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Dear editor,
Recently auto-encoders (AEs) are used as interme-
diate layers or unsupervised learning stages in deep
learning networks [1]. However, unlike other deep
learning algorithms, which can extract higher-
order abstract features using deep structures [2,3],
AEs are typically more easily decoded than convo-
lutional networks for their physical meanings. Ap-
plications are generally limited to encoding train-
ing data to hidden space.

In this study, we consider the case of remote
sensing images. We propose a new theory on how
regularized AEs can learn the appropriate features
for target recognition even with extremely limited
examples and prove its effectiveness. This study
primarily aims at solving the problem of sample
scarcity for remote sensing images, particularly
synthetic aperture radar (SAR) images. SAR im-
age samples are frequently difficult to obtain, and
even for known data, transfer learning of deep con-
volutional neural networks cannot solve problems
because of the differences between data source. We
tried to solve the scarcity of samples in unsuper-
vised AEs as representation learning effectively.

Generalized regularized auto-encoders. Why use
regularized methods? AEs act as a dimensional-
ity reduction method and provide a unique solu-
tion for the minimum loss problem. However, AEs
have overcomplete hidden layers in deep neural

networks; this makes the problem ill posed. The
problem can be converted to a solvable optimiza-
tion problem using regularization, which implies
that AEs should be trained and learned under reg-
ularized constraints.

Ref. [2] shows that AEs are representations of lo-
cal statistics, particularly for overcomplete hidden
layers used in AEs; however, with limited samples,
AEs will easily become overfit.

Regularization is widely used in statistical learn-
ing [4] and in sparse representation [5, 6]. Par-
ticularly, regularization is an irreversible algo-
rithm that does not affect real reconstruction er-
ror, which could be viewed as an additive rectifier.

The most frequently studied regularized AEs in-
clude sparse AEs (SAE), denoising AEs (DAE),
and contractive AEs (CAE). These AEs are use-
ful, and they are the basis for investigating the
data scarcity problem in this study.

The current SAE is the most commonly used
as the L1 or Student’s t constraint, where average
loss is obtained by constraining hidden layer out-
put. DAE [7] is based on the corruption of input
assumptions; it is considered as an alternative im-
plementation [2, 3] of the score matching method.
The contractive factor [2] is based on the first-
order derivatives of the encoder function in AEs. It
is advantageous over other regularization methods
in that it provides a balance between reconstruc-
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tion error and robustness. The disadvantage of
CAE is that it relies on analytic penalty factor: if
training set is disproportionally separated and the
neighborhood classification margin is large, such
an input error will result in a higher probability of
positive false error.

We proposed regularized AEs as a solution to
existing sample scarcity. However, contractive, de-
noising, and sparse regularizers are not fully appli-
cable in small sample problems. Similar to former
study [8], we established regularization constraints
using the energy model of AEs. Based on the study
of regularization constraints from the energy per-
spective, we tested the validity of these constraints
in a small sample model.

Energy form requirements. Kamyshanska et
al. [8] established a regularization term condition
based on energy analysis as follows:

∑

k
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2 −D < 0, (1)

where s is the sigmoid activation function, s′ is its
derivative function, x is input data, wk is optimal
weights of the hidden layer, andD is the dimension
of the input samples. We propose spatial-sensitive
rules for regularization according to the abovemen-
tioned discussion.

Our proposed spatial gradient is based on a
higher-order derivative. The regularized additive
term is as follows:

H ∝ E

(

‖J (x) − J (x+ ε)‖

|f (x) + ε|

)

, (2)

where H is the Hessian term, E(·) is expectation,
f is the function of the encoders, and J(x) is the
Jacobian of f(x).

However, to ensure that the regularizer func-
tions well even in sample scarcity problems, we uti-
lize the second term as the CAE+H algorithm [9],
where we use high-order contractive information
to capture the data generating density.

Generalized auto-encoders (GAE). The higher-
order contractive factor is the statistical average
over x neighborhoods, and the penalty factor esti-
mated using existing samples ensures implicit ex-
pression of sample generating distribution. In ad-
dition, with limited training samples, the represen-
tativeness of the hidden layers is determined by
whether f(x) is sufficiently sensitive to the tan-
gential changes along the manifold. Thus, under
certain conditions, the loss function of the GAE is
as follows:
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∑
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[
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]

.

(3)

The GAE algorithm can be an effective solution
for the density estimation of the samples. Model
complexity is related to only numbers of neighbors
C used to estimate Hessian, input data dimension
dx and hidden layer size dh. GAE’s complexity is
o(Cdxdh); compared to former study [2,3], it does
not add much to CAE, which is acceptable.

Experiments and analyses. Experiments are
performed to verify the reliability of the proposed
GAE algorithm. First, data density estimation for
handwritten digits and SAR image data is exam-
ined in the following aspects.

(1) Effectiveness on digits and SAR images for
a small sample problem.

(2) Regularization property vs. the number of
input samples, and the effect of hyperparameters
on the regularizer.

The data used in the experiment is primarily the
MNIST handwritten digit database and moving-
stationary target automatic recognition (MSTAR)
database.

Reconstruction error is measured using cross en-
tropy information in the experiment and is cal-
culated using stochastic gradient descent. This
study employs only a conventional single-layer net-
work model to compare the effectiveness of the re-
stricted Boltzmann machine (RBM), DAE, CAE,
and CAE+H algorithms in a small sample.

Regularization property. In the study of CAE-
based methods, the contractive ratio is an indica-
tor of the contractiveness of the regularizer. The
Hessian penalty factor ensures the smoothness of
the manifold captured during sampling from a
given data neighborhood. The geometric effect of
contractive penalty improves tangent space esti-
mation in the neighborhood of x0. In these ex-
periments, we analyzed the spectrum of Jacobian
singular values. With a higher-order contractive
factor, the GAE exhibits considerably promising
results in terms of producing a closer estimation
on the manifold.

Selection of hyperparameters. Hyperparameters
represent the regularization intensity in the model.
With respect to the abovementioned analysis, the
effects of the two regularization factors are differ-
ent. In the experiments, two considerably different
categories must be studied, i.e., whether to con-
tract (increase λ) or improve the convergence rate
(increase µ). These categories are discussed sep-
arately. We performed experiments using several
sets of hyperparameters and selected the set with
the best performance for further study.

Recognition analysis. For MNIST handwritten
data recognition, regularization factors can extract
higher-dimension information; MSTAR data ex-
hibits noise suppression performance. In the Gaus-
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sian process for Hessian estimation, the feature
learned by the GAE is considerably close to the
Gabor filter, which acts as a band-pass filter for
primitive processing of images. Therefore, the
GAE is more capable of processing visual informa-
tion than other methods. In the MSTAR dataset,
the CAE algorithm exhibits strong noise suppres-
sion. In addition to this denoising effect, it ex-
tracts the smoother features with the data den-
sity manifold. Moreover, the RBM network is ex-
tremely competitive in extracting useful features,
even though it lacks accuracy for small samples.

The experiments carried out using the GAE al-
gorithm for different sample sizes are shown in
Table 1. In the MNIST database, the increase
in sample size is generally stable after it crosses
1000. Among all algorithms that are compared,
the GAE provides the highest test accuracy. How-
ever, the RBM exhibits significant increase when
sample size increase to above 150 as shown in Ta-
ble 1. In both MNIST and MSTAR database, the
GAE shows the best performance in lower dimen-
sions for less than 500 samples.

Table 1 Test error for MNIST and MSTAR databasesa)

MNIST 10000 50 100 500 1000 2000 5000

DAE 9.23±0.81 39.84 36.86 26.38 18.36 13.33 12.37

CAE 8.34±0.32 37.39 34.41 23.93 15.91 11.88 10.97

CAE+H 8.17±0.45 38.23 35.25 24.77 16.75 11.72 11.01

GAE 7.23±0.38 36.17 33.19 22.71 14.69 12.66 9.89

RBM 7.31±0.33 — — 20.22 14.45 12.01 9.34

MSTAR 2000 50 100 150 200 500 1000

DAE 17.52±2.13 60.60 56.79 38.76 29.51 23.25 19.86

CAE 15.05±2.01 57.59 51.23 37.06 26.34 17.46 17.29

CAE+H 14.61±1.32 57.03 54.69 36.98 25.56 20.93 19.67

GAE 15.15±1.89 54.10 51.85 36.20 23.47 20.90 15.43

RBM 15.27±2.03 — — 30.49 22.14 19.84 15.45

a) Bold digits show best error rates.

The reasons that the GAE achieves better low-
sample-size performance in SAR images may be as
follows.

(1) The GAE improves the dimension and con-
verges rapidly during the training process because
of the addition of the manifold descending factor
of the second-order gradient to achieve better op-
timization in manifold approximation.

(2) The GAE algorithm is advantageous in the
case of limited samples. The accuracy of target
recognition depends on the generalization of hid-
den layer representations, in which the Jacobian

contractive factor is affected. The first-order reg-
ularization term ensures the reliability of GAE al-
gorithm, while the second-order factor constrains
its distribution onto a smooth manifold.

Conclusion. The proposed regularized AEs pro-
vide the best results in limited samples. This
is primarily because of the effectiveness of the
learned algorithm, particularly for SAR images.

In future, we will study the performance of GAE
algorithm by adding more layers; this is difficult in
small samples because deep models are more eas-
ily overfit. In addition, automatic recognition on
a single sample is the next problem that we will
attempt to solve using the GAE algorithm.
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