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Abstract Quantization rate is a crucial measure of complexity in determining stabilizability of control

systems subject to quantized state measurements. This paper investigates quantization complexity for a class

of nonlinear systems which are subjected to disturbances of unknown statistics and unknown bounds. This

class of systems includes linear stablizable systems as special cases. Two lower bounds on the quantization

rates are derived which guarantee input-to-state stabilizability for continuous-time and sampled-data feedback

strategies, respectively. Simulation examples are provided to validate the results.
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1 Introduction

With the rapid development of networked control systems, control and communication systems become

increasingly integrated. Due to communication resource constraints, such as bandwidth and power,

packet delivery rates and data throughput are fundamentally limited. Consequently, feedback control

under information complexity limitation becomes a critical issue. Achieving stabilization of a feedback

system under quantized signals is mandatory in such frameworks.

A signal quantizer maps an infinite set of continuous values into a finite set of quantized values. Since

information is inevitably lost during this process, taking full advantage of limited resources to achieve

stability and performance in feedback control is of essential importance in control design for networked

systems. This problem has drawn great interest and research effort in theoretical and methodology

development in quantized control during the past several decades, resulting in significant advances in

new methodologies and their applications [1–11].

Theoretically, a fundamental difficulty rising in quantized feedback control is that an originally sta-

bilizable system under full state feedback can become non-stabilizable under a given scheme of signal

quantization. In principle, the less the information is available during quantization, the less the ability of

a feedback system has in stabilizing an unstable plant. This intuition brings about a fundamental question:

to guarantee the stabilizability of a quantized feedback system, how much information must the quantizer
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provide? Much effort has been directed to understand this issue. For noise-free systems, Refs. [12–14]

derived certain critical data rates for stabilizability in auto-regressive moving average (ARMA) systems

and linear time-invariant (LTI) state space systems. Ref. [15] revealed an interesting relationship between

the quantization level and the growth rate of the underlying nonlinear systems. Plants with uncertain

structures were further studied in [16–19] for stability conditions under quantized feedback. Communica-

tion uncertainties are typically modeled in stochastic frameworks. Under random noises of known bounds

on variance, a lower bound on quantization rates was found in [20] for the mean square stabilizability of

a class of stochastic LTI systems. See also the related results on stochastic systems under quantization

constraints [21, 22].

However, when systems are perturbed by external disturbances with unknown bounds, the situation

becomes far more complicated. It implies that no prior knowledge about the noises is available to

assist feedback design from the outset. In such circumstances, an adaptive quantization scheme with an

adjustable parameter was introduced in [23] to overcome uncertainties caused by completely unknown

disturbances. This elaborative scheme enables [24] to compute a quantization rate which is sufficient to

achieve the stabilizability of a LTI system under quantized feedback.

This paper aims to study the quantization rates for the stabilizability of Lipschitz nonlinear systems.

It is well understood that nearly all practical control systems are nonlinear. At present, to the best of

our knowledge, quantization rates for nonlinear systems under noises of unknown bounds and unknown

statistics are not available in the literature. Our results present two lower bounds on quantization rate for

stabilizability of a class of nonlinear systems and corresponding control strategies for continuous-time and

sampled-data quantized feedback systems, respectively. More precisely, our first result claims that the

unknown disturbance does not affect the quantization rate in the continuous-time feedback case, provided

it is bounded during the process. For the sampled-data feedback, the main result (Theorem 2) derives a

lower bound on quantization rate, in terms of the sampling rate and the appropriate linear approximation

of the nonlinear system. Especially, for sufficiently high-frequency sampling, the assumption of Theorem 2

is equivalent to a Schur matrix, which is the standard stabilizability condition for discrete-time linear

systems. Based on a trajectory-based analysis, we give a control strategy similar in spirit to that of [24]

but is more difficult, due to the sampling of control. Furthermore, compared with [8], our assumption

for Theorem 2 exerts on the system function f(x). The theoretical findings are evaluated and confirmed

by simulation examples.

The rest of the paper is organized as follows. Section 2 states the two main results with explicit lower

bounds on quantization rate for stabilizability of a class of quantized nonlinear systems with noises of

unknown bounds, under continuous-time and sampled-data feedback, respectively. The proofs are given

separately in Sections 3 and 4 along with the design of an appropriate signal quantizer under the derived

quantization rate and a corresponding feedback strategy. Some simulation examples are given in Section 5

to validate the theoretical results. The paper concludes with some remarks in Section 6.

2 Main results

We first consider the following class of nonlinear systems under quantized feedback control in continuous-

time:

ẋ = f(x) +Bu+Dd, (1)

where x ∈ R
n is the state, u ∈ R

m is the control input, and d ∈ R
s is a bounded disturbance, the bound of

which is unknown a priori. u and d are Lebesgue measurable and locally bounded. B ∈ R
n×m, D ∈ R

n×s

are constant matrices. f : Rn → R
n is Lipschitz and satisfies

‖f(x)‖ 6 L‖x‖, ∀x ∈ R
n. (2)

In a quantized feedback loop, the state is measured by a quantizer q : Rn → Q, where Q is a finite

subset of Rn. The quantization rate R of quantizer q is defined as the cardinal number of Q. Acting

on the quantized state q(x), a quantized state feedback is designed in the form of u = g(q(x)), where
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g : Rn → R
m is a continuous function. In this section, the state is quantized by q continuously in time.

Therefore, the goal is to find an appropriate quantization rate R under which the system (1) can be

stabilized by a quantized feedback controller of quantization rate R in the following sense.

Definition 1. The closed-loop system (1) is said to be input-to-state stable (ISS), if there exist some

functions γ1, γ2, γ3 ∈ K∞ such that for every initial state x0 and every bounded disturbance d,

‖x(t)‖ 6 γ1(‖x0‖) + γ2(‖d‖[0,+∞)), ∀t > 0 (3)

with ‖d‖[0,+∞) = supt∈[0,+∞) ‖d(t)‖ and

lim
t→+∞

sup ‖x(t)‖ 6 γ3

(
lim

t→+∞
sup ‖d(t)‖

)
. (4)

The open-loop system

ẋ = f(x(t)) +Dd(t) (5)

is assumed to be forward complete, namely for every initial state x0 = x(0), its solution exists and is

unique for all t > 0.

Furthermore, the system is assumed to be stabilizable without quantization.

Assumption 1. There exist a matrix K ∈ R
m×n and a positive constant N such that

xT(f(x) +BKx) 6 −N‖x‖2, ∀x ∈ R
n. (6)

Remark 1. Note that for linear systems, f(x) = Ax and Assumption 1 is reduced to the standard

condition that the pair (A,B) is stabilizable and the inequality

xT(A+BK)x 6 −N‖x‖2, ∀ x ∈ R
n,

implies that A+BK is Hurwitz.

We first present a simple theorem for the continuous-time feedback.

Theorem 1. Under Assumption 1, system (1) is input-to-state stabilizable under quantized feedback

whenever

R > n
n
2

(
5 +

2‖BK‖
N

)n

. (7)

Remark 2. Function γ3 in (4) derived for Theorem 1, as shown in the proof below (see (18)), is in fact

a constant gain.

For practical implementation, we now consider system (1) with the feedback control designed and

implemented by using sampled and quantized data. Let T > 0 be a given sampling period. Denote

Ik := [kT, (k+1)T ) for k ∈ N. By the standard ZOH D/A (zero-order-hold digital-to-analog) conversion,

u in (1) is a piecewise constant control, i.e., u(t) = uk := u(Tk) for t ∈ [Tk, T (k + 1)). We use the

notation xk := x(kT ), and similarly for other variables. Let dk := ‖d‖Ik , d[j1,j2] := supk∈[j1,j2] dk for

j1, j2 ∈ N, and d[0,+∞) := supk∈[0,+∞) dk.

First, we define ISS in sampled-data systems.

Definition 2. The closed-loop system (1) with a sampled-data feedback is said to be input-to-state

stable (ISS) if there exist three functions γ1, γ2, γ3 ∈ K∞, such that for every initial condition x0 and

every bounded disturbance d,

‖xk‖ 6 γ1(‖x0‖) + γ2(d[0,+∞)), ∀k ∈ N

and

lim
k→+∞

sup ‖xk‖ 6 γ3

(
lim

k→+∞
sup dk

)
.

In the framework of sampled-data feedback control systems, we will focus on the following class of the

nonlinear term f(x).
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Assumption 2. There exist two matrices A ∈ R
n×n and K ∈ R

n×m such that

c2 := ‖Φ+ ΓK‖+ (L+ ‖A‖)T eLT max
t∈[0,T ]

∥∥∥∥e
At +

∫ t

0

eAsBKds

∥∥∥∥e
−Lt < 1, (8)

where Φ := eAT , Γ :=
∫ T

0 eAsBds and L is the Lipschitz constant of f(x) defined in (2).

Remark 3. The matrix A in Assumption 2 acts as a linear approximation of the nonlinear system

function f(x). With high-frequency sampling (T is sufficiently close to zero), Assumption 2 is equivalent

to that Φ + ΓK is Schur. In other words, it becomes the standard stabilizability condition for discrete-

time linear systems. Note that (8) may require the sampling interval T being relatively small to ensure

the existence of A and K.

Our main result is stated as follows.

Theorem 2. Under Assumption 2, the system (1) is input-to-state stabilizable under quantized and

sampled feedback whenever

R > n
n
2

(
3 +

c3
1− c2

)n

, (9)

where c2 is defined in (8) and

c3 = ‖ΓK‖+ (L+ ‖A‖)T eLT max
t∈[0,T ]

∥∥∥∥
∫ t

0

eAsBKds

∥∥∥∥e
−Lt. (10)

Remark 4. Formula (9) indicates that the lower bound of R is small when c2 and c3 are small. When

T is fixed, according to (8) and (10), it is crucial to find appropriate A and K, which are the linearization

and the control gain of the nonlinear system.

Remark 5. Theorems 1 and 2 could be extended to the local Lipschitz condition by a slight modification

of Assumptions 1 and 2 accordingly. The ideas remain almost the same as those for the global Lipschitz

condition in this paper (see, for instance, Ref. [15]).

3 Proof of Theorem 1

Given a quantization rate R satisfying (7), the corresponding quantizer and feedback scheme based on the

ideas of [24] are present in Appendix. We will verify Theorem 1 by employing this feedback controller.

We first prove some technique lemmas. The physical meanings of those parameters designed for the

quantizer can be found in [24] and Appendix A.

Lemma 1 claims that capture = “no” can be triggered only a finite number of times and the state x

and the zoom variable µ are bounded at the end of capture = “no” interval. Moreover, Lemma 1 shows

that the state ‖x‖ cannot exceed Mµ after the value of capture is switched to “yes”.

Lemma 1. There exist a time t1 > 0 and a continuous function ρ : R>0 → R>0 such that

max
{
‖x‖[0,t1], µ(t1)

}
6 ρ(‖x0‖+ ‖D‖‖d‖[0,+∞)). (11)

Moreover, for all t > t1, capture = “yes” and ‖x(t)‖ 6 Mµ(t) .

Proof. The process starts at capture = “no”. Thus, the continuous dynamic is given by ẋ(t) = f(x(t))+

Dd(t). Consequently

x(t) =

∫ t

0

f(x(s)) +Dd(s)ds+ x0.

Under the assumption that f(x) is a Lipschitz function with the constant L defined in (2), it is easy to

show that

‖x(t)‖ 6 eLt

(
‖x0‖+

1

L
‖D‖‖d‖[0,t]

)
. (12)

During this initial time interval, the zoom variable µ is updated every Tout units of time, i.e.,

µ(kTout) = Ωk
outµ0, k = 0, 1, 2, . . . .
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By choosing Tout < logΩout/L, the inequality (12) implies that µ(kTout) grows faster than ‖x‖ due to

(12) and boundedness of d(t). Hence, there exists a t1 at which the value of capture is switched to “yes”.

Moreover, since we use the same algorithm of updating µ as [24] for linear systems, the rest of the

proof is nearly verbatim to that in [24], and will not be repeated. We conclude that ‖x(t)‖ 6 Mµ(t) for

all t > t1.

Now, we define

R1(µ(t)) := {x : xTx < (M − 2∆)2µ(t)2}.
Lemma 2 shows that R1(µ(t)) is an invariant region for the dynamic system when µ(t) satisfies (13).

As a result, a zoom-out cannot occur. Moreover, Lemma 2 claims that a zoom-in will be triggered with

certainty unless µ is already small enough relative to the disturbance.

Lemma 2. Suppose that µ(t) satisfies

(M − 2∆)µ(t) >
2‖BK‖

N
∆µ(t) +

2‖D‖
N

‖d‖[t,+∞). (13)

For some t > t1 such that x(t) ∈ R1(µ(t)), the next event can only be a zoom-in. Furthermore, if µ(t)

satisfies

(ℓin −∆)µ(t) >
2‖BK‖

N
∆µ(t) +

2‖D‖
N

‖d‖[t,+∞), (14)

the zoom-in will happen in finite time.

Proof. For t > t1, we have capture = “yes” and ‖x(t)‖ 6 Mµ(t) by Lemma 1. Hence, the feedback

control law (A5) leads to the closed-loop system

ẋ = f(x) +BKqµ(x) +Dd. (15)

The measurement error e := qµ(x) − x, Eq. (15) can be rewritten as

ẋ = f(x) +BKx+BKe+Dd.

Consequently, taking into account Assumption 1 and (A1), we obtain

d

dt

(
1

2
xTx

)
= xT(f(x) +BKx) + xTBKe+ xTDd

6 −N‖x‖2 + ‖x‖‖BK‖|e|+ ‖x‖‖D‖|d|
6 −N‖x‖2 + ‖x‖‖BK‖∆µ+ ‖x‖‖D‖‖d‖

6 −N

2
‖x‖2, ∀ ‖x‖ >

2‖BK‖
N

∆µ+
2‖D‖
N

‖d‖. (16)

Set

R2(µ(t)) := {x : xTx < (ℓin −∆)2µ(t)2},

B(µ(t)) :=

{
x : ‖x‖ 6

2‖BK‖
N

∆µ(t) +
2‖D‖
N

‖d‖
}
.

If (13) holds, we have B(µ(t)) ⊆ R1(µ(t)). Therefore, R1(µ(t)) is an invariant region for the dynamic

system as long as µ(t) remains constant by using (16). Moreover, R1(µ(t)) = {x : ‖x‖ < (ℓout −∆)µ(t)}.
This, combined with (A1), implies that a zoom-out cannot be triggered.

Next, it is easy to see that B(µ(t)) ⊆ R2(µ(t)) ⊆ R1(µ(t)) if (14) holds. In view of (16), there exists a

time t
′

> t when x(t
′

) ∈ R2(µ(t)), unless a zoom-in occurs earlier. Meanwhile, R2(µ(t)) is also invariant

and R2(µ(t)) ⊆ {x : ‖x‖ 6 (ℓin − ∆)µ(t)}. Together with (A1) and the algorithm of updating µ, this

implies that a zoom-in must occur prior to time t
′

+ Tin.

We now prove Theorem 1.

Proof of Theorem 1. The proof is similar to the case of linear systems in [24]. However, due to non-

linearity and modified assumptions, the upper bound on µ(t) is different, thank to Assumption 1. For

completeness, we briefly state the proof as follows.
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First, by defining

µ̂ :=
2‖D‖

N(M − 2∆)− 2‖BK‖∆‖d‖[0,+∞),

we obtain µ(t) 6 Ωoutmax{µ̂, µ(t1)} for all t > t1. This implies that

‖x(t)‖ 6 MΩoutmax{µ̂, µ(t1)}, ∀t > t1 (17)

by Lemma 1. In view of (11) and (17), the first ISS estimate (3) holds with some continous functions γ1
and γ2.

Next, for any ε > 0, there exists a time tε > t1 such that ‖d(t)‖ 6 limt→∞ sup ‖d(t)‖+ ε for all t > tε.

Define

µ̃ :=
2‖D‖

N(ℓin −∆)− 2‖BK‖∆
(
lim
t→∞

sup ‖d(t)‖+ ε
)
.

Recall the fact that zoom-in will be trigged in finite time by Lemma 2, we claim that there exists a time

t̃ε > tε such that µ(t) 6 Ωoutµ̃ for all t > t̃ε. This implies that

‖x(t)‖ 6 MΩoutµ̃, ∀ t > t̃ε

by Lemma 1. Hence, the second ISS estimate (4) is valid with a constant gain function

γ3(r) :=
2MΩout‖D‖

N(ℓin −∆)− 2‖BK‖∆r. (18)

This completes the ISS of the system (1). Furthermore, by Lemma 5 in Appendix, the relationship

between the quantization rate R and M/∆ is given by

M

∆
6

n
√
R√
n
. (19)

Combining (A4) and (19), we arrive at (7), which completes the proof.

4 Proof of Theorem 2

We now design an appropriate quantizer and a corresponding linear feedback control law for the nonlinear

system (1). Let ℓout > ℓin > 0, Ωout > 1 > Ωin > 0 be some positive constants that will be determined

later. We define the following control law and the scheme of updating µ :

uk :=

{
0, Ωk = Ωout,

Kqk, Ωk = Ωin.
(20)

µk+1 :=

{
Ωout(µk + 1), Ωk = Ωout,

Ωinµk, Ωk = Ωin.
(21)

Here, the parameter Ωk is a switching variable in (20) and (21) and takes two possible values Ωout and

Ωin, with the initial value Ω−1 = Ωout. Ωk is updated by

Ωk :=





Ωout, |qk| > ℓoutµk,

Ωin, |qk| < ℓinµk,

Ωk−1, |qk| ∈ [ℓinµk, ℓoutµk],

with qk := µkq(
xk

µk
).
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Denote by k2i+1T the time instant at which the plant switches from the zoom-out stage to the zoom-in

stage, and k2iT the time instant at which the plant switches from the zoom-in stage to the zoom-out

stage, respectively. It is obvious that

Ωk = Ωout if k ∈ [k2i, k2i+1 − 1],

Ωk = Ωin if k ∈ [k2i+1, k2i+2 − 1],

for i = 0, 1, 2, . . . , P , with either finite P ∈ N or P = +∞.

In the sequel, we will discuss conditions in the zoom-out and zoom-in stages individually.

Zoom-out stage. During the zoom-out stage, the feedback control (20) is zero. Since f(x) is locally

Lipschitz, the upper bound of the state x is given by the following inequalities.

Proposition 1. For all k ∈ [k2i, k2i+1 − 1] we have

‖xk+1‖ 6 eLT ‖xk‖+ c1‖dk‖ (22)

and

‖ξk+1‖ 6
eLT

Ωout
‖ξk‖+ c1

‖dk‖
µk

,

where c1 := eLTT ‖D‖ and ξk := xk/µk. Here L is the Lipschitz constant of the nonlinear term f(x).

Zoom-in stage. During the zoom-in stage, the feedback control (20) is Kqk. Bounds on the state x

can be derived, as stated in the following lemma:

Lemma 3. For all k ∈ [k2i+1, k2i+2 − 1] we have

‖xk+1‖ 6 c2‖xk‖+ c3‖ek‖+ c4‖dk‖

and

‖ξk+1‖ 6
c2
Ωin

‖ξk‖+
c3
Ωin

‖νk‖+
c4
Ωin

‖ζk‖,

with

c4 :=

∥∥∥∥
∫ T

0

eArDdr

∥∥∥∥+ (L+ ‖A‖)T eLT max
t∈[0,T ]

∥∥∥∥
∫ t

0

eArDdr

∥∥∥∥e
−Lt,

ek := qk − xk,

νk := q(ξk)− ξk,

ζk := dk/µk,

and c2, c3 are given by (8) and (10), respectively.

Denote ν[0,+∞) := supj∈[0,+∞) ‖νj‖ and ζ[0,+∞) := supj∈[0,+∞) ‖ζj‖. For c2 < Ωin, we claim that

‖ξk‖ 6 e−λ1k‖ξ0‖+ α1ν[0,+∞) + α2ζ[0,+∞), ∀ k > 0

with λ1 = − log(c2/Ωin), α1 = c3/(Ωin − c2), α2 = c4/(Ωin − c2).

Now, we can design the parameters of the quantizer. In our design, we require M and ∆ to satisfy

M > (3 + α1)∆. (23)

Let Ωout, Ωin be positive numbers satisfying the inequalities

eLT < Ωout, c2 < Ωin < 1,

along with parameters ℓin and ℓout given by

ℓin := ∆M −∆, ℓout := M −∆,

where ∆M will be determined by the following trivial proposition.
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Proposition 2. For c2 < Ωin, let M and ∆ satisfy M > (3 + α1)∆. Then, there exist two constants

∆M ,∆d ∈ (0,+∞), with ∆M −∆ > 0, such that whenever ‖ξ0‖ 6 ∆M , ν[0,+∞) 6 ∆, and ζ[0,+∞) 6 ∆d,

we have ‖q(ξk)‖ 6 M −∆ and ‖ξk‖ 6 M for all k > 0.

Furthermore, by the design procedure for the quantizer in the previous section, the ISS of the system

(1) is determined by the following two facts:

1. The zoom-out can be trigged only for finitely many time steps;

2. Both the state x and the zoom variable µ are bounded during the whole process.

In fact, by the following Lemma, we show that the number of the zoom-out steps is finite. Moreover,

the state x is bounded during the zoom-out interval.

Lemma 4. There exist ρ1, ρ2, ϕ1, ϕ2 ∈ K∞ such that for any i ∈ N, xk2i ∈ R
n, µk2i > 0, and d ∈ R

s we

have

k2i+1 − k2i 6 1 + ϕ1(‖xk2i‖) + ϕ2(d[k2i,k2i+1−1]) (24)

and

‖xk‖ 6 ρ1(‖xk2i‖) + ρ2(d[k2i,k2i+1−1]), ∀k ∈ [k2i, k2i+1]. (25)

Proof. By Proposition 1, it is easy to show that

1. If k2i+1 − k2i = 1, we have

‖xk‖ 6 eLT‖xk2i‖+ c1‖dk2i‖, , ∀ k ∈ [k2i, k2i+1]. (26)

2. If k2i+1 − k2i > 1, we have

‖ξk2i+1‖ 6
eLT ‖xk2i‖+ c1‖dk2i‖

Ωout(µk + 1)
6 eLT ‖xk2i‖+ c1‖dk2i‖ (27)

and

‖ξk+1‖ 6
eLT

Ωout
‖ξk‖+ c1

‖dk‖
µk

, ∀ k ∈ [k2i + 1, k2i+1 − 1].

Hence, for any k ∈ [k2i + 1, k2i+1], it holds

‖ξk‖ 6

(
eLT

Ωout

)k−k2i−1

‖ξk2i+1‖+ c1

k−1∑

j=k2i+1

(
eLT

Ωout

)k−j−1 ‖dj‖
µj

.

Combining this inequality with µj >
∑j−k2i

s=1 Ωs
out, we obtain

‖dj‖
µj

6
‖dj‖∑j−k2i

s=1 Ωs
out

.

By choosing eLT < Ωout, we conclude that ‖ξk‖ 6 ℓin and k2i+1 − k2i − 1 are bounded, by (27) and the

fact that limj→∞ ‖dj‖/µj = 0. Hence, one can find a continuous, nondecreasing and bounded function ϕ̃

such that

k2i+1 − k2i − 1 6 ϕ̃(ξk2i+1, d[k2i+1,k2i+1−1]) 6 ϕ(‖xk2i‖, d[k2i,k2i+1−1]).

Since ϕ(0, 0) = 0, one can find ϕ1, ϕ2, (24) holds. Moreover, since

‖xk‖ 6 eLT (k−k2i−1)‖xk2i+1‖+ c1

k−1∑

j=k2i+1

eLT (k−1−j)‖dj‖

6 eLT (k2i+1−k2i−1)‖xk2i+1‖+
eLT (k2i+1−k2i−2) − 1

eLT − 1
c1d[k2i+1,k2i+1−1],

for all k ∈ [k2i + 1, k2i+1], there exist ρ̃1, ρ̃1 such that

‖xk‖ 6
(
eLT

)ϕ1(‖xk2i+1‖)+ϕ2(d[k2i+1,k2i+1−1])‖xk2i+1‖
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Figure 1 (Color online) Simulation results for Example 1.

0 2 4 6 8 10
10−2

10−1

100

101

102

103

104

t

 

 

Mµ

|x|

|d|

Figure 2 (Color online) Simulation results for Example 2.

+

(
eLT

)ϕ1(‖xk2i+1‖)+ϕ2(d[k2i+1,k2i+1−1])−2 − 1

eLT − 1
c1d[k2i+1,k2i+1−1]

6 ρ̃1(‖xk2i+1‖) + ρ̃1(d[k2i+1,k2i+1−1]). (28)

Finally, by combining (26) and (28) we arrive at (25).

Now, it is ready to prove Theorem 2.

Proof of Theorem 2. By Lemma 4, we only need to verify that: 1) x is bounded during the zoom-in

intervals; 2) µ is bounded during the zoom-out interval and the zoom-in interval . The first fact is a direct

consequence of Lemmas 7 and 8 in Appendix, while the second fact follows from Lemmas 6 and 9. With

these two facts, the rest of the proof is almost identical to that of Theorem 2 in [24]. Finally, according

to the relationship between R and M/∆ in (19), Eq. (9) follows immediately due to (23).

5 Examples

In this section, two examples are provided to illustrate our main results for the continuous-time and

sampled-data feedback control, respectively.

Example 1: Consider the system
{
ẋ1 = −2x1 + x2,

ẋ2 = 2x1 sinx1 + 2x2 + u+ 100d,
(29)

where u ∈ R is the input and d ∈ R is the bounded disturbance whose bound is unknown. It is easy to

compute that the Lipschitz constant L = 4. We select the feedback matrix K = (−1,−4). Hence, N = 1.

In order to illustrate Theorem 1, we simulated the above control system (29) with the algorithm

parameters M = 3,∆ = 0.2, Tin = Tout = 0.2, Tc = 0.01, Ωin = 0.85,Ωout = 3, µ0 = 10. The behavior (on

a log scale) of the state x(t) and the quantizer’s range Mµ(t) under the initial condition x0 = (0, 10000)T

and d(t) randomly distributed on the interval [0, 0.01] is shown in Figure 1. As expected, after an initial

overshoot, the state settles below a bound.

Example 2: Consider the system





ẋ1 = sinx1 +
1

5
x1 sinx2 + u1(t) + 103d(t),

ẋ2 = x2 +
1

10
x2 sinx1 + u2(t) + 104d(t),

(30)

where (u1, u2)
T ∈ R

2 is the input and d ∈ R is the completely unknown bounded disturbance. Obviously

L =
√
2. Select parameters T = 0.2, A = I,K = −5I. In order to illustrate Theorem 2, we simulate
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the control system (30) with the quantizer parameters M = 50,∆ = 0.2,Ωin = 0.8,Ωout = 3, µ0 = 10.

Figure 2 shows the behavior (on a log scale) of the state x(t) for the initial condition x0 = (600, 0)T and

‖d(t)‖ 6 0.3.

6 Conclusion

In a networked control system, quantization complexity is of essential importance in resource manage-

ment. It has been recognized that there is certain fundamental limit on quantization rate below which

stabilization of an unstable system by quantized feedback cannot be achieved. In this paper, a lower

bound on quantization rate R has been derived to ensure the input-to-state stabilizability for a class of

nonlinear systems under external disturbances whose bounds are unknown. Constructive design proce-

dures for both the quantizer and feedback controller are developed for continuous-time and sampled-data

feedback systems. Theoretical extension of the methodology of this paper to broader classes of nonlinear

systems and practical implementation to networked control systems are worth further attention.

References
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Appendix A Quantizer for Theorem 1

In general, we need three parameters M,∆ and ∆0 for the quantizer: M is the quantization range, ∆ the quantization

error, and ∆0 the minimal quantization resolution. More precisely, we choose M > ∆ > 0 and ∆0 > 0 such that

‖z‖ 6 M ⇒ ‖q(z)− z‖ 6 ∆, (A1)

‖z‖ > M ⇒ ‖q(z)‖ > M −∆, (A2)

‖z‖ 6 ∆0 ⇒ q(z) = 0, (A3)

M > 5∆+
2‖BK‖

N
∆. (A4)

The first condition (A1) ensures that the quantization error is bounded by ∆ when the quantizer is not saturated. Saturation

of the quantizer is indicated by (A2). (A3) defines the minimum resolution of the quantizer so that the measurement is

zero when the signal magnitude is below this resolution.

Let Tin, Tc, Tout,Ωin,Ωout be some positive numbers satisfying Tin 6 Tout, Tc < 1
2
Tout, Ωin < 1 with

Ωin(M − 2∆)− 3∆ >
2‖BK‖

N
∆.

Moreover, Tout < log Ωout/L with

Ωout >
M

M − 2∆
.

Note that Tin is the unit of time after the last zoom-in or zoom-out before executing another zoom-in, Tout is the unit

of time after a zoom-out before executing another zoom-out, Ωin is the zoom-in factor and Ωout is the zoom-out factor,

respectively.

Define

ℓin := Ωin(M − 2∆) − 2∆, ℓout := M −∆.

In the control strategy to be developed below, all system variables will be continuous from the right by construction.

Variables which are not mentioned remain constants in the following algorithm.

We use the one-parameter family of quantizers

qµ(x) := µq

(
x

µ

)
, µ > 0.

Here µ, called “zoom” variable, is an adjustable scaling parameter with initial value µ0. It is known to both the sender and

receiver and updated at discrete instants of time by Algorithm A1.

Algorithm A1 Updating µ

1: if capture− = “no” then

2: if τ−out = Tout then

3: µ ⇐ Ωoutµ−;

4: τout ⇐ 0;

5: end if

6: if ‖qµ−(x)‖ 6 ℓoutµ− and τ−out ∈ [Tc, Tout − Tc] then

7: µ ⇐ Ωoutµ−;

8: capture ⇐ “yes”;

9: end if

10: else

11: if ‖qµ− (x)‖ > ℓoutµ− then

12: µ ⇐ Ωoutµ−;

13: τout ⇐ 0;

14: end if

15: if ‖qµ− (x)‖ 6 ℓinµ
− and min{τ−in , τ

−

out} > Tin then

16: µ ⇐ Ωinµ
−;

17: τin ⇐ 0;

18: end if

19: end if

Based on the quantized signal, the feedback control law is given by

u(t) =

{
0, capture = “no”,

Kqµ(x), capture = “yes”.
(A5)
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Remark 6. The parameter “capture” is an auxiliary logical variable which is used to distinguish the open-loop stage and

the control stage. It takes values in the set {“yes”, “no”} and is initialized at “no”. The parameters “τout” and “τin” are

functions of the continuous time t, called “auxiliary reset clock variables”. The clock variables are initialized at 0 and take

values in the intervals [0, Tout] and [0, Tin], respectively. Moreover, they satisfy

τ̇out =

{
1, τout < Tout,

0, τout = Tout,

and

τ̇in =

{
1, τin < Tin,

0, τin = Tin.

Appendix B Some lemmas and technical proofs

Lemma 5. Assume that the number n
√
R is an odd integer (see [15]). Then the quantization rate R, i.e., the number of

the elements in Q, satisfies

R >

(
M

∆

√
n

)n

.

Proof. Firstly, we divide the the minimum circumscribed hypercube of the ball {z : ‖z‖ 6 M} into R equal hypercubic

boxes, numbered from 1 to R in some specific way. Secondly, for each hypbercubic box, there is an unique ball in Rn

which is minimally circumscribed to the small box. Let q(z) be the center of this ball that contains z. In case z lies on the

boundary of several balls, the value of q(z) can be chosen arbitrarily among the candidates. Then we obtain

‖q(z)− z‖ 6

√
nM

R
1
n

,

which implies that √
nM

R
1
n

6 ∆.

This completes the proof of Lemma 5.

Proof of Lemma 3. We consider the following linear system

{
ẏ(t) = Ay +Buk +Dd, t ∈ Ik,

yk = xk.

It is straightforward that

y(t) = eA(t−kT )xk +

∫ t−kT

0
eArBdruk +

∫ t

kT

eA(t−r)Dd(r)dr

for t ∈ Ik. This implies that

‖yk+1‖ 6

∥∥∥∥e
AT xk +

∫ T

0
eArBdrK(xk + ek)

∥∥∥∥+

∥∥∥∥
∫ (k+1)T

kT

eA((k+1)T−r)Dd(r)dr

∥∥∥∥

6

∥∥∥∥e
AT +

∫ T

0
eArBdrK

∥∥∥∥‖xk‖+

∥∥∥∥
∫ T

0
eArBdrK

∥∥∥∥‖ek‖+

∥∥∥∥
∫ T

0
eArDdr

∥∥∥∥‖dk‖.

Next, we consider the following nonlinear system

{
ϕ̇(t) = f(ϕ+ y) −Ay, t ∈ Ik,

ϕk = 0.

It is easy to prove that

|ϕ(t)| 6
∫ t

kT

‖f(ϕ(s) + y(s)) − Ay(s)‖ds

6

∫ t

kT

L‖ϕ(s)‖ + (L+ ‖A‖)‖y(s)‖ds

6 eL(t−kT )(L+ ‖A‖)
∫ t

kT

‖y(s)‖eL(kT−s)ds

6 eL(t−kT )(L+ ‖A‖) ×
∫ t

kT

∥∥∥∥e
A(s−kT )xk +

∫ s−kT

0
eArBdruk +

∫ s

kT

eA(s−r)Dd(r)dr

∥∥∥∥e
L(kT−s)ds
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for all t ∈ Ik. This implies that

‖ϕk+1‖ 6 eLT (L + ‖A‖)
∫ (k+1)T

kT

{∥∥∥∥e
A(s−kT )xk +

∫ s−kT

0
eArBdrK(xk + ek)

+

∫ s

kT

eA(s−r)Dd(r)dr

∥∥∥∥
}
eL(kT−s)ds

6 eLT (L + ‖A‖)
∫ (k+1)T

kT

{∥∥∥∥(e
A(s−kT ) +

∫ s−kT

0
eArBdrK)xk

∥∥∥∥

+

∥∥∥∥
∫ s−kT

0
eArBdrKek

∥∥∥∥+

∥∥∥∥
∫ s

kT

eA(s−r)Dd(r)dr

∥∥∥∥
}
eL(kT−s)ds

6 eLT (L + ‖A‖)
∫ (k+1)T

kT

{∥∥∥∥(e
A(s−kT ) +

∫ s−kT

0
eArBdrK)

∥∥∥∥‖xk‖

+

∥∥∥∥
∫ s−kT

0
eArBKdr

∥∥∥∥‖ek‖+

∥∥∥∥
∫ s−kT

0
eArDdr

∥∥∥∥‖dk‖
}
eL(kT−s)ds.

It is obvious that ‖xk+1‖ 6 ‖yk+1‖+ ‖ϕk+1‖ and we complete the proof of Lemma 3.

The following Lemma 6 indicates that the zoom variable µ is bounded at the end of each zoom-out interval.

Lemma 6. There exists a continuous bounded function ρoutµ such that for any µ > 0 we have ρoutµ (µ, 0, 0) > 0 and the

following is true for all i ∈ {0, 1, . . . , P} and all µk2i
> 0, xk2i

∈ R
n, d ∈ R

s:

µk2i+1
6 ρoutµ

(
µk2i

, ‖xk2i
‖, d[k2i,k2i+1−1]

)
.

Proof. The proof is identical to Lemma IV.6 in [24].

The following Lemma 7 establishes an appropriate bound on the state x during the zoom-in intervals.

Lemma 7. There exist λ, γ ∈ (0,+∞) such that

‖xk‖ 6 e−λ(k−k2i+1)(‖x2i+1‖+ µk2i+1
) + γd[k2i+1,k−1], ∀k ∈ [k2i+1, k2i+2].

Proof. During the zoom in intervals we have by construction

‖xk‖ 6 Mµk,
∥∥∥∥q

(
xk

µk

)
− xk

µk

∥∥∥∥ 6 ∆.

Meanwhile, the x-subsystem satisfies

‖xk+1‖ 6 c2‖xk‖+ c3‖ek‖+ c4‖dk‖
and the µ-subsystem evolves according to

µk+1 = Ωinµk

for all k ∈ [k2i+1, k2i+2 − 1]. This is a cascade of an ISS system and a GAS system, hence the conclusion holds.

The following Lemma 8 establishes a different bound on the state x during the zoom-in intervals.

Lemma 8. There exists a continuous function ρinx : R>0×R>0 ×R>0 → R>0, with ρinx (µ, 0, 0) = 0 for all µ > 0, and such

that for any s > 0, ρinx (·, ·, s) is nondecreasing in its first two arguments and for any i ∈ {0, 1, . . . , P} the following holds for

all µk2i+1
, xk2i+1

, d:

‖xk‖ 6 ρinx (µk2i+1
, ‖xk2i+1

‖, d[k2i+1,k2i+2−1]), ∀k ∈ [k2i+1, k2i+2].

Proof. The proof is almost the same as that of Lemma IV.8 in [24] with the difference that H := c2 + c3 + c3Lq in our

case.

The following Lemma 9 indicates that if the zoom-in interval is bounded then the state x and the zoom variable µ are

bounded by the function of the disturbance d at the end of the zoom-in interval.

Lemma 9. Consider an arbitrary i ∈ {0, 1, . . . , P}. If k2i+2 < ∞, then i < P − 1 and there exists a γ̃ ∈ (0,+∞) such

that

max{‖xk2i+2
‖, µk2i+2

} 6 γ̃d[k2i+1,k2i+2−1].

Proof. See Lemma IV.9 in [24].
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