3,J2
c3,J3

− − − c3,J7
c3,J8

− − c3,J11
c3,J12

c3,J13
−

c4,J1
− c4,J3

c4,J4
− − − − c4,J9

− − c4,J12
c4,J13

c4,J14

− c5,J2
− c5,J4

c5,J5
− − c5,J8

− c5,J10
− − c5,J13

c5,J14

− − c6,J3
− c6,J5

c6,J6
− c6,J8

c6,J9
− c6,J11

− − c6,J14

− − − c7,J4
− c7,J6

c7,J7
c7,J8

c7,J9
c7,J10

− c7,J12
− −

c8,J1
c8,J2

c8,J3
c8,J4

c8,J5
c8,J6

c8,J7
− − − − − − −



































. (9)
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Let m = 2, e = 2, d = n − e = 6. For each block, we use the EVENODD code defined in Table 1, so

every symbol cx,J ∈ F
2
2, q = 4. Then we can repair nodes 1 and 2 simultaneously, by downloading the

following.

• Symbols c4,J1
, c8,J1

from nodes 4 and 8, respectively. These help repair symbols c1,J1
and c2,J1

.

• Symbols c5,J10
, c7,J10

from nodes 5 and 7, respectively. These help repair symbols c1,J10
and c2,J10

.

• symbols c3,J11
, c6,J11

from nodes 3 and 6, respectively. These help repair symbols c1,J11
and c2,J11

.

• 1
2 symbol from each of the nodes 5, 6 and 8, to repair c1,J5

.

• 1
2 symbol from each of the nodes 3, 7 and 8, to repair c1,J7

.

• 1
2 symbol from each of the nodes 4, 6 and 7, to repair c1,J9

.

• 1
2 symbol from each of the nodes 3, 4 and 5, to repair c1,J13

.

• And similarly for node 2 to repair c2,J2
, c2,J6

, c2,J12
and c2,J14

.

In total, we download 18 symbols. Each helper transmits 3 symbols.

From the example above, we see that each repair group J tolerates the failure of m nodes. Therefore,

the code C also tolerates the failure of up to any m nodes. Thus, it can be checked that for Construction 1

from any k = n−m nodes, we can recover the data, which is the reconstruction parameter. Namely, the

code can recover from any m failures.

Therefore, it is possible to repair any e failures, for a flexible number of failures such that 1 6 e 6 m.

The number of helpers is flexible, and satisfies k 6 d 6 n − e. In other words, Construction 1 possesses

the universality of repair for flexible e and d. The repair bandwidth is given in Propositions 1 and 2 for

two different scenarios in the next two subsections.

2.1 Code construction with trivial Steiner systems

Proposition 1. Using Construction 1 with t = r, it is possible to repair simultaneously any set of

1 6 e 6 m nodes, using n −m 6 d 6 n − e helpers, such that the contribution of each helper, denoted

by βe(d), is given by

βe(d) =

e
∑

s=1

(

e

s

)min(n−d−e+s,r−1)
∑

p=max(s,r−d)

(

d− 1

r − p− 1

)(

n− d− e

p− s

)

s

m− p+ s
. (10)

Proof. In the repair procedure, any subset of missing symbols belonging to the same repair group is

repaired via MSMR repair procedure, using all available helpers from the same group among the chosen

helper nodes. Fixing the set of helper nodes, we argue that the repair is feasible. Indeed, let H be

the set of d helpers. For each repair group J , we denote the set of remaining nodes in J as J ′. Using

|H ∪ J ′| 6 n− e and d > k = n−m, it follows that

|J ′ ∩H | = |H |+ |J ′| − |H ∪ J ′|
> d+ r − e− (n− e) = r + d− n

> r − n+ n−m = r −m. (11)

Thus, for each repair group, we have enough information across the set of helpers to recover the missing

components.

We now analyze the contribution of a single helper h. h helps in the simultaneous repair of s missing

symbols of the same repair group, such that 1 6 s 6 e. For each size s, we count all possible cases in

which the repair can be done through the help of r − p coded symbols among all the d helpers, because

the number of available coded symbols determines the contribution of each helper, as dictated by the

MSMR repair bandwidth (3). It follows that, for the corresponding repair group, r− p− 1 can be chosen

from the set of d − 1 helpers (helper h already belongs to the repair group by assumption), while the

remaining p− s elements of the repair group can be chosen from the remaining n− e− d nodes. Figure 1

summarizes the repair situation for given parameters s and p. Summing over all repair contributions,

and analyzing the limit cases of p for a given s, Eq. (10) follows.
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e−s r−p p−sd−r+p n−d−e−p+ss

e failed nodes d helper nodes (n−d−e) remaining nodes

Figure 1 A repair situation associated to given parameters s and p.

ᾱ

0.14 0.16 0.18

β̄

0.04

0.06

0.08

0.12

0.14

0.16

(n, k, d, e)=(10, 7, 7, 1)

Functional tradeoff

Space sharing: MBCR and MSMR

Construction 1

Layered code [1]

Exact-repair tradeoff

0.10

0.20 0.22 0.24 0.26

Figure 2 (Color online) Using the MSMR repair property improves upon the layered code repair performance. The

exact-repair tradeoff is achieved in [12], with lower bound derived in [21].

Example 3. Consider a Steiner system S(t, r, n) = S(4, 4, 5). So the number of blocks is N = 5 and

each node stores α = rN
n

= 5 symbols. The 5 blocks are given by J1 = {2, 3, 4, 5}, J2 = {1, 3, 4, 5}, J3 =
{1, 2, 4, 5}, J4 = {1, 2, 3, 5}, J5 = {1, 2, 3, 4}. The code matrix is given by (12).

C =



















− c1,J2
c1,J3

c1,J4
c1,J5

c2,J1
− c2,J3

c2,J4
c2,J5

c3,J1
c3,J2

− c3,J4
c3,J5

c4,J1
c4,J2

c4,J3
− c4,J5

c5,J1
c5,J2

c5,J3
c5,J4

−



















. (12)

Let m = 2, e = 1, d = 3. Then, k = 2. Consider the repair of node 1 with the helper nodes 2–4. We

download: 1 symbol from each of the nodes 3 and 4 to repair c1,J2
; 1 symbol from each of the nodes 2

and 4 to repair c1,J3
; 1 symbol from each of the nodes 2 and 3 to repair c1,J4

; 1
2 symbol from each of the

nodes 2–4 to repair c1,J5
.

Each helper transmits 5
2 symbols, as given by (10). The first three cases correspond to p = 2, and the

last case corresponds to p = 1.

Remark 2. It can be seen that the repair procedure can benefit from the MSMR repair property in the

case n > k + 1. In particular, the advantages of using MSMR codes in our construction over maximum

distance separable (MDS) codes as in [17] are: (1) lower repair bandwidth, (2) symmetric repair among

helper nodes, which obviates the need for the expensive procedure of duplicating the block design in [17],

and (3) universality, meaning non-trivial repair strategies for multiple erasures, 1 6 e 6 m with the help

of varying number of helpers d, such that n−m 6 d 6 n− e. Figure 2 shows a comparison between the

performance of the layered code in [17] and Construction 1, for an (n, k, d, e) = (10, 7, 7, 1) system. The

MSMR repair property clearly helps reduce the bandwidth.
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Example 4. We note that for large n and n−k, the complexity of designing universal MSMR may lead

to large subpacketization size α. However, for small n and n − k, universal MSMR can be competitive

and may not entail additional overhead, compared to using MDS codes as in [17].

Consider (n, k, d) = (5, 3, 3), (r,m) = (4, 2). We compare the performance achieved by [17] and Con-

struction 1, considering the repair of a single failure.

• The construction in [17, Figure 3] uses an MDS code with dimension 2 and length 4. Assume the

MDS code is defined over a field of size 4, then, every codeword symbol of the MDS code corresponds to

2 bits. Then, the code generated in [17, Figure 3] achieves the following: F = 60 bits and α = 24 bits.

In the repair process, a replacement node downloads 48 bits; each helper transmits 16 bits. The code

achieves (ᾱ, β̄) = (25 ,
4
5 ).

• In Construction 1, assume we use the EVENODD code (see Table 1) as the underlying MSR code.

Then, F = 20 bits, α = 8 bits. In the repair process, a replacement node downloads 15 bits; each helper

transmits 5 bits. The code achieves (ᾱ, β̄) = (25 ,
1
4 ).

Therefore, for the same ᾱ = 2
5 , Construction 1 achieves smaller subpacketization size and also strictly

smaller normalized repair bandwidth β̄.

Remark 3. The technique of using MSR codes as building blocks for outer code constructions has been

used in the literature, for instance in constructing codes with local regeneration [36,37] and exact-repair

regenerating codes for single failure [30]. In particular, it can be checked that the construction in [30]

uses copies of trivial Steiner systems, and achieves the same normalized points (ᾱ, β̄) as Construction 1.

However, the construction in [30] uses higher subpacketization size due to the necessity of code duplication

in order to achieve symmetry across all nodes. Moreover, Construction 1 allows the use of general balanced

incomplete block designs (see Remark 7) in order to further reduce the subpacketization size. We note

that determinant codes in [12] achieve the same normalized interior points as Construction 1 for an

(k + 1, k, k, 1) system. Moreover, unlike Construction 1, determinant codes achieve the same set of

normalized interior points for any number of nodes n > k + 1, which is better than Construction 1. The

authors in [16] provide a construction that improves upon [14] for certain parameter sets [16, Theorems 3.1,

3.2]. For a numerical example, for a (9, 7, 8, 1) system, when ᾱ < 0.1538, Construction 1 outperforms [16],

when ᾱ > 0.1538, Ref. [16] is better.

Remark 4. Using (3), it can be argued that βe(d) in (10) is decreasing in d. For fixed n, k,m, e, the

minimum bandwidth per helper is then achieved with d = n− e, and is given by

βe(n− e) =

e
∑

s=1

(

e

s

)(

n− e− 1

r − s− 1

)

s

m
=

e

m

e
∑

s=1

(

e − 1

s− 1

)(

n− e− 1

r − s− 1

)

=
e

m

(

n− 2

r − 2

)

, (13)

where the last equality follows from Vandermonde’s identity. Moreover, we obtain after simplification

F = (r − 2)

(

n

r

)

, ᾱ =
r

n(r − 2)
, β̄ =

e

m

r(r − 1)

n(n− 1)(r − 2)
. (14)

We argue in the next example that for some parameters, one can use a regenerating code corresponding

to an interior point instead of an MSMR code as the inner code per repair group, and achieve the same

performance.

Example 5. Consider the case (n, k, d, e) = (5, 4, 4, 1). Let r = t = 4,m = 1 in (7). The code matrix

is given by (12). Thus, the code per column of C is of length r = 4 and its reconstruction parameter is

r −m = 3. We use the interior code: (ᾱ0, β̄0) = (38 ,
1
4 ) per repair group. Let F0 be the information size

per column. Thus, F = 5F0 and α = 3F0

2 . It follows that ᾱ = 3
10 . To repair node 1, we download a total

bandwidth of 3F0. Thus, β̄ = 3
20 . We obtain the achievable point (ᾱ, β̄) = ( 3

10 ,
3
20 ). The same point

is equally achievable using Construction 1 with (t, r, n,m, e) = (3, 3, 5, 1, 1) with an MSMR code as the

interior code. This point is optimal on the exact-repair tradeoff of the (5, 4, 4, 1) system [12, 14], and is

the optimal point next to the minimum bandwidth regenerating point.

Remark 5. In the scenario d > k, the authors in [17] presented a modified construction achieving

a different set of interior points for a single failure. The repair scheme of the modified construction is
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Figure 3 (Color online) Comparing achievable schemes for different scenarios. The dashed curves correspond to points

achieved with Construction 1, and the solid curves (with open circles) corresponds to Construction 2, coupled with MSMR

repair. The lowest solid curve corresponds to the functional repair tradeoff (1). The dotted line corresponds to space-

sharing between MSMR and MBCR points. (n, k, d, e) = (8,6,6,2) in (a); (9,6,7,2) in (b); (10,6,8,2) in (c); (19,16,17,2) in

(d); (16,14,14,2) in (e); (24,14,14,2) in (f).

however based on the naive repair scheme of MDS code. We do not describe the details here and refer

the reader to [17]. We note that one can again use MSMR codes in the modified construction and the

repair scheme of Proposition 1, and this leads to smaller repair bandwidth, for the same F, α. We refer

to this construction as Construction 2. Moreover, Construction 2 can be used to repair e 6 n− k node

failures and the repair bandwidth is given by (10).

Example 6. For two erasures, Figure 3 compares achievable points obtained using Construction 1,

and achievable points obtained by Construction 2. The performance of both codes depends on the

system parameters. When d = k, Construction 1 is identical to Construction 2. In most other cases,

Construction 1 performs better closer to the MSMR point while Construction 2 performs better closer

to the minimum bandwidth point.

2.2 Code construction with general Steiner systems

In Proposition 1, we considered Construction 1 with Steiner systems such that t = r. We study next the

use of a general Steiner system for the specific (n, n−m,n− e, e) system, such that 1 6 e 6 m, d = n− e.

Proposition 2. Construction 1 generates an (F, n, n−m,n− e, e, α, β) code such that during repair of

e 6 m nodes, each helper contributes

βe =
e

m

(

n−2
t−2

)

(

r−2
t−2

) , (15)

and the system satisfies

F = (r − 2)

(

n
t

)

(

r
t

) , α =

(

n−1
t−1

)

(

r−1
t−1

) , ᾱ =
r

n(r − 2)
, β̄e =

e

m

r(r − 1)

n(n− 1)(r − 2)
. (16)
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Proof. We consider a Steiner system S(t, r, n). Recall that k = n−m, which implies that the system

can tolerate any e 6 m failures. Let E = {ei1 , . . . , eie} denote a set of e failed nodes. The set of helpers

H consists of all the remaining nodes, H = [n]\E . The repair proceeds by recovering the blocks which

contain at least one failed node. Consider a helper h ∈ H and a failed node ij, j ∈ [e]. By basic counting

argument, nodes h and ij share λ2 ,
(

n−2
t−2

)

/
(

r−2
t−2

)

blocks. Let J be one of these λ2 blocks, and denote by

s the number of failed nodes within J . Note that 1 6 s 6 e. As the non-failed nodes within J are helpers,

the contribution of node h in the recovery of block J follows from (3), and is given by s
(r−s)−(r−m)+s

= s
m

symbols. That is, the average amount of information h contributes to the repair of ij is 1
m
. Thus, node

h contributes λ2

m
symbols in the repair of node ij across all blocks containing (h, ij). Summing over all

failed nodes, Eq. (15) follows. Using (7) and (15), Eq. (16) follows after simplification.

The repair in Example 2 is an illustration of Proposition 2. Similar to Proposition 1, the repair

bandwidth is identical among the helper nodes, and independent of the choice of the failed nodes and

helpers. One can observe that for each helper, it transmits 1 symbol from 1 block, and two half symbols

from 2 blocks. In particular, for helper h and failure nodes 1, 2, the number of blocks containing any

subset of {h, 1, 2} is independent of the choice of h. Therefore, we observe this symmetry in the repair.

In fact, such symmetry occurs when t > e+1 and is due to the fact that every subset of t appears exactly

once in the Steiner system.

Remark 6. We note here that ᾱ, β̄ do not depend on t by (16). The advantage of using Steiner

systems with smaller t, whenever they exist, is that they induce smaller α and β, for the same normalized

parameters. Indeed, it can be shown that α, as given by (16), is strictly increasing in t. Therefore,

to reduce the storage size per node, and therefore the repair bandwidth, it is advantageous to use a

Steiner System with the smallest t, t 6 r. Moreover, when d = n − e, t = r, Propositions 1 and

2 give the same ᾱ, β̄ (see Remark 4). Finally, the value of β̄ for general Steiner systems and arbitrary

d > n−e is an open problem. We conjecture that the normalized bandwidth should be identical to that of

Proposition 1.

Example 7. Consider a Steiner system S(t, r, n) = S(2, 4, 13). Then, N = 13, α = 4. The blocks are

given by

J1 = {1, 2, 4, 10}, J2 = {2, 3, 5, 11}, J3 = {3, 4, 6, 12}, J4 = {4, 5, 7, 13}, J5 = {1, 5, 6, 8},
J6 = {2, 6, 7, 9}, J7 = {3, 7, 8, 10}, J8 = {4, 8, 9, 11}, J9 = {5, 9, 10, 12}, J10 = {6, 10, 11, 13},
J11 = {1, 7, 11, 12}, J12 = {2, 8, 12, 13}, J13 = {1, 3, 9, 13}.

Let m = 2, e = 2, d = n−e = 11. We use the EVENODD code in Table 1. Nodes 1 and 2 can be repaired

simultaneously by downloading the following.

• Symbols c4,J1
, c10,J1

from nodes 4 and 10, respectively. These will help repair symbols c1,J1
and

c2,J1
.

• 1
2 symbol from each of the nodes 5, 6 and 8, to repair c1,J5

.

• 1
2 symbol from each of the nodes 7, 11 and 12, to repair c1,J11

.

• 1
2 symbol from each of the nodes 3, 9 and 13, to repair c1,J13

.

• 1
2 symbol from each of the nodes 3, 5 and 11, to repair c2,J2

.

• 1
2 symbol from each of the nodes 6, 7 and 9, to repair c2,J6

.

• 1
2 symbol from each of the nodes 8, 12 and 13, to repair c2,J12

.

While each helper transmits one symbol, the nature of the repair is different across helpers. For instance,

node 4 transmits an entire symbol that contributes to the recovery of block J1, while node 5 transmits

two half symbols that contribute to the recovery of blocks J2 and J5, respectively. This scenario happens

because t 6 e, which implies that some helpers may share a block with the set of e failed nodes, while

other helpers may not. In all scenarios, the repair bandwidth is identical across helpers, as shown in

Proposition 2.

Remark 7. Construction 1 can be extended to general balanced incomplete block design (BIBD)

systems. A BIBD system BIBD(t, r, n, λ), t 6 r 6 n, is a collection of subsets of size r, included in [n],
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such that any subset of [n] of size t appears exactly λ times across all the subsets. In particular, a Steiner

system is a BIBD system with λ = 1. When t = r, a BIBD system can simply be obtained by duplicating

a Steiner system S(t, r, n) λ times. Therefore, in this case we restrict our attention to Steiner systems as

they provide smaller storage cost, for the same parameters. Moreover, it can be seen that the proof of

Proposition 2 holds for any BIBD system, with the only difference being in the number of blocks any two

nodes share. For instance, for a BIBD(t, r, n, λ) system, any two nodes share λ
(

n−2
t−2

)

/
(

r−2
t−2

)

blocks [35]

and we obtain

F = λ(r − 2)

(

n
t

)

(

r
t

) , α = λ

(

n−1
t−1

)

(

r−1
t−1

) , βe = λ
e

m

(

n−2
t−2

)

(

r−2
t−2

) , ᾱ =
r

n(r − 2)
, β̄e =

e

m

r(r − 1)

n(n− 1)(r − 2)
. (17)

Therefore, when designing the code, for fixed parameters n, r, one can optimize over existing block designs

and chooses the block design that results in the smallest α = λ
(

n−1
t−1

)

/
(

r−1
t−1

)

. Recall that the trivial design

always exists and satisfies λ = 1, t = r.

3 Analysis of the achievability for an (n, k, d, e) = (k + e, k, k, e) system

In this section, we analyze the achievable region for an (n, k, d, e) = (k + e, k, k, e) system by means of

Construction 1, using a Steiner system S(t, r, k + e) with the choice of t 6 r as indicated in Remark 6.

Corollary 1. Construction 1 with m = e generates a set of achievable points for an (F, k+e, k, k, e, α, β)

system, such that

F = (r − 2)

(

k+e
t

)

(

r
t

) , α =

(

k+e−1
t−1

)

(

r−1
t−1

) , β =

(

k+e−2
t−2

)

(

r−1
t−1

) , (18)

ᾱ =
r

(k + e)(r − e)
, β̄ =

r(r − 1)

(k + e)(k + e− 1)(r − e)
, e+ 1 6 r 6 k + e. (19)

Proof. Follows from Proposition 2.

3.1 Optimality of one achievable point

Proposition 3. For the (k+ e, k, k, e) system, the point achieved in (19) for r = k+ e− 1 is an optimal

interior point.

Proof. From (18) when r = k + e− 1, we obtain

(ᾱ, β̄) =

(

k + e− 1

(k + e)(k − 1)
,

k + e− 2

(k + e)(k − 1)

)

. (20)

Substituting (20) in (2) and setting p = g − 2, we obtain

(t+ ge− 2e)ᾱ+ (k − t− ge+ 2e)β̄ = (k − e)ᾱ+ eβ̄ = 1.

Therefore, the above point lies on the functional repair lower bound and hence is optimal. It lies on the

first segment of the bound near the MSMR point, and it is not the MSMR point nor the MBCR point,

as indicated by (3) and (6).

We note that the optimality of the point in Proposition 3 for the case of (k+1, k, k, 1) was also shown

in [17, Proposition 3]. Figure 4 illustrates the optimality of the point achieved by Proposition 3 for

two different systems. The achievable point, corresponding to (r,m) = (n − 1, e), lies on the functional

tradeoff, which proves also its optimality under exact repair.
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Figure 4 (Color online) Functional tradeoff and optimal points achieved by Proposition 3.

3.2 Optimal extension property

From Proposition 3, Construction 1 gives us an optimal point for any (k+e, k, k, e) system. Construction 1

also offers the following optimal extension property.

Proposition 4. Consider a (k+ e, k, k, e) system and consider the optimal point achieved by Construc-

tion 1 in Proposition 3 with t = r, one can extend the system to a (k+e+1, k, k, e+1) system, operating

at the optimal point of Proposition 3, by adding another node to the system and increasing the storage

per node, while keeping the initial storage content.

Proof. Let αi, βi, Fi, for i = 1, 2, refer to the parameters of the old and the new systems, respectively.

Then, α2−α1 = 1, β2−β1 = 1, F2−F1 = k−1. Moreover, the number of blocks N is increased by 1. Let

k+ e+1 be the index of the new node to be added. The new code is obtained by simply adding another

block, whose set is {1, . . . , k + e}, and adding to each of the old sets the element (k + e + 1), and thus

generating another coded symbol for the corresponding repair group. Note here that the dimension of the

MSMR code in each block does not change. A key requirement is to assume the use of an MSMR code

that can accommodate the addition of extra coded symbols, when needed. This can be done by choosing

the number of symbols of the MSMR code to be as large as needed (this may result in an increase in the

underlying field size). Each old node will store an extra symbol coming from the new repair group, while

the new node stores the newly generated coded symbols from the old repair groups.

Example 8. We illustrate the process of extending a (4, 3, 3, 1) system to a (5, 3, 3, 2) system. Initially,

each repair group is of size 3. The code blocks are given by

J1 = {2, 3, 4}, J2 = {1, 3, 4}, J3 = {1, 2, 4}, J4 = {1, 2, 3}.

The code matrix is given by

C1 =













− c1,J2
c1,J3

c1,J4

c2,J1
− c2,J3

c2,J4

c3,J1
c3,J2

− c3,J4

c4,J1
c4,J2

c4,J3
−













.

Adding node 5 to the system, we add another block J5 = {1, 2, 3, 4}, whose symbols will be distributed

across the old nodes {1, 2, 3, 4}. The old blocks become

J1 = {2, 3, 4, 5}, J2 = {1, 3, 4, 5}, J3 = {1, 2, 4, 5}, J4 = {1, 2, 3, 5}.



Zorgui M, et al. Sci China Inf Sci October 2018 Vol. 61 100304:13

ᾱ
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Figure 5 (Color online) Achievable points by Construction 1 for a (n, k, d, e) = (17, 14, 14, 3) system. The x-axis is the

normalized storage per node ᾱ and the y-axis is the normalized bandwidth β̄.

The new node 5 stores newly generated coded symbols of each of the old repair groups {J1, . . . , J4}.
The new code matrix is given by (12). The two points corresponding to this example are illustrated in

Figure 4.

The above property is useful for systems for which the fault tolerance may be deemed insufficient.

Therefore, one can increase the fault tolerance of the system without sacrificing the optimality on the

exact-repair tradeoff, or changing the existing data. We note also that by a successive application of

Proposition 4, we can increase the fault tolerance of the system by any desirable factor.

3.3 Achievability region for the (k + e, k, k, e) system

In this subsection, we seek to determine the convex hull of the known achievable points for the (k+e, k, k, e)

system, which corresponds to the best known achievable points. The convex hull, denoted by R, is the

smallest convex set containing all known achievable points, obtained by all convex combinations (i.e.,

space-sharing) among the points achieved by Construction 1, described in (19), and also the MBCR

point given by (6). Therefore, the objective is to determine which points are sufficient to describe R. We

refer to these points as corner points of R.

Figure 5 presents the achievable points for a (17, 14, 14, 3) system. The achievable points of (18) are

parameterized by r, such that e + 1 6 r 6 e + k. For each r, we denote the corresponding point as

(ᾱr, β̄r). As r decreases, the storage αr increases. By abuse of notation, we refer to the point (ᾱr , β̄r)

as point r. We state some guiding observations for our subsequent analysis. First, one can eliminate

some of the achievable points obtained by Construction 1. For instance, point r = 5, with ᾱ = 0.1471,

achieves a similar bandwidth as its neighbor point r = 6, but a larger storage size. Points to the right

of ᾱ = 0.1471, such that r < 5, can be also immediately eliminated, because they can be outperformed

by space-sharing between the MBCR point and some interior point. Interestingly, we observe that point

r = 8 lies exactly on the segment joining point r = 9 and the MBCR point. This means that, while

point r = 8 is not outperformed by space-sharing, it is nonetheless not necessary for the description of

R, and thus it is not considered as a corner point. In the following, we show that the observations from

Figure 5 can be generalized and we explicitly determine the corner points of R, depending on the system

parameters e and k. Our characterization of the corner points is presented in Propositions 5 and 6. In

order to prove them, we first prove some facts about the corner points in Lemmas 1 to 4.

Lemma 1. The achievable points in (18), with r < 2e, are not corner points in R.



Zorgui M, et al. Sci China Inf Sci October 2018 Vol. 61 100304:14

Proof. From (18), it can be seen that ᾱ(r), seen as a function of r, is decreasing. β̄(r) is a fractional

function in r, with a pole at r = e. For r > e, β̄(r) is convex in r. It can be shown that it decreases and

then increases monotonically. Therefore, as ᾱ(r) is decreasing, the points of interest are those for which

β̄(r) increases. Moreover, by noticing that β̄(2e) = β̄(2e − 1), it follows that points with r 6 2e − 1 do

not contribute to the acheivability region (ᾱ, β̄) as they are outperformed by the point r = 2e in terms

of both, storage and bandwidth.

Lemma 1 implies that it is sufficient to consider the range 2e 6 r 6 k+ e. We define the non-negative

integer p such that r = 2e + p. We now show that the achievable points r = 2e, . . . , k + e cannot be

eliminated by space-sharing between themselves, when not considering the MBCR point.

Lemma 2. The achievability region of the points (ᾱr , β̄r), r = e + 1, . . . , k + e has points with r ∈
{2e, . . . , k + e} as corner points, when not considering the MBCR point.

Proof. By virtue of Lemma 1, points with e+ 1 6 r < 2e can be eliminated. We consider the segment

joining the points (ᾱr, β̄r) and (ᾱr+1, β̄r+1). The slope of the segment, denoted sl(r), is given by

sl(r) =
β̄r+1 − β̄r

ᾱr+1 − ᾱr

=
−r(r − 2e+ 1)

e(k + e− 1)
.

The slope sl(r) is strictly decreasing in r for r > 2e. This means, for any three consecutive points

(ᾱr+2, β̄r+2), (ᾱr+1, β̄r+1) and (ᾱr, β̄r), the point (ᾱr+1, β̄r+1) lies below the segment joining the other

two extreme points. Therefore, space-sharing between (ᾱr+2, β̄r+2) and (ᾱr, β̄r) is suboptimal.

Now, we analyze the achievability region when adjoining the MBCR point to the points in (18) with

2e 6 r 6 k + e.

Lemma 3. The MBCR point is a corner point for R.

Proof. Noting that

ᾱMBCR =
2k + e− 1

(k + e)k
> ᾱ2e =

2

(k + e)

and

β̄MBCR =
2e

(k + e)k
< β̄2e =

2(2e− 1)

(k + e)(k + e− 1)
,

along with Lemma 2 concludes the result.

By Lemma 3, we only need to analyze whether space-sharing between the MBCR point and any other

point r may outperform some of the other achievable points r′.

Lemma 4. If a point r, r > 2e, is not outperformed by space-sharing between the point r + 1 and the

MBCR point, then, all points r′ such that r′ > r, are corner points of the achievability region.

Proof. The assumption of the lemma implies that the slope of the segment joining the points (ᾱr , β̄r)

and (ᾱMBCR, β̄MBCR) is smaller than the slope of the segment between (ᾱr+1, β̄r+1) and (ᾱMBCR, β̄MBCR).

As from Lemma 2, the slope of the segment between (ᾱr , β̄r) and (ᾱr+1, β̄r+1) is decreasing in r, it follows

that no point r′ > r can be outperformed by space-sharing across any two other achievable points,

including the MBCR point.

Therefore, to determine the corner points of R, we need to successively test for increasing values of p,

such that 0 6 p 6 k − e, whether the point r = 2e + p is outperformed by space-sharing of MBCR and

point r + 1. Let p∗ denote the smallest p such that r = 2e+ p is not outperformed by space-sharing, it

follows by Lemma 4 the following achievability region.

Proposition 5. The achievability region R is given by the corner points

{(ᾱr, β̄r) : r ∈ {r : r = 2e+ p and p∗ 6 p 6 k − e}} ∪ {MBCR}, (21)

where 1 6 p∗ 6 k − e, and p∗ is given by

p∗ =

⌊

e− k − 2e2 + 1 +
√
∆

2(e+ k − 1)

⌋

+ 1,

∆ = (2e2 − e + k − 1)2 + 8(k + e− 1)e(e− 1)(k − e− 1). (22)
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Proof. Consider r = 2e + p, 0 6 p 6 k − e − 1. We consider space-sharing between the MBCR point

and the point r + 1. We compute the normalized bandwidth, denoted by β̄′
r, achieved by the considered

space-sharing, at the intermediate point α = αr, and then determine whether β̄′
r > β̄r. Using (19) and

(6), we obtain after simplification

β̄′

r − β̄r =
k(−2e2 + 2e+ p2 + p)− p(−2e2 + e+ 1) + 2e(e2 − 1) + p2(e− 1)

(e+ k)(e + p)(e+ k − 1)(e2 + pe+ k − p+ kp− 1)
,

N1(k)

D
(23)

=
(k + e− 1)p2 + p(2e2 + k − e− 1) + 2e(e− 1)(e+ 1− k)

(e + k)(e+ p)(e + k − 1)(e2 + pe+ k − p+ kp− 1)
,

N2(p)

D
. (24)

We regard N1 as a function of k, for fixed e and p, and N2 as a function of p, for fixed e and k. In this

proof, we are interested in analyzing N2. We analyze N1 in a later proof.

Clearly D > 0. Thus, sign(β̄′

r − β̄r) = sign(N2(p)). Therefore, it suffices to study the sign of N2(p).

We note that β̄′

r − β̄r 6 0 implies that point r = 2e+ p can be eliminated by space-sharing and thus it

is not a corner point. N2(p) is a quadratic function in p. Let ∆ denote the discriminant of N2(p). It can

be checked that

∆ = (2e2 − e+ k − 1)2 + 8(k + e− 1)e(e− 1)(k − e − 1) > 0.

Thus, there exists p0,1, p0,2 such that N2(p0,1) = N2(p0,2) = 0. As the leading coefficient of N2(p) is

positive, and N2(0) = −2e(e − 1)(k − e − 1) 6 0, it follows that one solution, say p0,1, is negative

and the other solution p0,2 is non-negative. That is, p0,1 < 0 and p0,2 > 0. Then, it follows that

∀0 6 p 6 p0,2, N2(p) 6 0, which implies that the set {p : p 6 p0,2} can be eliminated. In particular, p = 0

is always eliminated. Let p∗ = ⌊p0,2⌋ + 1, as in (22). Thus, p∗ outperforms space-sharing and so do all

p > p∗. As N2(k − e − 1) = (k − e)(k + e − 1)(k − e− 1) > 0, it follows that p0,2 6 k − e− 1, and thus

p∗ 6 k − e.

Proposition 5 agrees with known particular cases. (1) When e = 1, we have p∗ = 1 and the only

eliminated point (p = 0) coincides with the MBCR point, in agreement with [17]. (2) The optimal point

in Proposition 3 (p = k − e − 1) is not a corner point for k = e + 1, because of p∗ = k − e > p and

Proposition 5. Indeed, the point with p = k − e − 1 lies exactly on the segment joining the MBCR and

the MSMR point. (3) When k > e+ 1, the optimal point in Proposition 3 is a corner point, as

β̄′

k+e−1 − β̄k+e−1 =
(k − e)(k − e− 1)

k(k + e)(k − 1)2
> 0.

While Proposition 5 describes exactly R, it does not give insight into when a particular point r = 2e+p

is a corner point or not. We focus on the analysis of the sign of N1(k) in (23). N1(k) is linear in k.

Depending on the sign of its the leading coefficient −2e2 + 2e + p2 + p, there may exist an integer kth
such that when k > kth space-sharing enhances the achievability region (i.e., N1(k) 6 0 ) and does not

enhance it when k < kth. That is, a point with the same r may be a corner point for some (k+ e, k, k, e)

systems and may be not a corner point for other systems, with higher reconstruction parameter k.

For example, for e > 1, let p = e− 1, we have N1(k) = e(1− e)(k− 5e+1). It follows that, for systems

with k > 5e− 1, the point r = 2e+ (e− 1) = 3e− 1 is outperformed by space-sharing. For systems with

2e− 1 6 k < 5e− 1, the point r = 3e− 1 is a corner point.

The next proposition addresses the cases in which a particular point r = 2e+p is a corner point, using

a similar argument as the above example.

Proposition 6. Consider the achievable point r = 2e+ p, for fixed (e, k), e > 1. Let

pmax =

⌊

1

2
(
√

8e(e− 1)− 1− 1)

⌋

and kth(p) =

⌈

(1− e)

(

p+1
2

)

+ 2
(

e+1
2

)

+ ep
(

p+1
2

)

− 2
(

e
2

)

⌉

.

Then, Table 2 specifies the scenarios in which (ᾱr, β̄r) is a corner point in R.
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Table 2 Summary of cases for which (ᾱr , β̄r) is a corner point in R a)

(ᾱr , β̄r) k < kth(p) k > kth(p)

p 6 pmax X ✗

p > pmax X X

a) The symbol X means (ᾱr , β̄r) is a corner point while the symbol ✗ denotes the other case.

Proof. We examineN1(k). First, we note that when−2e2+2e+p2+p > 0, the point r = 2e+p is a corner

point for all systems. Indeed, as N1(e+1) = 2ep(e+ p) > 0, p > 0, we have N1(k) > 0, ∀k > e+1, p > 0.

It follows that, for a fixed (e, p), we need to determine the sign of −2e2 + 2e+ p2 + p. We have

−2e2 + 2e+ p2 + p < 0 ⇐⇒ p(p+ 1) < 2e(e+ 1) ⇐⇒
(

p+ 1

2

)

< 2

(

e

2

)

, (25)

⇐⇒ p <

√

2e2 − 2e− 1

4
− 1

2
=

1

2

(

√

8e(e− 1)− 1− 1
)

. (26)

We note that RHS of (26) cannot be an integer, as otherwise
√

8e(e− 1)− 1 should be an odd integer,

implying 8e(e− 1)− 1 ≡ 1 mod 4, which leads to a contradiction as 8e(e− 1)− 1 ≡ 3 mod 4. This also

implies that the slope of N1(k) cannot be 0, for e > 0, ∀p > 0. The maximum value of p satisfying (26)

is given by

pmax =

⌊

1

2

(

√

8e(e− 1)− 1− 1
)

⌋

. (27)

Thus, a point r = 2e+p, p > pmax is a corner point for any (k+ e, k, k, e) system such that r 6 k+ e. For

each 0 6 p 6 pmax, the point r = 2e+ p is a corner point if and only if sign(β̄′

r − β̄r) = sign(N2(k)) > 0.

From (23), Let k0 be the solution to the linear equation N1(k) = 0. Then, after simplification, we have

k0 =
(1 − e)(2e2 + 2ep+ 2e+ p2 + p)

−2e2 + 2e+ p2 + p
= (1− e)

(

p+1
2

)

+ 2
(

e+1
2

)

+ ep
(

p+1
2

)

− 2
(

e
2

) . (28)

As p 6 pmax, we have −2e2 +2e+ p2 + p < 0, which also implies that k0 > 0. As N1(e+1) = 2ep(e+ p),

we have kth > e+1, with equality iff p = 0. It can be checked from (28) that when p = e−1, k0 = 5e−1.

For k > k0, point r is not a corner point. As k is an integer and k0 is not necessarily an integer, it follows

that k > k0 ⇐⇒ k > ⌈k0⌉ , kth.

Using Proposition 6, Corollary 2 follows.

Corollary 2. For a (k + e, k, k, e) system with e > 2, we have

• p∗ in (22) can also be expressed as

p∗ = 1 +max{p : p 6 pmax and k > kth(p)} (29)

= 1 +max

{

p : p 6

⌊

1

2

(

√

8e(e− 1)− 1− 1
)

⌋

and k >

⌈

(1− e)

(

p+1
2

)

+ 2
(

e+1
2

)

+ ep
(

p+1
2

)

− 2
(

e
2

)

⌉}

. (30)

• The number of corner points in R is given by nc , |{r : 2e+ p∗ 6 r 6 k + e}|+ 1 = k − e+ 2− p∗.

• As a function of k, p∗ levels out at k = kth(pmax) and its final value is given by 1 + pmax.

Example 9. We consider the setting of Figure 5: e = 3, k = 14. We obtain pmax = 2, p∗ = 3. This

means the points r, for 6 6 r 6 2e + p∗ − 1 = 8 are not corner points in R and the number of corner

points is nc = 10. This clearly matches the observations made in Figure 5.

4 Conclusion

We studied the problem of centralized exact repair of multiple failures in distributed storage. We first

described a construction that achieves a new set of interior points. In case all non-failed nodes participate
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in the repair process, we showed that the use of a general Steiner system may reduce the storage size as

well as the repair bandwidth, compared to a trivial Steiner system for the same normalized achievable

point by our construction. For the (k + e, k, k, e) system, we proved the optimality of one point on the

functional centralized repair tadeoff. Moreover, considering minimum bandwidth cooperative repair codes

as centralized repair codes, we determined explicitly the best achievable region obtained by space-sharing

among all known points.

One future work is the analysis of the repair bandwidth of our construction for general Steiner systems

and arbitrary d 6 n−e. Our conjecture is that the normalized bandwidth is identical to the trivial Steiner

systems. Another future direction is to investigate outer bounds for the centralized exact-repair problem.

In particular, it is an open problem to understand the minimum bandwidth point under centralized exact

repair.
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