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Abstract IPv6 address generation is closely related to the manageability, security, privacy protection, and

traceability of the Internet. There are many kinds of IPv6 address generation and configuration methods in

the area of Internet standards and research that may cause certain problems, including the mixed operation

problem of multiple IPv6 address generation schemes, the synchronization problem of the change in IPv6

address, the efficiency problem of processing large-scale concurrent IPv6 address requests, and the general

model problem for mapping IPv6 addresses to other requirement spaces as identifiers. In this paper, we

consider generating and managing IPv6 addresses according to network requirements. After conducting a

requirement analysis of most proposed address generation schemes, we propose a general address generation

model and a general address management system, which are the cores of the general address generation and

management system (GAGMS). This system solves the above problems under the premise of maintaining

the diversity and flexibility of the existing IPv6 address generation and configuration methods and allows

networks to utilize different address generation schemes according to different requirements in different sce-

narios. Finally, we design a prototype system and evaluate our GAGMS to demonstrate its effectiveness,

manageability, and scalability, and we have conducted trial deployment in campus networks and are trying

to standardize this work in IETF.
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1 Introduction

1.1 Problems in IPv6 address generation and configuration

In the area of Internet standards and research, many kinds of IPv6 address generation and configuration

methods are proposed. They bring not only flexibility and diversity but also some problems. Because IPv6

address generation is closely related to the manageability, security, privacy protection, and traceability

of the Internet, it is important to solve these problems. The problems are as follows.

1.1.1 Mixed operation problem

The first problem is a mixed operation problem of multiple IPv6 address generation schemes. Cur-

rently, hosts in the same network can use different address generation schemes for stateless address
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auto-configuration (SLAAC) [1] to obtain addresses or fetch addresses assigned from dynamic host con-

figuration protocol for IPv6 (DHCPv6) servers [2, 3]. For SLAAC, different operating systems have

different default address generation mechanisms [4–7]. However, some address generation mechanisms

are not fit for particular network scenarios. For example, some organizations disable the use of temporary

addresses even at the expense of reduced privacy [7]. For DHCPv6, there already exist identity asso-

ciation for non-temporary addresses (IA NA) and identity association for temporary addresses (IA TA)

options which show the different requirements of clients. Requirements also exist for DHCPv6 servers to

configure address generation mechanism for different local networks. To conclude, schemes for configuring

address generation mechanisms on requirements are needed.

1.1.2 Synchronization problem

The second problem is a synchronization problem of the change in IPv6 address. There exist many

kinds of network functions related to addresses, such as auditing, access control, and source address

validation. Once a host updates its addresses, the corresponding function entities should also update their

corresponding stored entries. However, uniform address assignment records and processing standards are

currently lacking, which causes problems. For example, if the address assignment updates of hosts are not

synchronized with the accounting gateway, incorrect auditing and billings will occur. Currently, DHCPv6

active leasequery [8] solves a part of this problem by allowing other network entities to remain up to date

on the DHCPv6 leases. However, the part of the problem caused by SLAAC and manual configurations

remains unresolved.

1.1.3 Efficiency problem

The third problem is an efficiency problem of processing large-scale concurrent IPv6 address requests.

One of the great advantages of IPv6 over IPv4 is the 64-bit interface identifier (IID) space. Although the

number of current address requests in a subnet is far less than the maximum number that the IID space

can provide (address collisions seldom occur), some predictions [9]1)2) show that more than 20 billion

devices will connect to the Internet by 2020 and the number will grow at a faster and faster pace in the

future. Therefore, IPv6 must adapt to the large-scale concurrent IPv6 address requests in a subnet in

the future. In that case, routers or switches will use more resources to handle multicast NS messages in

duplicate address detection (DAD) [1] process. However, if we have a central entity to manage all types

of addresses, for large-scale concurrent requests, the concurrent processing mechanism of server clustering

techniques will achieve greater advantages and unicast or anycast messages can be utilized.

1.1.4 General model problem

The fourth problem is a general model problem for mapping IPv6 addresses to other requirement spaces

as identifiers. IP addresses are not only locators but also identifiers. As identifiers, IP addresses can

be mapped to other requirement spaces to support multiple functions, including traceback, auditing,

transition, and mobility. Currently, IETF defines the interoperations between DHCP servers and radius

servers [10], and researchers also propose the extension schemes of DHCPv6 such as network identity and

time generated address (NIDTGA) [11], which introduces authentication service into DHCP exchanges.

That is to say, some interoperations between DHCP entities and external service entities are designed

to provide precise and fine-grained services. However, there are no general uniform protocol extensions

and models. To summarize, we need to work out some general uniform protocol extensions or models for

introducing external services into the address assignment process.

1) IoT market forecasts. https://www.postscapes.com/internet-of-things-market-size.
2) Internet of things (IoT): number of connected devices worldwide from 2012 to 2020 (in billions).

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide.
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1.2 Requirement-driven address generation and management

In addition to the diversity and flexibility of current address generation schemes, we consider that the

solution must have the following properties to solve the above problems.

• Effectiveness: the performance of each scheme in the solution does not degrade compared with the

originals.

• Manageability: the solution must allow all kinds of addresses and address generation schemes to be

easily managed.

• Scalability: the solution must allow new address generation schemes to be easily added.

• Economy: the solution must be of low cost to deploy.

To our best knowledge, no prior work has addressed the problems from the aspect of requirement

analysis and management. Therefore, we propose a requirement-driven general address generation and

management system (GAGMS):

• For the mixed operation problem, GAGMS provides a uniform address generation requirement and

uniform address storage structure (UASS) to better conduct address management, control, and traceback.

• For the synchronization problem, GAGMS centrally maintains the UASSes of all hosts and multicasts

the updates of UASSes to related function entities.

• For the efficiency problem, GAGMS centrally records the UASSes of all hosts and allows hosts to

omit the process of DAD to improve efficiency.

• For the general model problem, GAGMS provides a basic operation set to generate new address

generation schemes easily, and the layered address management system features excellent scalability to

add new schemes.

Our GAGMS is mainly used in access networks and can be useful for many applications. We illustrate

this by a typical example scenario. Campus networks often need to conduct address management and

identity management, and our GAGMS can help campus networks provide consolidated address man-

agement, precise identity management, and better user experience even if both SLAAC and DHCPv6

are used. Moreover, network operators can even analyze the address usage and address distributions to

provide better service. We hope this work will help promote the development of IPv6.

1.3 Key contributions

The following are our key contributions.

• We propose the requirement analysis of address generation, which helps people understand and

determine the function scope of the requirement and relationship of requirements.

• We propose a general address generation model, which helps people design new address generation

schemes.

• We propose a general address management system, which can synchronize updates of UASSes among

related network entities and allow networks to utilize different address generation schemes in different

scenarios according to different requirements.

1.4 Paper organizations

The rest of the paper is organized as follows. Section 2 describes related studies. Next, we conduct

requirement analysis in Section 3. Section 4 explains a general address generation model. In Section 5, we

propose a general address management system to manage the address generation schemes. In Section 6,

we discuss a prototype system that we have implemented and evaluate its performance. Finally, in

Section 7, we give a conclusion and discuss next steps.
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Table 1 Schemes classification by requirements

Requirement Schemes RFC or used to be

Easy aggregation of routes GIRO [14], ISPSG [15] ×
Generation from MAC address IEEE EUI-64 identifier [4, 16]

√

Protection of user privacy Temporary address [5]
√

Verification of user identity:
solve forgery source addresses in SEND CGA [6]

√

solve home address problem in MIPv6 CAM [17], SUCV [18] ×
Traceback of user identity NIDTGA [11] ×

Transformation of IPv4 addresses into IPv6 addresses SIIT [19], IVI [20]
√

2 Related work

2.1 Address auto-configuration mechanisms

There are two address auto-configuration mechanisms in IPv6: SLAAC and DHCPv6. SLAAC can

configure hosts with one or more addresses composed of network prefixes advertised by local routers and

IIDs that embed hardware addresses (e.g., IEEE MAC address) or are randomly generated. DHCPv6

can provide a device with addresses assigned by a DHCPv6 server and other configurations carried in

options.

The router advertisement (RA) message specified in neighbor discovery [12] contains M flag and A flag

of the prefix information (PI) option. With M flag set, it indicates that DHCPv6 service is available in

the network, while with A flag set, it indicates that the prefix can be used for SLAAC.

2.2 Address generation schemes

According to RFC 7421 [13], the notion of a /64 boundary was introduced after the initial design of IPv6,

and a fixed identifier length has the advantages of simple network design, easy subnet addition, and easy

understanding of router configurations. Most proposed IPv6 address generation schemes are designed

based on a /64 boundary except some schemes that transform IPv4 addresses into IPv6 addresses.

Some IPv6 address generation schemes re-encode the prefix of IPv6 addresses (leftmost-64-bit schemes)

to support advanced techniques such as route aggregation [14,15]. Most of the proposed methods redesign

the scheme used for generating IIDs (rightmost-64-bit schemes) with different requirements, such as

economic generation [4, 16], privacy protection [5], and validation [6, 17, 18]. Another type of address

called NIDTGA has network identity (NID) and time information embedded into it. With the help of

an NID Traceback Server, we can trace back a user’s identity, which allows for fine-grained network

management. The remaining schemes focus on transforming IPv4 addresses into IPv6 addresses (cross-

64-bit schemes), such as stateless IP/ICMP translation (SIIT) [19] and IPv4/IPv6 translation (IVI) [20].

We conclude with a table that classifies schemes by the requirements in Table 1.

3 Requirement analysis

We focus on the requirement of each scheme and aim to clarify the functional scope of each require-

ment and the relationships among the requirements. Based on the requirement analysis, we can design

new schemes that meet new requirements and build the general address generation model and address

management system.

3.1 Requirement scope

As we concluded in Section 2, we summarize several common requirements of the proposed IPv6 address

generation schemes, including economical address generation, protection of user privacy, verification of

user identity, traceback of user identity, transformation of IPv4 addresses into IPv6 addresses, and easy

aggregation of routes.
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Before further analysis, we introduce a new definition, namely requirement scope, to help us demon-

strate the relationship between two requirements. Requirement scope refers to a requirement’s functional

position within some network layer’s identifier under the particular addressing method. For instance, for

the network layer’s IPv6 address, we can determine the location of a specific requirement’s functional

position within IPv6 addresses under the current routing system. More specifically, we can formalize the

definition as follows:

Lr = f(id,mode, r), (1)

where Lr, id, mode, and r represent the functional position, the identifier of some network layer, the

addressing mode of that layer, and the specific requirement, respectively.

To define how to obtain Lr in detail, we must know the functional position Lid of id and the functional

position Lm of id. For an n-bit id, the Lid is defined as

Lid = id(0, n− 1). (2)

That is, the whole identifier (from bit 0 to bit n − 1) is the functional position of id. Note that the

leftmost bit of all identifiers or feature information in this paper is numbered 0. The definition of Lm is

as follows:

Lm = id(k, l). (3)

If the addressing mode that mode represents does not require utilizing id, both k and l equal −1 by

default. Otherwise, 0 � k � l � n − 1, i.e., the part from bit k to bit l of id is used for routing. Then,

Lr can be obtained as follows:

Lr =

{
Lm, if r functions on mode,

Lid − Lm, otherwise,
(4)

where “−” represents the rest position in the minuend except for the position that the subtrahend

represents.

For example, if we want to generate IPv6 addresses economically and quickly, we may choose the

IEEE EUI-64 identifiers. According to the definition of the requirement scope, the requirement does

not function on the prefix. Therefore, the IID is the requirement scope. Furthermore, we calculate the

functional scopes of these requirements as shown in Table 2.

3.2 Requirement relationships

We can clarify the relationships between the requirements through the requirement scopes mentioned

above. We define three types of relationships between two requirements.

3.2.1 Complete compatibility

If two requirement scopes do not intersect, the two requirements are in complete compatibility, which

indicates that they can both function on the same IPv6 address simultaneously.

3.2.2 Complete conflict

If two requirement scopes are equal, the two requirements are in complete conflict, which means that

they cannot function on the same IPv6 address simultaneously.

3.2.3 Partial compatibility

If two requirement scopes intersect partially, the two requirements are in partial compatibility. Probably,

they may function on the same IPv6 address.

Table 3 shows the pairwise relationships of several types of requirements. The relationship between two

requirements reflects the possibility of two requirements functioning on the same IPv6 address. Mecha-

nisms in complete compatibility can function on the same address completely. However, mechanisms in

complete conflict can never function on the same address.
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Table 2 Functional scopes of requirements

Goal Requirement Functional scope

Identifier

(a) Generation from MAC address IPv6(64, 127)a)

(b) Protection of user privacy IPv6(64, 127)

(c) Verification of user identity IPv6(64, 127)

(d) Traceback of user identity IPv6(64, 127)

(e) Transformation of IPv4 addresses into IPv6 addresses IPv6(32, 127)

Locator (f) Easy aggregation of routes IPv6(0, 63)

a) IPv6(m, n) represents the part of IPv6 address from bit m to bit n.

Table 3 Relationships among requirements a)

(a) (b) (c) (d) (e) (f)

(a) −b) ×c) × × × ©d)

(b) × – × × × ©
(c) × × – × × ©
(d) × × × – × ©
(e) × × × × – ⊗e)

(f) © © © © ⊗ –

a) (a)–(f) represent the requirements mentioned in Table 2.

b) “–” represents the same requirement.

c) “×” means complete conflict.

d) “©” means complete compatibility.

e) “⊗” means partial compatibility.

The requirement analysis of address generation helps us understand the function scope of the require-

ment and relationships among requirements. Once we know the requirement scopes and requirement

relationships, we can design schemes satisfying more than one requirement.

4 General address generation model

We will introduce an important infrastructure, namely basic operation set, to build four types of mappings

that are the core of the address generation model. Based on the basic operation set and address generation

model, we can write a basic address generation operation library to implement current schemes or design

new schemes, which helps solve the general model problem.

We take the generation schemes of IIDs as an example to analyze the essence of IPv6 address generation

schemes. When generating complete IPv6 addresses, the process is similar to that of generating IIDs,

only adding a prefix before the IID.

4.1 Basic operation set

We extract seven operations to form the corresponding mappings of IPv6 address generation schemes.

There may be new operations in future address generation schemes, so we allow new elements to be added

into the basic operation set. The operations in the basic operation set can be classified into two types:

simple basic operation set and complex basic operation set.

4.1.1 Simple basic operation set

We have extracted five simple operations to form the simple basic operation set—i.e., S = {Invert, Insert,

Concatenate, Replace, Truncate}.

• Invert(x, n): invert bit n of input x.

• Insert(x, n, s): insert s after bit n of input x.

• Concatenate(x, y, . . .): concatenate input [x, y, . . .] sequentially.

• Replace(x, n,m, s): change from bit n to bit m of input x into s. Note that the length of s must be

equal to m− n+ 1. When n = m, change only one bit of input x.
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• Truncate(x, n,m): truncate from bit n to bit m of input x as the output.

4.1.2 Complex basic operation set

We have extracted two complex operations to form the complex basic operation set—i.e., C = {Encrypt,

Hash}.

• Encrypt(x, k): use some specific encryption algorithm to encrypt input x with key k. Encryption

algorithms can be IDEA, AES, RSA, etc.

• Hash(x): calculate the Hash digest value of input x. Hash algorithms can be MD5, SHA1, SHA256,

etc.

Note that the operations in the complex basic operation set are a class of operations; e.g., the Hash

operation can be implemented by any secure Hash algorithm.

4.2 Four types of mappings

Feature-embedded schemes allow us to transform feature information into IIDs, which is very similar to

mappings, so we utilize mappings to describe the conversion process. Interface identifiers can be seen as

the image of the feature information under a mapping—i.e.,f : C →IID, where C denotes the feature

information set, IID denotes the interface identifier set, and f denotes an address generation scheme. We

divide all address generation mappings into four types according to the usage of complex basic operations.

4.2.1 Simple mappings

These mappings consist of simple basic operations. We can formulate them as follows:

I = {f |f ∈ Sn, n ∈ N}, (5)

where S denotes the simple basic operation set, and Sn denotes that n basic operations in S are combined

to form one nesting operation.

For instance, the IEEE EUI-64 identifier scheme transforms MAC addresses into IIDs. First, we insert

“0xfffe” after the leftmost 24 bits of the MAC address and then invert the U/L bit. Therefore, the IEEE

EUI-64 identifier scheme is equivalent to the following mapping:

f1(mac) = Invert(Insert(mac, 23, 0xfffe), 6). (6)

The input length of this type of mapping is shorter than the length of IID. If its length is longer than

the length of IID, we may obtain repeated results. The same is true for encryption mappings and Hash

mappings.

4.2.2 Encryption mappings

These mappings consist of simple basic operations and Encrypt operations. Encryption mappings are

used to encrypt feature information within IIDs. We formulate them as follows:

II =
{
f |f ∈ Sn1 ◦ Encryptm1 ◦ Sn2 ◦ Encryptm2 ◦ · · · , ni,mj ∈ N,

∑
mj > 0

}
, (7)

where “◦” denotes the nesting of basic operations, and “Encryptmj” denotes that n Encrypt operations

combined with each other to form one nesting operation.

Notice that the output of the encrypt operation must be 64 bits, so we must choose an encryption

algorithm with a 64-bit output. For instance, the generation of NIDTGA [11] uses the IDEA algorithm

to encrypt the concatenation of NID and time information to obtain an IID. Therefore, its corresponding

mapping can be written as follows:

f2(nid, time, key) = Encrypt(Concatenate(nid, time), key). (8)
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4.2.3 Hash mappings

The elements in Hash mappings consist of simple basic operations and Hash operations. We can formulate

them as follows:

III =
{
f |f ∈ Sn1 ◦Hashm1 ◦ Sn2 ◦Hashm2 ◦ · · · , ni,mj ∈ N,

∑
mj > 0

}
. (9)

Because we use Hash operations whose results are often longer than 64 bits, the mappings should

use a Truncate operation to truncate the results equal to or less than 64 bits. For example, temporary

addresses in [5] use MD5 to encrypt the concatenation of the EUI-64 identifier and a history/random

value to obtain the first 64 bits of the result as a new IID and then change the U/L bit into 0. Thus, the

corresponding mapping can be written as follows:

f3(eui64, history) = Replace(Truncate(Hash(Concatenate(eui64, history))0, 63), 6, 6, 0). (10)

4.2.4 Complex mappings

There are another kind of mappings that use both Encrypt operations and Hash operations. We formulate

the mappings as follows:

IV = {f |f ∈ Sn1 ◦ Cm1 ◦ Sn2 ◦ Cm2 ◦ · · · , ni,mj ∈ N, count(f.Encrypt) > 0, count(f.Hash) > 0}, (11)

where count(f .Encrypt) and count(f .Hash) denote calculating the number of Encrypt operations and

Hash operations in mapping f , respectively.

These mappings use both Encrypt and Hash operations, so they are slower and more complex. For

example, an NIDTGA extension scheme can be designed. We can use a kind of user id (such as a student

identifier or a Citizen ID card number) as the input to a Hash algorithm and then encrypt the Hash

output in cipher block chaining mode. Its corresponding mapping can be written as follows:

f4(id, key) = Encrypt(Hash(id), key). (12)

Note that using both Encrypt and Hash operations does not gain much more security than only using

one kind of them by choosing secure algorithms and keeping keys safe.

4.3 Analysis

When designing a new address generation scheme, we can introduce new operations to complete the

design if there are no fitting operations in the basic operation set. The address generation model helps

us determine the essence of the address generation schemes, guides us to design new schemes, and can

even be offered as an operation library to provide convenience for people to implement these schemes.

5 General address management system

In this section, we propose a general address management system to manage different kinds of addresses

and allow networks to adopt different address generation schemes in different scenarios according to differ-

ent requirements. Overall, the system has three logical layers—namely, requirement layer, functionality

layer, and resource layer, as depicted in Figure 1. Before we demonstrate the details of each layer, we

must introduce uniform address storage structure (UASS), which stores both SLAAC and DHCPv6 ad-

dress assignments. UASS mainly includes the IPv6 address, valid lifetime, expire time, preference time,

and hardware address. DUID and IAID can also be included for DHCPv6 [2, 3].
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Figure 1 (Color online) Logical structure of GAGMS.

5.1 Requirement layer

The requirement layer comprises a requirement generator (RG). RG determines the requirements for the

network, which is the base to solve the mixed operation problem.

RG reads the configuration requirements and informs the functionality layer of the requirement deci-

sions. Note that the requirement decisions from RG should be verified. A necessary verification scheme

should be applied to the requirement decisions or some network devices’ configurations should be used

to guarantee that the requirement decisions are trustworthy.

5.2 Functionality layer

The functionality layer comprises a set of functional modules, each of which has specific functionalities,

and is responsible for accomplishing specific tasks. At least, this layer has an address generation module

to generate and assign addresses that meet the requirements. Other functional modules can also be added

to this layer—e.g., feature management and utilization module.

5.2.1 Address generation module

The address generation module is informed by RG of the requirements and generates addresses that meet

the requirements. When generating addresses, some schemes may need to interact with third servers,

e.g., Feature Manager. Address generators are the core of the address generation in the general address

management system. The address generation module can have a set of address generators, which can be

classified into two types, namely distributed address generators (DAGs) and central address generators

(CAGs).

A DAG is located at a host. It implements the address generation or request functions of the schemes

mentioned above as a system process. When a DAG receives requirement decisions from RG, it first

verifies the requirement decisions, and then it starts the address generation process or requires addresses

from CAG. After generating addresses successfully, it informs resource manager (RM) of its UASSes
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without performing DAD. If some of the addresses are duplicates in the response message from RM, it

restarts the above process. Note that if the DAG has updated its UASSes, it should also inform RM of

its UASSes.

A CAG assigns addresses to DAGs. When a CAG receives the requirement decisions from RG, it

first verifies the requirement decisions. Then, it starts the address assignment functions. After assigning

addresses to DAGs, it informs RM of DAGs’ UASSes. If the corresponding address generation scheme of

the selected requirement does not have this part, it ignores this information. Note that if the CAG has

updated the UASSes of DAGs, it should inform RM of the changed UASSes.

5.2.2 Feature management and utilization module

The feature management and utilization module is defined by the user’s requirements. Different require-

ments correspond to different methods of feature management and utilization. The feature management

and utilization module includes a feature manager (FM) and a feature utilizer (FU).

An FM is a collection of feature information about the domain. It can interact with CAG—e.g.,

authenticate a client’s identity. It also cooperates with FU to finish the task that RG defines. When

FM receives the requirement decisions from RG, it first verifies the requirement decisions and then starts

the corresponding management functions. If the corresponding address generation scheme of the selected

requirement does not have this part, it ignores this message.

An FU is responsible for extracting or utilizing the feature information from the address. For example,

if a user’s identity is embedded within the address, the administrator can use the FU to extract the

identity. When FU receives the requirement decisions from RG, it first verifies the requirement decisions

and then starts the corresponding utilization functions. If the corresponding address generation scheme

of the selected requirement does not have this part, it ignores this information. Not anybody can use

FU; only authorized users can use it. FU cooperate with FM to meet the requirement that RG defines.

5.3 Resource layer

The resource layer comprises a set of addresses, each of which meets the requirements defined in RG.

They are generated by DAGs or CAGs and can also be used to achieve goals that RG defines.

An RM is responsible for managing all UASSes in the network and synchronizing updates of UASSes

with external entities. It receives and stores the UASSes from DAGs and CAGs. If the address in UASS

is a duplicate, it asks the DAG to restart the address generation process, which omits the DAD to solve

the efficiency problem. When external entities request updates of UASSes, RM verifies the identities of

external entities and then synchronizes updates of UASSes with external entities.

6 Implementation and evaluation

6.1 Methodology

In this section, we discuss our implementation of a prototype system of GAGMS and evaluate its effec-

tiveness on the address generation time of the tested schemes. Moreover, we analyze the manageability

and scalability of the system.

We have implemented RG on the router. Routers send RA messages with M flag or A flag of the PI

option set and a new managed address generation scheme option or resource manager address option

added.

When receiving RA messages, a DAG checks whether M and A flags are set. If A flag of the PI option

is set, it generates addresses according to scheme type2 of the PI option as shown in Figure 2. After

generating addresses, the DAG informs RM of its UASSes using the address in the new resource manager

address option of the RA message, as shown in Figure 3. We use RA guard to filter rogue RA messages.

If M flag is set, a DAG requires addresses from CAGs, which implement each scheme’s specific address

generation functions based on the original DHCPv6 server. CAGs assign addresses to DAGs according
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Figure 2 (Color online) Modified prefix information op-

tion of RA.

Figure 3 Resource manager address option of RA.
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Figure 4 (Color online) Managed address generation

scheme option.

Figure 5 Service message between CAG and FM.

to the scheme type1 of the new managed address generation scheme option in the RA message, as shown

in Figure 4. In such cases, a network can deploy a DHCPv6 server to work as both CAG and RM.

The communications between CAG and FM use the message format as shown in Figure 5. The msg-

type indicates the type of the message and includes “SERVICE REQUEST” and “SERVICE REPLY”.

The transaction-id are copied from the DHCP message to identify this message exchange. The srv-type

shows which type of service is used, e.g., authentication service of NIDTGA.

RM use a multicast address to advertise updates of UASSes to network entities that join the multicast

group. As for FM and FU, they are implemented with each scheme’s corresponding functions. For

example, FM implements the functions of NID Management Server in NIDTGA [11], while FU implements

the functions of NID Traceback Server.

Regarding security, secure DHCPv6 [21] can be applied to protect the security of interactions between

CAGs and DAGs in GAGMS. At the same time, the messages between other components in GAGMS

should be encrypted.

We have written a basic address generation operation library in C++ as described in Section 4. Based

on the library, we have implemented three schemes, namely IEEE EUI-64 identifiers, temporary addresses,

and NIDTGA from simple mappings, Hash mappings, and encryption mappings, respectively, to show

the effectiveness of the system. All GAGMS components are implemented on and run on Dell servers

with a 2.9 GHz Inter Xeron E5-2690 CPU and 4 GB of memory. The programs are coded in C/C++.

The Internet Assigned Number Authority delegates prefixes to regional Internet Registries which in turn

delegate smaller sub-prefixes to ASes. Each AS generates addresses by appending generated IID to the

sub-prefix. As GAGMS focuses on the IID generation and is mainly used in access networks, we have

deployed GAGMS in five campus networks (Tsinghua University, Peking University, Beijing University

of Posts and Telecommunications, Southeast University, and Shanghai Jiao Tong University) of CNGI-

CERNET2 to evaluate its performance and accumulate deployment experience. The network topology

in each campus network is deployed as shown in Figure 6(a).
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Figure 6 (Color online) Deployment topology and evaluation of effectiveness. (a) GAGMS system deployment topology;

(b) IEEE EUI-64 identifiers. (c) Temporary addresses; (d) NIDTGA.

6.2 Effectiveness

If the inputs of an address generation scheme and its corresponding implementation in GAGMS are

the same, the outputs are the same. Due to the article length limitation, we assume that each specific

address generation algorithm based on the existing IETF standard is implemented correctly, we mainly

focus on the evaluation of effectiveness. We have tested the time to configure addresses for interfaces

100 times in each scheme. Figure 6(b)–(d) shows the results of IEEE EUI-64 identifiers, temporary

addresses, and NIDTGA. We find that the mean time for configuring the addresses using each scheme

and its corresponding implementation in GAGMS is nearly the same, which shows that the performance

of an address generation scheme in GAGMS does not degrade.

The lack of synchronization of updates of UASSes makes it error-prone for some function entities

to provide services. Network operators usually use unicast or anycast messages to provide address as-

signment updates for specific network entities according to their experiences, which is inefficient. Some

scenarios that need dynamic address assignment updates are even neglected by network operators. In

GAGMS, we use multicast messages to dynamically synchronize updates of UASSes with related entities,

which improves the correctness of network management and the efficiency of address assignment updates.

Figure 7 shows that the update time of UASSes is linearly correlated to the number of UASSes, which is

acceptable.

Since GAGMS leverages central address management of all kinds of addresses, it is unnecessary for hosts

to perform DAD, which costs much time, especially when there are large-scale concurrent address requests.

Although optimistic DAD [22] minimizes address configuration delays, addresses in the optimistic state

are still constrained for outgoing connections or overriding entries of neighbor caches.
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Figure 7 (Color online) Update time of UASSes in GAGMS.

Table 4 Schemes and their corresponding mappings

Type Scheme Mapping

Simple

mappings

GIRO f(as number, geo loc, sid, subnet host) =

Concatenate(as number, geo loc, sid, subnet host)

ISPSG f(as number, geo loc, id) = Concatenate(as number, geo loc, id)

SIIT/IVI f(prefix, IPv4, zeros) = Concatenate(prefix, IPv4, zeros),

length(prefix) ∈ {32, 40, 48, 56, 64, 96}
IEEE EUI-64 identifier f(mac addr) = Invert(Insert(mac, 23, 0xfffe), 6)

Hash

mappings

Temporary address f(eui64, history) =

Replace(Truncate(Hash(Concatenate(eui64, history)), 0, 63), 6, 6, 0)

CAM f(pub key) = Insert(Truncate(Hash(pub key), 0, 61), 5, 00)

SUCV f(imprint,pub key) =

Replace(Truncate(Hash1(Hash2(imprint),Hash2(pub key)), 0, 63), 6, 6, 0)

CGA f(final modifier,prefix, collision count, pub key, options, sec) =

Replace(Replace(Replace(Truncate(Hash(Concatenate(final modifier,

prefix, collision count, pub key, options)), 0, 63), 0, 2, sec), 6, 6, 0), 7, 7, 0)

Encryption mappings NIDTGA f(nid, time, key) = Encrypt(Concatenate(nid, time), key)

Complex mappings NIDTGA-extension f(id, key) = Encrypt(Hash(id), key)

6.3 Manageability

GAGMS allows administrators to switch among the address generation schemes in the administrative

domain. Table 4 shows several address generation schemes and their corresponding mappings. Notice

that GIRO, ISPSG and SIIT/IVI mappings generate IPv6 addresses, whereas the others are mappings

that generate IIDs. Apparently, address generation schemes in complete conflict can be never set as the

used mechanisms in the administrative domain simultaneously. As shown in Figure 8, the time for a host

to switch from one requirement (A) to another (B) nearly equals the original address configuration time,

which means that the switching process costs little.

6.4 Scalability

When referring to scalability, it is important that adding a new address generation scheme to GAGMS

will not result in a performance penalty or an increase in management complexity. It is simple to use

basic operation set to generate new address generation mappings. Apparently, there are three choices

for a new address generation scheme, namely a leftmost-64-bit scheme, a rightmost-64-bit scheme, and

a cross-64-bit scheme. We consider a new rightmost-64-bit scheme named the stable and semantically

opaque identifier in [7] as an example to explain the scalability of GAGMS. According our general address
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generation model, we can obtain its corresponding mapping as

f(prefix, iface, network id, dad counter, key)

= Truncate(Hash(Concatenate(prefix, iface, network id, dad counter, key)), 0, 63).
(13)

This mapping is a Hash mapping. We must add a new requirement option to RG and add the corre-

sponding address generation scheme to DAGs and CAGs. Regarding FM and FU, we do not need to add

anything else. Finally, we finish the necessary communications between any two modules. In short, we

must classify the functions of a new scheme into three parts and add these parts into their correspond-

ing modules, respectively. Therefore, the general uniform protocol extensions and models give GAGMS

excellent scalability.

7 Conclusion and future work

The address generation and configuration methods of IPv6 cause four problems: mixed operation problem,

synchronization problem, efficiency problem, and general model problem. We design a requirement-driven

general address generation and management system called GAGMS to solve the problems. GAGMS

provides central and uniform address management and synchronization of updates of UASSes and has

fine manageability for changing among existing IPv6 address generation schemes and good scalability for

designing a new one.

In future work, we will first design and implement the automatic generation of new IP address gen-

eration schemes according to requirements. Secondly, we will promote GAGMS to the whole CNGI-

CERNET2, which is an IPv6-only network built by China Education and Research Network (CERNET).

Thirdly, we have submitted an IETF draft related to this work [23] to DHC working group and are trying

to standardize this work.
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