CrossMark
& dlick for updates

SCIENCE CHINA
Information Sciences @

« RESEARCH PAPER - September 2018, Vol. 61 092110:1-092110:15
https://doi.org/10.1007/s11432-017-9292-9

Asymmetric virtual machine replication for low
latency and high available service

Rong CHEN & Haibo CHEN"

Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, Shanghat 200240, China

Received 16 July 2017/Revised 25 September 2017/Accepted 14 November 2017/Published online 20 June 2018

Abstract Providing fault tolerance support to client-to-server applications is critical in the data center
and cloud computing environments. Virtualization provides a direct way of achieving high availability by
encapsulating the protected applications into the virtual machine and by periodically checkpointing the entire
virtual machine (VM) state to the backup replication. However, existing VM replication solutions suffer from
either excessive checkpointing overhead and network latency or unnecessary CPU resources consumption in
backup replication. In this study, we exploit the ingredients of output packets and consider that the replication
system maintains external consistency if the pre-released packets originate the already synchronized states.
Furthermore, we transform the active-active primary and slave VM combination into an active-semiactive
one by shrinking the number of active virtual CPUs (vCPUs) in the slave VM. The former optimization
mechanism improves the performance in read-mostly client-to-server networked applications, whereas the
latter one relieves the problem of double scheduling in the slave host. Therefore, we proposed the COLO++
system which is built over COLO and is a non-stop service solution with coarse-grained lock-stepping VMs
for client-to-server systems. The two plus signs represent two of the optimizations. Experimental results
using COLO++ implemented on KVM and Linux depict that it achieves nearly native VM performance
under read-mostly workloads, as well as lower scheduling overhead in backup replication.

Keywords virtualization, fault tolerance, VM replication, memory, CPU scheduling

Citation Chen R, Chen H B. Asymmetric virtual machine replication for low latency and high available service.
Sci China Inf Sci, 2018, 61(9): 092110, https://doi.org/10.1007/s11432-017-9292-9

1 Introduction

High availability (HA) is a critical feature for modern data centers and cloud computing environments.
Any downtime of an application service may result in property damage and loss of customer loyalty.
Generally, high available services are implemented using high available clusters [1], and user requests
will be directed to active hosts in such clusters. However, some HA solutions rely on highly specialized
hardware or software design') to operate failover process.

Replication is a standard approach to solve fault tolerance, since it provides redundancy to achieve
high availability. Once a failure occurs in a replica, the services that function using it can be taken over by
other replicas [2]. Virtualization [3,4] provides a method to encapsulate application services. Generally
speaking, a virtual machine (VM) can encapsulate any kind of applications and can function on any type
of hardware. A VM replication-based HA system can be implemented once and can be applied to many
architectures.

* Corresponding author (email: haibochen@sjtu.edu.cn)
1) S. Abood. Hp non stop server. 2002. http://www.hp.com.

(© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 info.scichina.com link.springer.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-017-9292-9&domain=pdf&date_stamp=2018-6-20
https://doi.org/10.1007/s11432-017-9292-9
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-017-9292-9
https://doi.org/10.1007/s11432-017-9292-9
http://www.hp.com.

Chen R, et al. Sci China Inf Sci September 2018 Vol. 61 092110:2

A generalized solution for HA services is to replicate a VM to tolerate hardware fail-stop failure. Lock-
step replication [5] synchronously propagates every single instruction from primary VM to slave VM to
achieve consistent states. Additionally, it suffers from significant overhead due to non-deterministic mem-
ory accesses in symmetric multi-processing (SMP) VMs. Instead of running two hosts in synchronously
lock-step mechanism, other VM based replication HA systems, such as Remus [6] and COLO [7], replicate
the VM states in an asynchronous manner. They utilize a live migration technique [8] to checkpoint the
VM states into a backup physical host, including CPU states, memory states and devices states. The
objective is to hide the system states from the outside world before the checkpoint is committed.

Remus suffers from significant overhead due to high frequency checkpointing, but the active/passive
model saves the hardware resources of slave host. COLO reduces the checkpoints to improve its perfor-
mance by utilizing a packet similarity comparison. However, it triggers the slave VM to execute like a
shadow of the primary VM, which consumes the CPU resources and leads to double scheduling problems.
Furthermore, packets generated by slave VM need to rendezvous with the packets in primary VM to per-
form the comparison. This leads to overhead in packets that are transferring over the network, especially
for read-mostly client-to-server networked applications.

In this study, we propose COLO++, which is an enhanced VM replication system built over COLO.
As the name implies, two optimizations are applied in the proposed system: (1) Pre-release clean output
packets to skip over the comparison and checkpointing. (2) Shrinking the number of vCPUs (virtual
CPUs) to relieve the scheduler stress in the slave hypervisor.

This study makes the following contributions:

e We analyze two points in the existing VM replication system (Section 2) and provide a new design
to address the issues of the existing system (Section 3).

e Set of techniques to efficiently implement the system on kernel-based virtual machine (KVM) (Sec-
tion 4).

e Set of evaluations to confirm the effectiveness of COLO++ (Section 5).

The remainder of this study is organized as follows: Section 2 introduces the issues of existing VM
replication approaches and the motivation for our study. Section 3 describes the overall design and
architecture of COLO+++. Section 4 presents the details of system implementation. We present the
evaluation results of COLO++ in comparisons to the existing solutions in Section 5. Related work is
discussed in Section 6. Finally, we conclude the paper in Section 7.

2 Background and motivation

Generally, the primary VM will periodically synchronize its states to the slave VM in the VM replication
model. States are the data of users on the server and application runtime environment, which includes
CPU states, memory states, and device states. The VM replication system can be treated as a black box,
which appears to the user as a single standalone VM with hardware fail-stop fault tolerance support. In
a system having weak consistency, user data is more likely to be lost when a failure occurs. Therefore,
high consistency is more desirable in a VM replication system, to provide seamless crash recovery and
data protection.

2.1 External consistency

A typical VM replication system achieves high availability by blocking the output network until check-
pointing is done. There are many steps in the process of VM executing to obtain consistency among VM
states: (1) The VM executes normally while waiting for the user requests. (2) The replication system
buffers response packets, and triggers a checkpoint to synchronize the dirty states. (3) After checkpoint-
ing is performed, the output packets are released. If the VM replication system releases packets before
triggering checkpoints, consistency semantics may be violated.

Below is an example that violates the rules: A key/value store service is running on the VM replication
system. In this scenario, the original value of “foo” equals to 10. The user requests to change this value

Chen R, et al. Sci China Inf Sci September 2018 Vol. 61 092110:3

| —T,, —» | Ty — T,
)))
JE B 1_ ol 1 I_ |-

) ' I
Executi
xecuting Comparison cp
A time

Y i B — + - () N

- +

F di Executing .

\ orwardin, . time IForwardm .
T T

i T T
1 1 1
|

1
T — T, — <7, P
CP(n-1) CP(n)

Figure 1 Roundtrip latency.

from 10 to 20 and obtains the correct response. Subsequently, a hardware fail-stop occurs in the primary
VM, and the slave VM begins to control the entire system. Since the system does not synchronize the
VM states before responding to the user, inconsistency occurs when the second user obtains a response
from the system for the value of “foo”. Additionally, this value will be 10 instead of 20 in this scenario,
which is confusing to the user. This problem is known as the output commit problem [9].

2.2 Remus and COLO

Remus [6] is a novel VM level replication system that can be used to obtain HA using commodity
hardware. The model of the Remus replication system is an active primary VM /passive slave VM. Thus,
the primary VM executes actively, whereas slave VM is suspended until the primary VM crashes. After
the failure of primary VM, the slave VM controls the execution. From the perspective of a client, the
system provides services seamlessly.

The primary VM periodically performs checkpoints on the slave VMs with high frequency to achieve
strong consistency. The checkpoint process is based on live migration techniques [8]. Remus will block
every output network packet until the checkpoint is acknowledged by the slave VM to achieve consistency.
However, this replication model introduces significant latency overhead, even though it provides high
availability. Services running on such a system will suffer from response time delays due to the longer
lasting processes. As previously mentioned, such a replication model will introduce significant overhead,
which will introduce an important benefit i.e., Remus only executes the slave VM after failover. All
the vCPUs are frozen in the slave VM. Therefore, the scheduler does not have the additional burden of
forcing the system to run.

COLO [7] is a coarse-grained lock-stepping VM replication method whose implementation is based on
Remus. Since the slave VM in Remus is not actively executing, it leads to passive checkpoints. COLO
performs active checkpointing by actively executing both primary and slave VMs in parallel. The slave
VM is equipped with identical hardware resources as the primary VM, which includes number of vCPUs
and memory size to make both VMs run at a relative consistent pace.

As depicted in Figure 1, COLO handles the request of the client by the following steps.

(1) The primary VM receives the client request and forwards them to the slave VM.

(2) Both VMs execute the client request simultaneously.

(3) The primary VM compares response packets from both primary VM and slave VM. Subsequently,
it releases one copy of the two packets if both packets are observed to be identical; otherwise, it triggers
the Remus checkpoint.

Such a design minimizes the number of checkpoints. Therefore, the overall latency overhead is reduced.
COLO obtains higher performance by offering tradeoffs in two respects: First, Remus possesses strong
consistency by blocking the output network packets. However, this incurs a high response latency. COLO
is tuned to obtain a higher performance. However, the consistency of COLO is compromised. Secondly,
COLO runs primary and slave VMs concurrently, which leads to hardware resource overhead in the slave
host.

Chen R, et al. Sci China Inf Sci September 2018 Vol. 61 092110:4

Table 1 Performance gap between single VM and COLO system

Single VM COLO Round-trip packet Checkpointing
Latency (ms) 3746 6921 1080 1968

2.3 Issues and motivations

Packets synchronize latency. COLO needs to collect packets from the primary and slave VMs to
perform comparison or checkpoints, which leads to a noticable slowdown in performance. We evaluate
COLO and the single VM system, respectively, by running the memcached service to demonstrate the
performance gap. Further, we use Yahoo! Cloud Serving Benchmark (YCSB) at the client side to issue
10000 requests and observe the overall runtime.

The result is illustrated in Table 1. We can observe that the memcached performance of the COLO
system is approximately 2 times slower than that of the single VM. We investigated two procedural
problems for handling client requests to understand the factors that slow down the overall performance
of COLO.

The first factor is the roundtrip packet latency. The primary VM receives the request, executes the
instructions, and generates the response packet. Subsequently, the primary VM waits for the response of
the slave VM. Further, the primary VM compares the two packets. The slave VM receives the request
packet from the primary VM and generates a response packet that will be forwarded to the primary VM.
If the COLO comparing module in the primary VM wants to access the packets of both primary and slave
VMs, it is required to wait for the completion of instructions that are executing a time plus one packet
roundtrip time between the primary and slave hosts. The latency of the roundtrip packet between the
two hosts is depicted in Table 1. When the client issues 10000 requests, each request incurs a round-trip
packet latency, which produces significant overhead.

The second factor is the checkpointing latency. COLO reduces service response latency by running both
the primary and slave VM in parallel. Both the VMs generate response packets that will be collected by
the COLO comparing module in the primary VM. This module compares the output packets and makes
the following decisions: (1) If the contents of the two packets are identical, it means that the states of
both the VMs are consistent. Consequently, COLO can continue providing services. (2) If the content of
the compared packets is divergent, COLO will terminate all services and initiate the checkpoint routine.
Since the checkpoint routine synchronizes the replication states by terminating both VMs, it reduces
the performance of the entire system considerably. The last cell in Table 1 provides the latency of the
checkpoint routine. While running memcached services, we evaluated that the requests of 10000 clients
will incur 23 checkpoints.

CPU resources consumption. Unlike Remus, the slave VM behaves exactly like the primary VM
in the COLO VM replication system. The slave VM has an identical configuration as the primary VM,
which includes the number of vCPUs and memory size. Additionally, all the vCPUs in the slave VM are
in complete use as a normal VM.

The purpose of running the primary and slave VMs simultaneously is to compare the output packets
and to reduce the service response latency. However, when running CPU-intensive applications in COLO,
there are few network packets that are being sent and received, which means that the COLO system does
not gain any benefit from this scenario. Furthermore, it consumes the scheduling resources of the vCPUs
in the slave host, which doubles the scheduling problems.

In virtualized environments, the double scheduling problem is described to be a guest OS that is
scheduling processes on vCPUs and a hypervisor that is scheduling vCPUs on physical CPUs. Due to
the semantic gap between the schedulers in the guest OS and hypervisor, this introduces many problems
such as lock holder preemption (LHP) [10].

Here is a simple example, which illustrates the LHP problem, as depicted in Figure 2. vCPU-0 and
vCPU-1 run on pCPU-0 and pCPU-1, respectively. Initially, vCPU-0 acquires the lock and is preempted
by the hypervisor. vCPU-1 waits for vCPU-0 to release its lock, but it can only acquire the lock after
vCPU-0 is rescheduled and exits the critical section. In this example, vCPU-1 is required to wait for an

Chen R, et al. Sci China Inf Sci September 2018 Vol. 61 092110:5

vCPU-0 vCPU-0

executing preempted
Lock (Lock
acquire release
pC PU-0 * --------------------- *
vCPU-0 ‘

pCPU-'1 o— - - - - e O e—
Loc_k Lock
CPU-1 wait acquire
v R
executing

Figure 2 (Color online) Lock holder preemption problem.

additional rescheduling period to acquire the necessary lock.

In a VM replication system, we do not require both primary and slave VMs to be running in a CPU-
intensive scenario, since the computing tasks can be performed using a single VM. When the computing
tasks are completed or after a long period has elapsed, a checkpoint is triggered to save the states to slave
replication. Since there will be very few network packets that are available during execution, checkpoints
are not a concern before the packets are flushed. Therefore, making the slave active is not necessary in
such a scenario.

Objective. In this study, we propose COLO++. We were motivated by the problems elaborated in
the two scenarios using COLO. The two plus signs represent the two COLO optimizations, respectively.
Using the first plus, we consider that each output packet consists of several pieces of memory contents.
Before flushing the output packets, a comparison or checkpoint is required, which will produce signifi-
cant overhead. We propose a method to decide whether to release an output packet, according to its
constituents. If such an output packet originates from clean memory, this packet can be safely released
without violating external consistency. Using the second plus, we consider that it is not necessary for
the slave VM to occupy too many CPU scheduling resources. When running CPU-intensive applications,
few output packets are generated, and shrinking the number of vCPUs could reduce the severity of the
double scheduling problem. Furthermore, only a small part of vCPUs will handle the client requests
when running a network intensive application. Therefore, reducing the number of active vCPUs will not
affect the efficiency of providing services. In the next section, a more detailed description of COLO++
will be provided.

3 Design overview

In our design, COLO-++ is a primary VM active/slave VM semi-active replication system. Due to the
semantic gap between guest VM and hypervisor, it is hard to decide whether or not releasing a particular
output packet without making sure the consistency of system is not violated. So in the traditional way,
replication system does checkpoints or packets comparing before releasing them. As we known, there are
always tradeoffs between generality and performance. In COLO++, it trades generality to get better
performance. Applications could provide some hints to guest OS and hypervisor, to help make the
decision about packets releasing. Besides, in order to ease the double scheduling problem in slave host,
we use vCPU-freezing technique to make less vCPU active in slave VM.

In our design, COLO++ is a primary VM active/slave VM semiactive replication system. Due to
the semantic gap between the guest VM and hypervisor, it is difficult to decide if it is required to
release a particular output packet without ensuring that the consistency of the system is not violated.
Therefore, the replication system performs checkpoints or packet comparison before releasing them using
the traditional approach. As we know, tradeoffs always occur between generality and performance. In
COLO++, generality is exchanged to achieve better performance. Applications could provide some hints
to the guest OS and hypervisor to aid the decision about releasing packets. Moreover, we use a vCPU-
freezing technique to make the number of active vCPUs to be less in the slave VM, which eases the double

Chen R, et al. Sci China Inf Sci September 2018 Vol. 61 092110:6

Table 2 COLO++ interfaces

Interface Function
CLPP_PROTECT Notify guest OS that a specific memory region needs to be tracked
CLPP_.UNPROTECT Untrack a specific memory region
CLPP_ENTER Indicate that COLO++ is now handling user requests
CLPP_EXIT Exit requests handling routine

scheduling problem in the slave host.

3.1 Interfaces

The objective of identifying clean/dirty output packets is to establish a connection between packets and
memory regions. This is a method to track all the memory regions that the application could touch.
However, this method is inefficient and it will mostly obtain an incorrect result while identifying a clean
or dirty packet. Since the virtual memory space of a process consists of the stack, heap, data section, and
many such fields, different data types are stored to make the application perform correctly. The stack
maintains the running environment and stores several temporal data such as local variables. The heap is
the dynamic memory region, and memory could be allocated using malloc and new interfaces. For the
data section, it stores nonzero global variables.

Every step of the process will update its memory more or less. For example, when calling a function,
the return address and parameters of this function will be pushed into the stack and pollute the memory.
Therefore, it will never be enough to track all the memory regions of the application to determine whether
the output network packets are dirty.

We observe that only dirty packets are obtained using this method. However, when the application
services handle requests from clients, most of the polluted memory regions have no use of the output
packets. It is recommended to track the memory regions that really matter to identify clean/dirty packets
accurately. COLO++ leverages several interfaces by allowing applications to provide hints to the guest
OS and hypervisor to track the memory regions that are related to output packets.

Table 2 lists the interfaces that will be translated into syscalls under certain circumstances. The
CLPP_PROTECT interface is used to provide hints to the guest OS and hypervisor that a specific
memory region should be tracked. When the tacked memory region is polluted, the output packet
generated from this memory region will be identified as a dirty packet. CLPP_UNPROTECT is an API
to declare that this memory region does not require more tracking. This API is used in the scenario
where a specific memory region has been reclaimed. Therefore, it is necessary to untrack this region.
CLPP_ENTER is used for notifying the guest OS that the request handling process is initiating, while
CLPP_EXIT performs the opposite function.

3.2 Architecture of COLO++

Figure 3 depicts an overview of COLO++ architecture. Currently, COLO++ is a two-VM replication
system built over COLO. The VM that contacts the outside world is called the primary VM. Additionally,
the primary VM periodically synchronizes its states to the slave VM to maintain external consistency. The
entire system can be treated as a black box having only one entrance and exit point. When the primary
VM crashes, the slave VM will take control of the system. COLO++ aims at two weak spots of COLO.
The first one is the overhead produced while maintaining consistency, which leads to time-consuming
packets performing roundtrip travel or even checkpointing. The second weak spot is the overhead of
vCPU scheduling in the slave host, which doubles the scheduling problems. Motivated to solve these
weak spots, COLO++ has two main functioning components, i.e., a packet analyzer and vCPU freezer.
The application uses a special library called call wrapper, which is used to provide hints to the guest
OS. The packet analyzer analyzes packets generated by the application and tags these packets as either
clean or dirty. A clean packet is released by the hypervisor immediately, whereas a dirty packet should
be subjected to packet comparison or checkpointing before being released. The vCPU freezer shrinks

Chen R, et al. Sci China Inf Sci September 2018 Vol. 61 092110:7

Primary host Slave host
Primary QEMU QEMU Slave
VM VM

APP

APP
_ Checkpoint Checkpoint
-+

Internalinetwork

Hypervisor Hypervisor

COLO
module

e b

COLO
module

— — —— 3 Input network

Output network
External network

—————» CP network

Figure 3 (Color online) Overall architecture of COLO++.

Criminal
pages

Figure 4 Dirty page states transition.

the number of active vCPUs in the slave VM, so that the hypervisor in the slave host could have fewer
entities to schedule. Thus, the double scheduling problem is eliminated.

Actually, COLO++ improves on COLO and also absorbs the benefits of Remus. COLO compares the
output packets, whereas COLO++ eliminates this step when the packet originates from a clean memory
page. Remus waits for checkpointing but consumes zero CPU scheduling resources in the secondary VM.

3.3 Packets early releasing

The packet analyzer is the key component in identifying clean/dirty packets. Actually, it would be the
best solution if we could figure out the exact mapping between the contents of output packets and memory
regions. However, the construction of such mapping leads to significant overhead since it needs to track
every memory operation and record the data flow of each memory piece, which will finally be generated in
the output packets. Once mapping is constructed, it can accurately decide the destiny of output packets.
Taint analysis [11] is a technique for tracking and recording data flow information. It requires to modify
the binary file of an execution application. However, even if this can be performed, the application should
still provide some hints about the destination of packet generation.

Instead of constructing the mapping, COLO++ uses a very coarse-grained method to make a decision
about whether a packet is clean or dirty. The packet analyzer maintains a list of all consecutive memory
regions that are hinted by the application, and these regions are managed using the granularity of a
4 KB sized page. Each of these pages can be classified into three groups as depicted in Figure 4. At the
beginning of each epoch between adjacent checkpoints, all dirty memory is synchronized using a slave

Chen R, et al. Sci China Inf Sci September 2018 Vol. 61 092110:8

VM. Therefore, all tracked pages are marked as clean pages. After executing instructions from clients,
the updated pages will be treated as dirty pages (D). If any dirty page is accessed subsequently, it will
be moved to the set of criminal pages (). When any output packet is generated, COLO++ will check
the criminal set. If the criminal set is not empty, this packet will be a dirty packet; otherwise it will be a
clean one. In the next round of checkpoint, all the dirty pages and criminal pages will be moved to clean
pages set (D).

This method will give a false positive, which will treat the clean packet as a dirty one. However, it will
not violate the rule of external consistency because if a packet is marked as dirty, it will be subjected to
packet comparison or checkpointing. Actually, COLO is a system that treats all the output packets as
dirty ones.

A problem exists due to which for any dirty page going into the criminal set, all subsequent output
packets will be treated as dirty packets in this epoch, even though there are only a few irrelevant pages in
the criminal set. For read-mostly applications, only a few write operations will generate plenty of dirty
packets. To eliminate the problem, COLO++ will clear the criminal set at the right time. Typically,
the client issues a request, and the network service will create a new task to handle this request. The
right time to clear all the criminal pages is when there are no task handling requests (@)). Therefore, the
previous request which introduces dirty pages into the criminal set will not affect the subsequent request
that only affects the clean pages. The final two interfaces in Table 2 are used to detect whether it is
the right time to clear the criminal set. CLPP_ENTER increases the reference counter by one, whereas
CLPP_EXIT does the opposite. When the reference counter becomes zero, this indicates that the right
rime is approaching.

3.4 Semiactive slave to save CPU

COLO+++ shrinks the number of vCPUs in the slave VM to eliminate the double scheduling problem.
There is a straightforward method to reduce the number of vCPUs in the slave VM by booting less
vCPUs. However this method has several limitations. First, it is not functional when synchronizing
CPU states between asymmetric VMs. Each CPU has its per cpu states like registers, variables, and run
queue. In a VM replication system, the vCPU in the primary VM should contain the ghost vCPU in the
slave VM. Otherwise, when doing checkpoints, it will confuse the system if it is observed that the vCPUs
between the primary and slave VMs do not contain one-to-one mapping. Secondly, the slave VM will
take control of the system when the primary VM crashes. When booting less vCPUs in the slave VM, it
will confuse the clients with regard to the number of vCPUs after failover.

In this study, we use the vCPU freeze technique to dynamically reduce and resume the number of
vCPUs in the slave VM. This technique is proposed in vCPU-bal [12] and vScale [13]. We use it in the
VM replication scenario to eliminate the double scheduling problem at the slave host. Unlike vCPU-bal
and vScale, the vCPU freezer does not affect the performance of the overall system in COLO++. In
vCPU-bal and vScale, an agreement is reached for all VMs in one host by which the total number of
vCPUs in this host will not exceed the number of physical CPUs. Therefore, the double scheduling
problem could be eliminated. However in COLO++-, we use this technique only in the slave VM. From
the perspective of the client, the performance of the primary VM will not be compromised.

The objective is to make the guest OS schedule its scheduling entities to less CPUs, thereby excluding
the hypervisor from vCPU scheduling. Typically, the OS scheduler will try to balance all tasks and
distribute them evenly across all CPUs. When the vCPU is fully loaded, the scheduler in the hypervisor
will treat this vCPU as a runnable task. If the vCPU has nothing to perform, it will enter an idle state
and never consume CPU cycles in the hypervisor. Therefore, COLO++ moves the spread tasks for all
vCPUs to a limited subset, whereas some of the vCPUs function normally and the rest enter an idle
state.

There are two issues with regard to shrinking the number of vCPUs in the slave VM. The first issue
is that the primary and slave VMs are nearly identical, including the CPU executing environments and
instructions. This means that the scheduler in the slave VM acts identical to the one in the primary VM.

Chen R, et al. Sci China Inf Sci September 2018 Vol. 61 092110:9

We need a special data structure, called the freezed_cpu_mask, that will not be synchronized between two
VMs to move tasks into the limited subset of all vCPUs in the slave VM while leaving the primary VM
unchanged. The schedulers in each VM will refer to their own freezed_cpu-mask and act accordingly. In
the primary VM, the freezed_cpu_mask is set to empty. Therefore, the vCPU will not be frozen. However,
in the slave VM, the administrator could configure the freezed_cpu_mask using the shared memory between
the guest OS and hypervisor. The second issue is that even though we have an exclusive data structure
that will not be synchronized after checkpointing, the run queue states of each vCPU still need to be
synchronized, which leads to the busy scheduler serving no purpose. To address this issue, COLO++
extends the time limit of periodic checkpoints. This is because the checkpoint time length will not affect
the performance of the CPU-intensive application scenario.

For pure CPU-intensive workloads, we can simply make the slave VM passive and perform checkpoints
to synchronize the states, which falls back to the design of Remus. However, our semiactive design offers
the system administrator a method to manage the CPU scheduling resource in the slave VM. Therefore,
the number of active vCPUs will not be “ALL” or “NULL”, when the VM runs a mixed workload of
both CPU and network intensive applications. In a network intensive application, the first optimization
can be used to obtain better performance. So we cannot “shut down” all the vCPUs because we require
one/some of them to do the packet generation work.

4 Implementation

We developed a prototype of COLO++ from the COLO system based on KVM/QEMU in Linux.

Dirty page tracking. To identify clean/dirty output packets, COLO++ classifies tracked pages into
clean, dirty, and criminal sets. At the beginning of each epoch, COLO++ will write-protect all pages and
mark them as clean pages. Any subsequent page fault transforms the page from a clean set to a dirty set.
In a virtualized environment, hardware vendors introduce a new type of page table produced by Intel,
named Extended Page Table (EPT). There will be an option to implement dirty page tracking inside the
hypervisor through EPT. However, a walk through between two page tables is required to establish a
connection between the guest virtual address (GVA) and the host physical address (HPA). These tables
are the guest PT and EPT. In EPT, the consecutive memory range in the GVA space may be divided
into several pieces. Moreover, it will be much more complicated to identify which process in the guest
VM violates the EPT write-protect restriction, since the information inside the hypervisor only mentions
which vCPU triggers the EPT page fault. COLO++ implements dirty page tracking inside the guest
kernel, and it is much more convenient to maintain every tracked page and source process of the page
faults. If the application process accesses the dirty pages, it will try to move the touched pages from
the dirty set to the criminal set. COLO-++ leverages the access bit on the page table entries to track
the accesses of every tracked page. There are two methods to assign memory to VMs: static memory
allocation and dynamic memory allocation. Dynamic memory management, such as memory ballooning
and memory hotplug, will affect the size of unused memory. However, the access bit on the page table
entries will not be polluted by such management techniques. Dirty page tracking inside the guest kernel
could be safely applied to COLO++.

The normal procedure for handling a page write protection fault is: (1) The specific instruction tries
to write to a write-protected page and triggers a page fault. (2) The kernel handles this fault and
returns to the user space. (3) Re-executing the instruction triggers a page fault. There is one issue after
step (3), where the access bit in the page table entry is already set. This means that every page already
comes from a clean set to a dirty set and is moved into the criminal set immediately. To solve this
problem, we used the debug register? to set a breakpoint in the next instruction. Therefore, the guest
OS could vary the access bit on the page table entry. As the number of dirty pages in every epoch
increases, the system performance drops dramatically due to the process of handling page faults and
debug breakpoints. To eliminate the overhead, we set a threshold for the dirty output packet rate (50%

2) x86 debug register. https://en.wikipedia.org/wiki/X86_debug_register.

https://en.wikipedia.org/wiki/X86_debug_register

Chen R, et al. Sci China Inf Sci September 2018 Vol. 61 092110:10

by default and configurable). COLO++ functionality will be disabled when the dirty output packet rate
reaches the threshold and will automatically fall back to the COLO system.

Packets filter. After successfully identifying clean/dirty packets, the guest OS needs to pass the
information in order to tell the hypervisor whether to release packets in advance. Virtio [14] was chosen
as the main platform for I/O virtualization in KVM. We extended the descriptor table of the send queue
in the virtio-net module by one bitto represent clean or dirty packets, respectively. The information could
be transferred from the guest front-end to the QEMU backend. However, QMUE is not the component
who decides the destiny of the packets, since this is decided by the kernel module in the hypervisor
call, where the COLO module is located. Fortunately, QEMU uses one I/O thread mode to handle the
I/O request. To continue transferring this information, we developed a channel between QEMU and
the COLO module. This is a shared buffer which indicates the mapping of clean/dirty information and
the corresponding packet sending QEMU to the COLO module. Therefore, all components could be
connected together to serve the purpose of COLO++.

vCPU freezer. COLO++ leverages the guest OS scheduler to reduce the number of active vCPUs in
the slave VM. There are several methods to achieve this. Initially, the administrator needs to control the
minimal number of vCPUs. For the current implementation, the guest OS boots up using a predefined
reserved physical consecutive memory region of 4 KB as the shared memory between guest and hypervisor.
This memory region is mapped through EPT and the administrator maintains the freezed_cpu_mask in
it. The guest OS scheduler refers to the freezed_cpu_mask as an instruction to scheduled tasks. Since this
reserved memory region is a part of the guest physical memory space, it will be synchronized between
the primary and slave VMs. Further, the second step is to exclude the shared page from synchronization.
In KVM, there are two ways to collect dirty pages during VM migration, namely, page write protection
and Page Modification Logging (PML) [15]. In our implementation, we used the former one. The KVM
module maintains a bit mask to record all the dirty pages during this period and pass them to QEMU.
QEMU sets up a checkpoint by synchronizing dirty pages indicated by this bit mask. To exclude the
share page, we excluded the bit in bit mask during dirty page collection, so that the shared page will
be not synchronized from there on. The final step is to actually schedule the tasks. In Linux, there are
two main types of schedulable entities that can consume CPU cycles: threads and interrupt routines.
vSacle [13] provides an extensive discussion on how to interfere with normal scheduling in every push or
pull event when performing load balancing. One situation is that, it would confuse the clients if we moved
the specific threads away, when the clients set affinities to the threads. The strategy of COLO++ is to
keep the affinity in the primary VM, and reserve the affinity in the slave VM. Normally, setting affinities
aims for better performance. In COLO++, the performance is mostly determined by the primary VM.
The overall performance of the slave VM is weakened after reducing the number of vCPUs. Therefore,
CPU affinity is less important in the slave VM. When the fail-stop happens to the primary VM and the
slave VM takes control of the system, the slave VM will resume the thread affinities that were formerly
disabled.

5 Evaluation

In this section, we describe the evaluation of COLO-++ in two sections. In the first section, we evaluated
the performance of COLO++ in the read-mostly network-intensive scenario to demonstrate the efficiency
of prereleasing the clean output network packets. Secondly, we evaluated the benefit of shrinking the
number of vCPUs in the slave VM. Note that the native single VM system without replication and
the original COLO system are the two baselines. Additionally, we illustrated that COLO++ exhibits
significant performance improvement than COLO in the read-mostly network intensive scenario, and it
can also reduce the stress in the slave VM CPU resources without any performance drop, which can even
improve performance.

Chen R, et al. Sci China Inf Sci September 2018 Vol. 61 092110:11

Nati » b Nati
12000t @ oASE 12000} EOLG 2
COLO++ -& COLO+ -o
z 10000} COLO++ S @ . B 10000} cOLO++_S @
b
E
2
=
o~

5 10 15 20 25 30 0 5 10 15 20 25 30
Update rate (%) Update rate (%)

13000 | (¢c) Native =
12000 COLO =
11000 COLO++ -o
10000 | COLO++_S &
9000
8000

Runtime (ms)

5 10 15 20 25 30
Update rate (%)

Figure 5 Relationship between update rate and performance (Runtime) in different packet sizes. (a) 1 KB;
(b) 2 KB; (c) 4 KB.

5.1 Experimental setup

We evaluate COLO++4 using two host machines having a 40-core Intel Haswell processor, 128 GB DDR3
memory. Two Intel 82599 10 Gigabit NIC [16] were used for the external network and internal checkpoint
network. Moreover, we boot the guest VM with 16 vCPUs and 2 GB of memory and used virtio-net as the
network device. The guest kernel version was Linux 3.14.35. The experiment run KVM as a hypervisor.
The host kernel version was 3.18.10 and the QEMU version was 2.3.92. The client system had the same
hardware and kernel configuration as the primary and slave hosts.

5.2 Network performance

This subsection will illustrate the experimental results of COLO~++ in comparison with that of COLO
in a network intensive application. The aim is to show that COLO-++ outperformed COLO in the
read-mostly benchmark.

Here we chose memcached [17] as the evaluated benchmark. We modified the code of memcached
slightly to fit the COLO++ system. To speed up the allocation of objects, memcached reserves a large
memory range in order to insert everything. The memcached object allocation procedure was managed by
itself to reduce the number of library function calls like malloc. To adopt memcached in COLO++, it was
initially required to use the COLO++ interface CLPP_PROTECT to notify that the reserved memory
pool was used for serving the output network packets. Additionally, we used CLPP_.UNPROTECT to
declare when the memory region was reclaimed. Therefore, any read and write operation happening in this
space could be monitored. Subsequently, we wrap the user request handling routines by CLPP_ENTER
and CLPP_EXIT to provide hints that would indicate the timing of cleaning the criminal set. The effort
for the adaptation is approximately 20 lines of code.

We used YCSB as the client to issue 10000 read/write requests to the replicated memcached system.
Additionally, we set the number of record fields to 10, and the size of each field (in bytes) to 100, 200,
and 400. Therefore, the size of objects was approximately 1 KB, 2 KB, and 4 KB, respectively. The
results are depicted in Figure 5(a)—(c).

Figure 5 illustrates the performance (Runtime) of COLO++ when running memcached having different
memcached object sizes. The native line in each figure denotes the workload performance when running
on an unmodified VM /hypervisor and nonreplicated VM system. For the unmodified VM /hypervisor and

Chen R, et al. Sci China Inf Sci September 2018 Vol. 61 092110:12

1KB &
2KB &
4 KB ¢

Runtime (s)

Ratio of clean packets (%)
wn
S

L L .] 0 4 8 12 15
0 10 20 30 40 50 60 70 80 # of vCPUs shrinked
Update rate (%)

Figure 6 Clean packets ratio. Figure 7 Performance of Sysbench CPU.

nonreplicated VM system, none of the above results will perform better than this benchmark. Therefore,
a lower bound is formed.

Figure 5(a) illustrates the performance of memcached with 1 KB sized objects. Memcached is a
key/value store service. Typically, user requests are put/update and get operations. When the update
rate is zero, it means that all requests simply read the contents from the key/value store. Therefore,
none of the operations will pollute the tracked memory in memcached. If all the tracked pages are in
a clean set, this means they are already synchronized to the slave VM. It is safe to release the packets
generated from the tracked memory, in advance. The zeroed update rate contributes to the prerelease
of all response packets without comparison or checkpoints. Therefore, the performance of the zeroed
update rate is close to native performance. As the update rates increase, the performance drops due
to the overhead introduced from tracking dirty pages, i.e., page write protection faults and debug trap
exceptions. COLO++_S exhibits the result of switching between the COLO++ and COLO system when
the dirty output packets reach the threshold (50% by default). We can observe that the worst case
performance in the COLO++ system will not exceed the bound of the COLO system.

As we can observe from Figures 5(b) and (c), the performance of COLO++ varies with different object
sizes. When the object size is aligned to the page size (4 KB), there will be much less influence on the
neighbors if a write operation is applied to an object. These three figures depict that COLO++ could
still outperform COLO if the update rates reach 10%, 15%, and 21%, in the scenarios of 1 KB, 2 KB,
and 4 KB sized objects, respectively.

To further understand the reason of COLO++ outperforming COLO, we evaluated the relationship
between clean packet and data update rates. The results depict that the lower the update rate is, the
cleaner the generated packets will be. As illustrated in Figure 6, the z-axis indicates the update rate and
y-axis indicates the clean packet ratio. Additionally, it is demonstrated again that the object size will
affect response performance.

5.3 Benefit of vCPU shrinking

In this subsection, we exhibit the benefit of vCPU shrinking that was used in the COLO++ system.
Firstly, there are 2 parts of evaluations, and the results depict that the CPU performance of the COLO++
system will not be compromised while vCPU shrinking is enabled. Secondly, we exhibit that the vCPU
shrinking mechanism improves the CPU performance of the colocated VMs in the same host.

We used sysbench [18] as the testing benchmark. The result is depicted in Figure 7, having a different
number of vCPUs being shrunk, and the performance of the sysbench CPU is rarely changed.

In Subsection 5.2, several extra VMs were booted up to keep the overall number of vCPUs in the
system at twice the number of physical CPUs to better demonstrate the benefit gained by the colocated
VMs. Therefore, the average length of each CPU run queue will be 2, and the hypervisor will keep
scheduling vCPUs to trigger the double scheduling problem.

We run the PARSEC benchmark suit [19] in a colocated VM equipped with 16 vCPUs to observe
whether the vCPU shrinking mechanism of COLO++ will improve the performance of this VM. The

Chen R, et al. Sci China Inf Sci September 2018 Vol. 61 092110:13

4000 £ 12[Non-shrink = Shrink 15 vCPUs=
¢ el .
S 2500+ % P 08¢
= 2t % Zos|
£ woof 7 E 0l
&]‘e
Figure 8 Average IPI per second happens in VM when Figure 9 Performance of PARSEC benchmark suit.

running PARSEC benchmark suit.

PARSEC benchmark suit has many applications in different areas including financial analysis, computer
vision, enterprise storage, and many other fields. Most of them are integrated with pthread to provide
concurrency. Therefore mutual exclusion primitives, such as mutex and conditional variable, are largely
used in order to guarantee parallelism safety. In Linux, most of these primitives will be translated into
inter-processor interrupts (IPIs). In a virtualized environment, the virtual IPI could only be injected
when the specific vCPU is scheduled. Therefore, the path of IPI sending and receiving mechanisms rely
heavily on the effectiveness of the hypervisor scheduler. The larger is the number of vCPUs in the run
queue, the longer the virtual IPI will have to wait. We selected several applications from the PARSEC
benchmark suit, and it could be observed from Figure 8 that these applications have a significant amount
of virtual IPIs sending and receiving operations that are performed during runtime. Since most of them
perform a lot of memory operations during execution, it means that a large number of mutual exclusive
primitives will be used. Therefore, it is natural to see why such many IPIs burst.

Figure 9 depicts the performance of a 16-vCPU colocated VM when running PARSEC applications.
As we can observe, these applications benefit from the vCPU shrinking mechanism. Bodytrack, canneal,
facesim, and vips gain approximately 10% to 20% in performance improvement. Additionally, the exe-
cution time of dedup is reduced by more than 45% and over 30% for streamcluster. If we observe the
corresponding Figure 8, we could observe that vCPU shrinking eases the double scheduling problem of
the hypervisor, while virtual IPI delays are mostly avoided.

6 Related work

The replication system can be implemented either through hardware-based replication or software-based
replication. However, hardware-based replication has some disadvantages in comparison to the software-
based method, since it is expensive and not general. HP company recommends the HP Non-Stop server,
which requires additional external equipment and special OS design to operate the failover process [20-22].
Additionally, the instruction level lockstep replication at the hardware level forces primary and slave hosts
to execute the exact same CPU instructions. Even though it obtains reasonably good performance [23,24],
its industrial popularity is quite low due to its low level implementation. Moreover, hardware-based
replication can only provide physical machine level fault tolerance instead of just one virtual machine
running on it.

For software replication, virtual machine level replication is proposed. The fine-grained instruction
lockstep VM replication is implemented using various software [5,25-27] and suffers from significant
overhead due to nondeterministic memory accesses in SMP virtual machines. Subsequently, Remus [6]
and its variant [28] uses the VM migration technique [8] to perform periodical checkpoints and synchronize
the VM states. Therefore, the overhead of the instruction lockstep replication could be avoided. Other
optimizations are proposed to reduce the overhead of memory migrations over VMs [29,30]. COLO [7]
further optimizes Remus with regard to the overhead of frequent checkpointing through packet similarity
comparison.

A multi-tier application could use multiple VMs to support the entire service. This typically consists

Chen R, et al. Sci China Inf Sci September 2018 Vol. 61 092110:14

of three tiers: the presentation layer (web tier), business logic layer (App tier) and data access layer (DB
tier) [31]. When migrating a multitier application to other data centers, a problem of correlated VM
migrations is caused [32]. However, we can easily add COLO++ fault tolerance support to such a VM
cluster. As long as each VM follows the external consistency protocol, the overall consistency will not be
compromised.

7 Conclusion

This study proposed an asymmetric VM replication solution for HA with an active primary VM and
semiactive slave VM combination. COLO++ exploits the sources of network output packets and classifies
them into clean and dirty categories. By considering the ingredients of packets, network roundtrip latency
could be avoided, while maintaining external consistency. Moreover, COLO++ shrinks the number of
vCPUs in the slave VM to relieve the stress of the hypervisor scheduler and ease the double scheduling
problems.

References

1 Jiang B, Ravindran B, Kim C. Lightweight live migration for high availability cluster service. In: Proceedings of the
12th International Conference on Stabilization, Safety, and Security of Distributed Systems, New York, 2010. 420-434

2 Mullender S. Distributed systems. United States of America: ACM Press, 1993: 12

3 Kivity A, Kamay Y, Laor D, et al. Kvm: the Linux virtual machine monitor. In: Proceedings of the Linux Symposium,
Ottawa, 2007. 1: 225-230

4 Barham P, Dragovic B, Fraser K, et al. Xen and the art of virtualization. In: Proceedings of the ACM SIGOPS
Operating Systems Review, New York, 2003. 164-177

5 Bressoud T C, Schneider F B. Hypervisor-based fault tolerance. ACM Trans Comput Syst, 1996, 14: 80-107

6 Cully B, Lefebvre G, Meyer D, et al. Remus: high availability via asynchronous virtual machine replication. In:
Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, San Francisco, 2008.
161-174

7 Dong Y Z, Ye W, Jiang Y H, et al. Colo: coarse-grained lock-stepping virtual machines for non-stop service. In:
Proceedings of the 4th Annual Symposium on Cloud Computing, Santa Clara, 2013. 3

8 Clark C, Fraser K, Hand S, et al. Live migration of virtual machines. In: Proceedings of the 2nd Symposium on
Networked Systems Design and Implementation. Berkeley: USENIX Association, 2005. 2: 273-286

9 Elnozahy E N M, Alvisi L, Wang Y M, et al. A survey of rollback-recovery protocols in message-passing systems.
ACM Comput Surv, 2002, 34: 375-408

10 Friebel T, Biemueller S. How to deal with lock holder preemption. In: Proceedings of Xen Summit North America,
Boston, 2008. 164

11 Enck W, Gilbert P, Han S, et al. TaintDroid: an information-flow tracking system for realtime privacy monitoring on
smartphones. ACM Trans Comput Syst, 2014, 32: 5

12 Song X, Shi J, Chen H, et al. Schedule processes, not VCPUs. In: Proceedings of the 4th Asia-Pacific Workshop on
Systems, New York, 2013. 1

13 Cheng L, Rao J, Lau F. vScale: automatic and efficient processor scaling for SMP virtual machines. In: Proceedings
of the 11th European Conference on Computer Systems, New York, 2016. 2

14 Russell R. Virtio: towards a de-facto standard for virtual I/O devices. ACM SIGOPS Oper Syst Rev, 2008, 42: 95-103

15 Intel®. Page modification logging for virtual machine monitor white paper. Intel Whitepaper, 2015. https: //www.
intel.com/content/www/us/en/processors/page-modification-logging-vmm-white- paper.html

16 Intel® 82576 and 82599 Gigabit Ethernet controller datashee. Intel Whitepaper, 2002. https://www.intel.com/
content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html

17 Fitzpatrick B. Distributed caching with memcached. Linux J, 2004, 2004: 5

18 Kopytov A. SysBench: a system performance benchmark. http://sysbench.sourceforge.net, 2004

19 Bienia C, Kumar S, Singh J P, et al. The PARSEC benchmark suite: characterization and architectural implications.
In: Proceedings of the 17th International Conference on Parallel Architectures and Compilation Techniques, New York,

2008. 72-81
20 Castro M, Liskov B. Practical byzantine fault tolerance and proactive recovery. ACM Trans Comput Syst, 2002, 20:
398-461

21 Lamport L, Shostak R, Pease M. The Byzantine generals problem. ACM Trans Program Lang Syst, 1982, 4: 382401

22 Schneider F B. Implementing fault-tolerant services using the state machine approach: a tutorial. ACM Comput Surv,
1990, 22: 299-319

23 Bernick D, Bruckert B, Vigna P D, et al. NonStop/spl reg/advanced architecture. In: Proceedings of the International
Conference on Dependable Systems and Networks, Yokohama, 2005. 12-21

https://doi.org/10.1145/225535.225538
https://doi.org/10.1145/568522.568525
https://www.intel.com/content/www/us/en/processors/page-modification-logging-vmm-white-paper.html
https://www.intel.com/content/www/us/en/processors/page-modification-logging-vmm-white-paper.html
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
https://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/98163.98167

24

25

26

27

28

29

30

31

32

Chen R, et al. Sci China Inf Sci September 2018 Vol. 61 092110:15

Webber S, Beirne J. The stratus architecture. In: Proceedings of the 21st International Symposium on Fault-Tolerant
Computing, Montréal, 1991. 79-85

Jeffery C M, Figueiredo R J O. A flexible approach to improving system reliability with virtual lockstep. IEEE Trans
Dependable Secure Comput, 2012, 9: 2—15

Scales D J, Nelson M, Venkitachalam G. The design of a practical system for fault-tolerant virtual machines. ACM
SIGOPS Operat Syst Rev, 2010, 44: 30-39

Reiser H P, Kapitza R. Hypervisor-based efficient proactive recovery. In: Proceedings of the 26th IEEE International
Symposium on Reliable Distributed Systems. Washington: IEEE Computer Society, 2007. 83-92

Minhas U F, Rajagopalan S, Cully B, et al. RemusDB: transparent high availability for database systems. VLDB J,
2013, 22: 29-45

Lu M, Chiueh T. Fast memory state synchronization for virtualization-based fault tolerance. In: Proceedings of the
IEEE/IFIP International Conference on Dependable Systems and Networks, Lisbon, 2009. 534-543

Zhu J, Dong W, Jiang Z F, et al. Improving the performance of hypervisor-based fault tolerance. In: Proceedings of
the International Symposium on Parallel and Distributed Processing, Atlanta, 2010. 1-10

Huang D, He B, Miao C. A survey of resource management in multi-tier web applications. IEEE Commun Surv Tut,
2014, 16: 1574-1590

Liu H, He B. VMbuddies: coordinating live migration of multi-tier applications in cloud environments. IEEE Trans
Parallel Distrib Syst, 2015, 26: 1192-1205

https://doi.org/10.1109/TDSC.2010.53
https://doi.org/10.1007/s00778-012-0294-6
https://doi.org/10.1109/SURV.2014.010814.00060
https://doi.org/10.1109/TPDS.2014.2316152

	Introduction
	Background and motivation
	External consistency
	Remus and COLO
	Issues and motivations

	Design overview
	Interfaces
	Architecture of COLO++
	Packets early releasing
	Semiactive slave to save CPU

	Implementation
	Evaluation
	Experimental setup
	Network performance
	Benefit of vCPU shrinking

	Related work
	Conclusion

