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Abstract Network function virtualization represents a revolutionary approach to network service deploy-

ment. This software-oriented approach for virtual network functions (VNFs) deployment enables more flexible

and dynamic network services to meet diversified demands. To minimize the execution time of all VNFs in

service function chains, VNF scheduling must be addressed. In this paper, we improve upon the flexible

job-shop model by introducing the process of bandwidth allocation. First, we propose a multilayer encoding

genetic algorithm to solve the VNF scheduling model. In addition, we design a distributed method for band-

width allocation based on the Nash bargaining solution. Finally, by combining the genetic algorithm with

distributed bandwidth allocation, we present a heuristic algorithm that solves the VNF scheduling problem in

one stage. Using a multilayer encoding genetic algorithm, we simplify the constraints of the VNF scheduling

problem and reduce its time complexity. At the same time, our Nash game solution refines the granularity

of bandwidth allocation to further reduce the transmission delay between VNFs. The effectiveness of our

proposed heuristic algorithm is verified through numerical evaluation. Compared with existing approaches,

our method exhibits shorter scheduling time and reduces CPU time by 45% in simulated scenarios.
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1 Introduction

Generally, carrier networks are forced to substantially increase both their capital expenditures (CAPEX)

and operational expenditures (OPEX) when they deploy or update their network services, as a network

service consists of a series of network functions that are implemented by hardware middleboxes (e.g.,

firewall, load balancers, and intrusion prevention systems). Today, dedicated middlebox hardware is

widely deployed in enterprise networks to guarantee network security and performance so that network

operators can fulfill their promised service level agreements (SLA). However, the use of middleboxes

to provide new services has several inherent shortcomings: (i) Dedicated hardware is always expensive

and has a short lifecycle. (ii) The middleboxes of certain network services require a specialized managing

panel, which means the hardware of different services cannot be managed or orchestrated via a centralized

control plane. (iii) Operators have limited scope for adding new functionalities to existing services or

extending the capability of operating systems [1].
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Figure 1 (Color online) Network service deployment on NFV-enabled platform.

Network function virtualization (NFV) has emerged from the industry and promises to solve the above

challenges, thereby avoiding the ongoing proliferation of hardware appliances. NFV enables software-

oriented middleboxes to run virtual network functions (VNFs) on commodity servers/virtual machines

(VMs). In the NFV ecosystem, a network service is a set of chained VNFs, as illustrated in Figure 1.

A network is built and deployed on the NFV platform by (i) defining the number of VNFs to be run,

(ii) establishing their execution order in the chain, (iii) embedding the VNFs in the NFV infrastruc-

ture, (iv) defining the scheduling strategy inside each VM (inside of VM2 shown in Figure 1). Rather

than deploying expensive hardware middleboxes, the implementation of VNFs in software provides more

advanced and flexible network services to end users. For a specific network service, the operators can

dynamically design a chain of VNFs and steer specific data flows towards that service chain. Based on

the volume of data traffic, an efficient VNF deployment policy can be establish to reduce both CAPEX

and OPEX [2]. To reduce the occupation time of infrastructure resources, VNF scheduling (VNF-SCH)

is a key problem that must be carefully addressed.

VNF-SCH focuses on how to execute each function to minimize the total execution time of the VNFs

comprising the network service without degrading service performance while also respecting all the rele-

vant constraints as well as the network function execution order for a particular service. Proper scheduling

of VNF execution is necessary to minimize the total execution time of the network services, and thereby

reduce the occupation time of infrastructure resources.

Existing approaches for VNF-SCH can be roughly divided into two categories-those that use job-shop

model [3–5] and those that rely on heuristics [6, 7]. Job-shop based methods, while theoretically op-

timal, involve too many constraints in the optimization problem, which can lead to significantly high

time complexity. Among the heuristics-based methods, many efficient analytical models have been pro-

posed. However, none can guarantee algorithm performance. Hence, a method with both high algorithm

performance and low time complexity is need.

In this research, we designed a dynamic scheduling algorithm for network functions that improves the

traditional job-shop model and optimizes bandwidth allocation. The main contributions of this paper

are as follows: (i) We propose a multilayer genetic algorithm to solve the VNF scheduling model, which

encodes precedence and placement constraints as chromosomes, thereby, enabling the simplification of the

optimization problem. (ii) We made correction to the job-shop model according to existing work in the

VNF-SCH context, which ignore the optimization of transmission delay. We then design a distributed

bandwidth allocation algorithm with fine granularity and low time complexity. (iii) Unlike previous

studies, in which the authors solve the VNF scheduling and bandwidth allocation in separated stages,

we implement bandwidth allocation during the genetic evaluation iterations. Extensive simulations show

that our one-stage method can improve algorithm performance and accelerate iterative convergence.

The rest of the paper is organized as follows. In Section 2, we specify the problem of resource allocation
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problem in the context of VNF deployment and review existing studies. Section 3 displays the proposed

system model and our formulation of VNF scheduling. In Section 4, we propose our solution to VNF

scheduling via a multilayer genetic algorithm. In Section 5, we describe our design of a distributed

algorithm for bandwidth allocation. In Section 6, we summarize our one-stage algorithm that associates

VNF scheduling with bandwidth allocation. In Section 7, we present the numerical results and conclusion

is drawn in Section 8.

2 Related work

NFV promises to significantly reduce investment cost and improve the efficiency and flexibility of resource

allocation. Most recent studies have focused on a compound problem, known as VNF deployment, in

which the goal is to satisfy traffic requirements while minimizing the capital and operational costs. In [1],

the authors divided VNF deployment into three stages: service function chain (SFC) composition, VNF

forwarding graph embedding (VNF-FGE), and VNF-SCH. VNF-SCH is clearly specified as the last stage

of VNF deployment stage, and is constrained by the preceding two. The SFC composition process involves

determining the precedence constraints that represent the execution order of the VNF. The placement

constraints establishing the embedding of VNFs and corresponding VMs are determined after the VNF-

FGE. As there is extensive interaction among the three stages, the VNF-SCH problem should not be

described separately. In the following, we describe the three stages of VNF deployment.

2.1 SFC composition

By utilizing the flexibility of NFV platform, operators can dynamically design SFC topologies for further

deployment to achieve particular objectives such as minimizing network delay, maximizing total revenue,

and rate of acceptance. Many researches have been proposed to improve the above objectives [8–10].

However, most existing methods consider SFC as a fixed graph wherein all VNFs are executed according to

a predefined and fixed sequence. Generally, these predefined VNF sequence comprise the SFC precedence

constraints. Obviously, when restricted by fixed precedence constraints, the VNF execution order cannot

be dynamically adjusted to achieve the objectives of both VNF-FGE and VHF-SCH, which leads to poorer

performances of the two stages. To compose SFCs dynamically, the authors in [11] proposes a flexible

SFC composition by slacking the fixed precedence constraint into several precedence dependencies. For

example, Figure 2 shows an SFC request with precedence dependencies and three possible VNF chaining

options. In Figure 2(a), the precedence dependencies are represented by dotted lines with a unidirectional

arrow between the VNFs. As we can see in the figure, the dotted line from VNF3 to VNF1 indicates that

VNF3 depends on VNF1 and must therefore be executed after VNF1. Such dependencies are common

in real network situations, e.g., the mobile management entity (MME) must be invoked before the home

subscriber server (HSS) in the upstream service requests of the evolved packet core network (EPC).

Based on these dependencies, valid chaining options regarding SFC requests are derived. Figure 2(b)

shows three possible chaining options for the SFC requests shown in Figure 2(a). By offering several

possible VNF chaining options for an SFC request, the optimal composition can be selected based on the

objective of VNF-SCH to obtain better performance.

2.2 VNF-FGE

After composing the SFCs, the objective of the second stage, VNF-FGE, is to determined where to best

instantiate the VNFs in the network infruastrucure, when we considering a set of requested SFCs. The

VNF-FGE stage determines in which physical nodes the VNFs are instantiated regarding the abovemen-

tioned placement constraints. We note that there have been many VNF-FGE studies addressing VNF

placement, the goals of which are to minimize resource consumption and enhance reliability [2, 12–14].

Although VNF-FGE is not the main issue adressed in this paper, the result of this stage certianly affects

the VNF-SCH solution. In [11], the authors conclude that a stiff VNF-FGE algorithm that embeds a

VNF on a fixed VM confines the range of possible VNF placement, thus narrowing the feasible domain
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Figure 2 Flexible composition of SFC. (a) VNF with precedence dependencies; (b) possible chaining options of VNFs.

of VNF-SCH problem. To realize better performance, we slack the placement constraints by predefining

a candidate set of VMs for each VNF. The size of each VM set is optionally determined by users.

2.3 VNF-SCH

The third and final stage of the VNF deployment problem is the scheduling process, which we denote as

VNF-SCH. the objective of this stage attempts to determine how to execute each function while mini-

mizing the total scheduling time, maintaining the service performance, and respecting all the precedence

dependencies and placement constraints [1]. Figure 3 shows a simple example on how four different SFC

requests can be scheduled over a limited NFV infrastructure, comprising three VMs in this case. It is

clear that we can reduce the scheduling time by adjusting the execution order of the VNFs instantiated

on the same VM. In this case, if we instantiate the VNF2 of SFC2 prior to the VNF2 of SFC1 during the

time slot of [t1, t3), the scheduling time would be reduced from t5 to t4.

Existing VNF-SCH studies can be divided into two categories-those that rely on heuristics [6, 7] and

those that use the job-shop model [3–5]. For the heuristics-based approaches, an adaptive VNF-SCH

model based on mixed integer programming (MIP) was proposed in [6]. Then, the authors in [7] proposed

an analytical approach, which designed a greedy algorithm to optimize the execution time of the deployed

network service. For methods based on the job-shop model, in [4], the authors first applied a classic job-

shop model in the VNF-SCH. They assumed that one VM can only run one VNF at a time slot. This

situation exactly matches the case of job-shop problem. In [3], the authors define the VNF scheduling

problem as a flexible job-shop problem. By introducing transmission delay into the model, they prove

that the optimal solution to the original model can be further optimized. In their scheduling models,

both the processing and transmission delay are considered as the optimization objective. In [5], the

authors designed an MIP-based scheduling algorithm to reduce the transmissoin delay. Their study

divides VNF-SCH into two processes: VNF scheduling and bandwidth allocation. In the first stage, a

delay-aware scheduling problem is solved. Then, in the second stage, to minimizing the transmission

delay, the bandwidth between VMs is reallocated based on the results of the preceding stage. However,

three problems remain unsolved in the above studies. First, the number of constraints involved in the MIP

optimization model increases significantly when the scales of network and service increase. Second, the

bandwidth allocation method via MIP is characterized by coarse granularity and high time complexity.

Third, by executing these two processes separately, the problem of how the bandwidth reallocation

impacts the VNF scheduling is neglected, which can affect the convergence efficiency in the iteration

process.

To overcome the above limitation, we propose a one-stage multilayer genetic algorithm that concur-

rently executes bandwidth allocation during the iterative evaluation process. The essence of our algorithm

design is as follows. In the genetic evaluation process, we encode precedence and placement constraints

into chromosomes, thereby simplifying the scale of the scheduling problem. For the bandwidth allocation

process, we designed a distributed algorithm to reduce the time complexity and refine the granularity
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Figure 3 (Color online) An example of VNF scheduling.

of the allocation procedure. Finally, we combine these two processes into one stage to improve the

convergence efficiency of the genetic evaluation.

3 Optimization model of VNF-SCH

To conclude the existing methods, fixed constraints are commonly introduced, so the embedding graph

and execution order cannot be changed according to the traffic requirements during the VNF-SCH process.

In contrast, here, we focus on formulating the VNF-SCH problem by interacting with the other two stages

to obtain better performance. In our proposed model, we slack the precedence and placement constraints.

With respect to the precedence constraints, we employ a chaining matrix that represents the possible

SFC requests with their precedence dependencies rather than a fixed sequence of requested VNFs. For

the placement constraints, we use a dynamic candidate VM set, the scale of which is optional and users

can opt to enlarge the vector space of the VNF placement. The main objective of VNF-SCH is as

follows: given a set of SFCs, each chain having precedence and VNF placement constraints, VNF-SCH

identifies the shortest scheduling time for all the service flows. This schedule time is divided into two

parts: processing delay and transmission delay. In this paper, we optimize both. With these objectives

and constraints, we describe the VNF-SCH problem as follows.

First, we introduce the following formal notations.

• s: a given maximum number of SFCs.

• m: a given maximum number of VMs.

• vT : a given maximum number of VNF types.

• vS : a given maximum number of VNFs comprising one SFC.

• v: a given maximum number of VNFs.

• Pv×m: a processing time matrix where each element Pi,j denotes the processing time of VNFi

running on VMj.

• Rv×v: an adjacency matrix where each element Ri,j denotes the bandwidth allocated to the virtual

link from VNFi to VNFj.

• BMax
1×m: A bandwidth capacity vector where the element BMax

i denotes the throughput of VMi. We

assume that each VM is equipped with a full-duplex Ethernet adapter, so the ingress bandwidth capability

of a VM equals that of the egress.

• Fs×v: a given bandwidth demand matrix where each row represents the bandwidth demand of an

SFC. Fi,j denotes the forwarding traffic traversing across VNFi of SFCj.

• Cs×v: a binary chaining matrix in which rows denote SFCs and columns denote VNFs. Ci,j ∈ {0, 1},

wherein Ci,j = 1 represents the assignment of VNFj to SFCi, otherwise Ci,j = 0.

• Ev×m: a binary placement matrix in which rows denote VNFs and columns denote VMs. Ei,j ∈

{0, 1} wherein Ei,j = 1 indicates that VNFi is embedded on VMj, otherwise Ei,j = 0.
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• M1×v: a given vector of placement constraints. Each element Mi is a cell denoting the candidate

VM set. Mi represents the set of candidate VMs that can instantiate VNFi and Mi(k) is the ith element

of the cell Mi.

• Xs×v: a scheduling time matrix wherein the rows denote SFCs and columns denote VNFs. Each

element Xi,j denotes the time when the traffic traversing across the VM that hosts VNFj of SFCi begins

to be processed.

• Ys×v: a scheduling time matrix in which the rows denote SFCs and columns denote VNFs. Each

element Yi,j denotes the time when traffic forwarding begins on one of the outgoing virtual links connecting

the VM that hosts VNFj of SFCi.

Finally, we model the VNF-SCH problem as follows. Minimize

ε = max{Xi,j + Ci,j · Ej,Mj(k) · Pj,Mj(k)}, i ∈ [1, s]Z , j ∈ [1, v]Z , k ∈ [1, length(Mj)]Z . (1)

Subject to

Xi,j + Ci,j ·Ej,Mj(k) · Pj,Mj(k) 6 Yi,j , ∀i ∈ [1, s]Z , ∀j ∈ [1, v]Z , ∀k ∈ [1, length(Mj)]Z , (2)

Yi,j +
Fi,j

Rj,j+h

6 Xi,j+h, h = min{α|Ci,j+α = 1, α > 0}, ∀i ∈ [1, s]Z , ∀j ∈ [1, v]Z , (3)

∑

i

Ei,j

∑

k

Ri,k 6 BMax
j , ∀i, k ∈ [1, v]Z , ∀j ∈ [1,m]Z , (4)

∑

i

Ei,j

∑

k

Rk,i 6 BMax
j , ∀i, k ∈ [1, v]Z , ∀j ∈ [1,m]Z . (5)

Eq. (1) describes the objective of the VNF-SCH, where ε denotes the time when the last VNF in all

the SFCs finishes processing the traffic traversing through it. Eq. (2) ensures that traffic forwarding from

a given VNF should not start unless the VNF finishes processing the traffic of the corresponding SFC.

Eq. (3) ensures that the traffic processing for a given VNF should not start unless the traffic is received

by the VNF from an upstream VNF. h = min{α|Ci,j+α = 1, α > 0} ensures that Ci,j+h is the first

non-zero element on the right of Ci,j in row i, which implies that VNF(j+h) is the next VNF connected

to VNFj in SFCi. According to [5], the transmission delay of the virtual link between two VNFs can

be simply calculated as Fi,j/Rj,j+h, where Fi,j denotes the traffic traversed through VNFj of SFCi and

Rj,j+h denotes the bandwidth between a corresponding VNF pair. Eqs. (4) and (5) ensure that the sum

of the ingress and egress bandwidths allocated to the VNFs instantiated on one VM does not exceed the

bandwidth capacity of the VM.

Compared with the MIP model proposed in [3–5], our optimization model does not need to calculate

precedence and placement constraints, which are directly encoded into different layers of the chromosome

in our multilayer encoding algorithm, as described in the next subsection. Without having to calculate

these two types of constraints, our model achieves greater efficiency in obtaining the optimal scheduling

time for each feasible case.

4 Multilayer encoding algorithm

In the optimization model proposed above, the basic VNF scheduling problem can be viewed as an

extension of the classical job-shop problem which is considered to be NP-hard [3]. Joint VNF scheduling

with bandwidth allocation is at least as complicated and therefore difficult to solve in polynomial time.

As such, we have designed an efficient heuristic approach that uses genetic algorithm to yield a good

performance.
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4.1 Encoding of chromosome and scheduling matrix

In this subsection, we encode a chromosome representing the scheduling order and the embedding of

VNFs for all the SFCs as a sequence of integer bits. In each chromosome, bits are divided into two

equal-length layers. Bits in the first layer contain the precedence constraints and those in the second

layer comprise the placement constraints.

chromλi
= {[24311234] [21332213]}. (6)

Eq. (6) shows a chromosome example of the scheduling case in Figure 3. As shown above in Figure 3,

the chromosome, chromλi
, consists of 4 SFCs, all of which are composed of two VNFs. All the VNFs

are instantiated on 3 VMs. if we consider the first layer of chromλi
, the execution sequence of all the

VNFs is encoded into the first eight bits, and the integer of each bit represents the SFC number and

the occurrence number of that integer represents the VNF order in the corresponding SFC. For instance,

the first bit 2 indicates that the execution sequence will start with the first VNF of SFC2, whereas

the last bit 4 which has occurred for the second time in the sequence represents it will end with the

second VNF of SFC4. To represent the first eight bits, we use VCj(i) to denote the ith VNF of SFCj.

Accordingly, the first layer of the chromosome, [24311234], is decoded as a possible scheduling sequence,

VC2(1)→VC4(1)→VC3(1)→VC1(1)→VC1(2)→VC2(2)→VC3(2)→VC4(2), where VCj(i) denotes the ith

VNF of SFCj, such as VC2(1) representing the first VNF of SFC2. To simplify these notations, we encode

the first eight bits in a scheduling vector Sλi
shown in (7), where 201 represents VC2(1), the first VNF

of SFC2, and the other bits are decoded by such analogy.

In the second layer, the second eight bits, [21332213], represent the corresponding VMs that instantiate

the VNFs of the first layer. First, we use MVCj(i) to represent the candidate VM cell of VNF VCj(i). The

integer of each bit represents the element index of the candidate cell. For example, the first bit 2 indicates

that we select the second element from the candidate cell of the first VNF of the first layer, namely VM2

from the cell MVC2(1)=(VM1,VM2,VM3) in this case. Similarly, the other bits can be understood by

such analogy and the final scheduling result of the chromosome is shown in Figure 3.

Sλi
= [201, 401, 301, 101, 102, 202, 302, 402]. (7)

In Algorithm 1, we propose our multilayer encoding algorithm. We predefine the size of the population

to be NIND which represents the number of chromosomes in the population. First, we sum the rows of the

chaining matrix Cs×v to obtain the number of VNFs for each SFC. Then, we encode the SFCs to generate

the chromosomes. For lines 6–12, considering the precedence constraints, we generate an SFC and encode

it into the bits of the first half chromosome as the first layer, which represents the VNF scheduling order.

The order of the VNFs is generated randomly and we examine whether there remains any unscheduled

VNFs of corresponding SFC in line 8. For lines 13–16, limited by the placement constraints, we embed

the VNF sequence into the corresponding VMs. The VM scheduling order is encoded as bits in the second

layer. According to the bits in the first half, we can obtain the corresponding candidate VM cell. Then,

we randomly select a VM in the cell and generate the VM scheduling order.

4.2 Fitness calculation and ranking

Eq. (8) denotes the fitness of the calculated chromosome as the reciprocal of the objective defined in (1).

The ε of each chromosome can be calculated according to (1)–(5). Then, we use the roulette method for

ranking. Eq. (9) indicates the possibility that a chromosome can be selected for further iteration.

fitness(λi) =
1

ε
, (8)

pi =
fitness(λi)

∑NIND
i fitness(λi)

. (9)
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Algorithm 1 Multi-layer encoding algorithm (MEA)

Input: chaining matrix Cs×v and placement constraints vector M1×v;

Output: population chromNIND×l and scheduling matrix SNIND,l/2;

1: Generate VNF number vector Ns×1 = N
′

s×1 = sum(Cs×v , 2) ;

2: j = 0, i = 0;

3: while j 6= NIND do

4: j+ = 1;

5: while i 6= li
2

do

6: i+ = 1;

7: val = unidrnd (s);

8: while Nval,1 = 0 do

9: val = unidrnd (s);

10: end while

11: Chromj,i = val;

12: Nval,1 = Nval,1 − 1;

13: vnf = VCi(N
′

val,1 −Nval,1);

14: VM cell = M1,vnf ;

15: j = unidrnd
(

size(M1,vnf )
)

;

16: chromj,i+li/2
= VM cell(j);

17: Sj,i = 100val + (N
′

val,1 −Nval,1)

18: end while

19: end while

A

Figure 4 (Color online) Chromosome crossover process.

4.3 Crossover

The population obtains new chromosomes by crossover and then selects chromosomes of high fitness to

evolve into the next generation. In our study, we apply the integer crossover method, as illustrated in

Figure 4. First, we randomly select two chromosomes and extract the first-half bits. Then, we randomly

select a position and cross the two chromosomes. As we can see in Figure 4, chrom1 and chrom2 are

two chromosomes in the population, each of which is encoded into 18 bits. Analyzing the first-half bits,

we find that there are three SFCs in this case, comprising 3 VNF respectively. Two VMs are provided

to host them. At the start of the crossover, we randomly select the fifth bit of chrom1 and chrom2 as a

marked position. Next, we cross the first four bits of the two chromosomes to get chrom1′ and chrom2′.

After this crossing, two problems emerge for chrom1′. First, a VNF is missing in SFC1 and there is an

extra VNF in SFC2. Second, in the first four bits, the order of the VMs does not match that of the

VNFs. Therefore, we adjust the first bit with the surplus VNF in SFC2 behind the marked position of

chrom1′ (In Figure 4, it is the fifth gene), from 2 into 1. In addition, we cross the genes representing the

corresponding tenth to thirtenth VMs, which are supposed to instantiate the VNFs related to the first

four bits.

4.4 Mutation

To prevent the iteration from falling into local optimum, we apply a mutation operation. First, from the

first layer, we randomly select two VNFs on a certain chromosome. Then, we switch the order of the
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Figure 5 (Color online) Chromosome mutation process.

s

j

1

j

i1

1

Figure 6 (Color online) Hose model for VNF bandwidth allocation.

two VNFs and corresponding VMs to generate a new chromosome. Figure 5 shows an example of this

mutation. In which, we select two VNFs on the second gene and the third gene. Then we switch the

order of the two VNFs and corresponding VMs on the eleventh gene and the twelfth gene to generate a

new chromosome.

5 Bandwidth allocation algorithm

In most existing studies, researchers applied a classic job-shop model to solve the VNF-SCH problem,

ignoring the optimization of the transmission delay. To reduce the transmission delay, a bandwidth allo-

cation scheme must be introduced. The authors in [5] propose a method with bandwidth allocation using

MIP. but this method has three shortages: (i) The granularity of this method can be refined, insofar as

the software-defined controller directs the data flows traversing through the switches with a granularity

of one bit [15]. (ii) By not considering the full-duplex feature of the links between VMs, this method does

not distinguish the bandwidth resources in ingress and egress links, so the network cannot be properly

depicted when there is an obvious difference between the throughputs of the ingress and egress links.

(iii) A scheme for guaranteeing minimum bandwidth is needed to ensure a lower-bound bandwidth al-

location independent of the communication patterns of other VNFs. by guaranteeing the bandwidth of

each VNF, providers can then negotiate SLAs with respect to network performance with their tenants.

5.1 Hose model for VNF bandwidth allocation

To address these shortages, we designed a method using the Nash bargaining solution (NBS). First, we

introduce a hose model to illustrate the topology of VM networks as shown in Figure 6 (which was also

used in recent proposals [16–18]). In the hose model, VMs are connected to a non-blocking virtual switch

and the bandwidth can be fully utilized without considering the topology between the VMs.

In this part, we first initialize the parameters of the hose model for further use. Let Dv×v be the

matrix representing the bandwidth demand between VNFs in a datacenter, where Di,j is the bandwidth

demand of a VNF pair from VNFi to VNFj. To distinguish between the ingress and egress bandwidths

of the VNFs (or VMs), we use superscripts I and E, respectively. For example, we denote the total

ingress and egress bandwidth demand of VNFi as DI
i =

∑v

k=1 Dk,i and DE
i =

∑v

k=1 Di,k, respectively.

As defined in Section 3, we can obtain the binary placement matrix Ev×m according to the placement

constraints of the chromosomes, where Ei,j = 1 indicates that VNFi is located on VMj. In contrast,
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Ei,j = 0 and BMax
i indicates the bandwidth capabilities of VMi. In our model, we assume each VM be

equipped with a full-duplex Ethernet adapter, so the ingress bandwidth capability of a VM equals that

of the egress, which are both denoted as BMax
i . According to SLAs, cloud providers must guarantee a

minimum quality of service (QoS) for tenants, so a basic bandwidth must be pre-allocated to the virtual

link from VNFi to VNFj, which is denoted as Bi,j . The sum of the base bandwidths of all the VNFs

hosted on the same VM must always be less maintained than the bandwidth capability of the VM,

i.e.,
∑v

j Bi,jEi,h 6 BMax
h and

∑m

j Bj,iEi,h 6 BMax
h . Finally, we can establish the allocation strategy

by detemining the optimal bandwidth allocation matrix Rv×v, where Ri,j is the bandwidth allocation

from VNFi to VNFj. Similarly, we can denote the total ingress and egress bandwidth of a VNF as

RI
i =

∑v

k=1 Rk,i and RE
i =

∑v

k=1 Ri,k.

5.2 Nash bargaining solution

To realize both fair and full utilization, we apply the Nash bargaining solution (NBS) in game theory to

solve this bandwidth allocation problem. In the Nash bargaining game, two or more players take part in

the game with an initial utility and a utility function. A win-win solution is required, whereby the players

cooperate to maximize the social utility, as represented by the Nash product. This exactly mirrors the

bandwidth allocation problem in our model, in which VM pairs are guaranteed with a base bandwidth

and the operators must maximize their total utility gains with respect to all the VM pairs. As the NBS

ensures the Pareto optimality and fairly allocates all resources, we consider NBS to be an appropriate

option for solving the bandwidth allocation problem. In [19], the authors were the first to present the

Nash bargaining game in the context of the bandwidth allocation problem. The authors in [20] showed

that proportional fairness is in fact an NBS. In [21], the authors proposed a theoretical game framework

for bandwidth allocation, which not only provides user rate settings that are Pareto optimal for the whole

system but is also consistent with the fairness axioms of game theory. In [16], the authors modeled the

datacenter bandwidth allocation as a cooperative game, in which guaranteed bandwidth and proportional

fairness are considered simultaneously.

Based on previous researches in the field of bandwidth allocation, here, we first present a model

of bandwidth allocation in the context of the VNF-SCH problem via NBS. Different from traditional

methods, the bandwidth allocation of VNF pairs is aware of traffic demand through its global view of

service requests. As such, we designed an online algorithm to achieve fairness in bandwidth allocation

and optimizes the transmission delay of VNF pairs.

First, an initial lower bound for the bandwidth of each VNF pair is given in (10). This lower bound

ensures that the minimum bandwidth should not exceed the traffic demand can thus be fully used. At

the same time, the upper bound is also defined in (11), which ensures that the maximum bandwidth of

a VNF pair should not exceed the bandwidth capability of the VM hosting them.

Li,j = min{Di,j , Bi,j}, (10)

Ui,j = min

{

Di,j ,

m
∑

h

Ei,hB
Max
h ,

m
∑

h

Ej,hB
Max
h

}

. (11)

Using ℜN to represent the vector space of all possible allocations, we denote X ⊆ ℜN as the vector

space of the available solution of bandwidth allocation for v2 VNF pairs, and then use Rv×v ∈ X to

denote the specific allocation result, where the element Ri,j denotes the bandwidth allocation of a VNF

pair from VNFi to VNFj.

According to the definition of the lower bound, a VNF pair whose bandwidth demand is less than

the base bandwidth will be allocated a rate that equals to the demand, i.e., Ri,j = Di,j . Otherwise,

this strategy will allocate not only the base bandwidth but also extra bandwidth, which is denoted as

Ri,j − Li,j . We use the extra bandwidth to represent the utility of a VNF pair, i.e. Ui,j = Ri,j − Li,j.

In the game, the v2 VNF pairs cooperate with each other to maximize their utility and the Pareto

optimization ensures that there is no other allocation that yieldso higher pair utility without sacrificing

that of the others.
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We use Li,j to represent the initial utility of corresponding VM pair and let X0 be the vector space of

the initial utility. The matrix Lv×v ∈ X0 denotes the initial utility of each VNF pair. As each Ri,j has a

closed domain, the allocation space X is a convex and closed set [22]. The set of the bandwidth allocation

can be defined as Q = {Rv×v|Rv×v ∈ X,Ri,j > Li,j , i, j ∈ [1, v]Z}, where the bandwidth of each VNF

pair is not less than the initial bandwidth. Suppose Q is nonempty and (Q,Lv×v) is a bargaining game.

Definition 1. A mapping is said to be an NBS if [22]:

(1) φ(Q,Lv×v) ∈ Q.

(2) φ(Q,Lv×v) is Pareto optimal.

(3) φ satisfies the linearity axiom if f : ℜN → ℜN , f(Rv×v) = R′
v×v with R′

i,j = ai,jRi,j + bi,j , ai,j >

0, i, j ∈ [1, v]Z , then φ(f(Q,Lv×v)) = φ(f(Q), f(Lv×v)).

(4) φ satisfies the irrelevant alternatives axiom if G ⊂ Q,(G,Lv×v) ∈ (Q,Lv×v), and φ(Q,Lv×v) ∈ G

then φ(Q,Lv×v) = φ(G,Lv×v).

(5) φ satisfies the symmetry axiom.

According to this definition, we have the following theorem [21].

Theorem 1. There exists a Nash bargaining solution and the elements of the set, i.e. solve the following

optimization problem.

Let J be the set of VNF pairs that can achieve a utility strictly superior to their initial performance.

J is defined as J = {Rv×v|Rv×v ∈ X,Ri,j > Li,j , i, j ∈ [1, v]Z}. The bandwidth allocation of each

element in J exceeds the corresponding initial bandwidth. Moreover, the optimization objective can be

specified as

max
Ri,j

∏

(Ri,j − Li,j), ∀Ri,j ∈ J. (12)

Eq. (12) shows the joint profits of the bargaining problem, which is represented by the utility of all

the VNF pairs and can be solved by the NBS. To simplify the computing complexity, we convert the

optimization objective into logarithmic form. Considering the constraints of each VNF pair, we can get

the optimization for THE bandwidth allocation problem (PB) as follows.

Objective:

max
Ri,j

∑

j

∑

i

ln(Ri,j − Li,j), ∀Ri,j ∈ J. (13)

Subject to

Ri,j > Li,j , ∀i, j ∈ [1, v]Z , (14)

Ri,j 6 Ui,j , ∀i, j ∈ [1, v]Z , (15)

∑

i

RI
iEi,j 6 BMax

j , ∀i ∈ [1, v]Z , ∀j ∈ [1,m]Z , (16)

∑

i

RE
i Ei,j 6 BMax

j , ∀i ∈ [1, v]Z , ∀j ∈ [1,m]Z . (17)

The convex optimization problem has possesses a unique solution that is equivalent to the NBS [21].

Eq. (13) is the logarithmic form of the joint profit of all the players in the bargaining game. Eqs. (14) and

(15) ensure that the bandwidth allocation of each VNF pair does not exceed that of the domain. Eqs. (16)

and (17) ensure that the sum of ingress and egress bandwidth allocated to the VNFs instantiated on one

VM will not exceed the bandwidth capability.

Proposition 1. There is a unique NBS R∗
v×v for the centralized optimization problem (PB), where the

element R∗
i,j denotes the allocation result of the VNF pair from VNFi to VNFj. For each element, the

solution with Pareto optimization can be characterized as follows.

There exist µI
h > 0, h ∈ [1,m]Z and µE

h > 0, h ∈ [1,m]Z such that for ∀i, j ∈ [1, v]Z ,

R∗
i,j = Li,j +

1
∑m

h=1 µ
E
hEi,h +

∑m
h=1 µ

I
hEj,h

. (18)
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Proof. Now under the assumption that the allocation space is nonempty, convex, and compact, define

f(Rv×v) =
∑

j

∑

i

ln(Ri,j − Li,j).

Then f(·) : X → ℜN is strictly concave. We note that the constraints from (14)–(17) are linear, which

implies that the first-order Kuhn-Tucker [23] conditions are necessary and sufficient for optimality.

Let L(Rv×v, αv×v, βv×v, µ
I
1×v, µ

E
1×v) denote the Lagrangian where ∀αi,j > 0, βi,j > 0, ∀h ∈ [1,m]Z

and ∀µI
h > 0, µE

h > 0, considering the Lagrange multipliers associated with the lower-bound bandwidth

in (14), the upper-bound bandwidth in (15), VM bandwidth capacity in (16) and (17), respectively.

Then

L(Rv×v, αv×v, βv×v, µ
I
1×m, µE

1×m)

= f(Rv×v) +

v
∑

j

v
∑

i

αi,j(Ri,j − Li,j)−

v
∑

j

v
∑

i

βi,j(Ri,j − Ui,j)

−

m
∑

h

µI
h((R

I
1×v ·Ev×m)

h
−BMax

h )−

m
∑

h

µE
h ((R

E
1×v ·Ev×m)

h
−BMax

h ). (19)

Then the first-order necessary and sufficient conditions are given by∇L(Rv×v, αv×v, βv×v, µ
I
1×v, µ

E
1×v) =

0. For each VNF pair the Kuhn-Tucker condition is given as follows:

1

R∗
i,j − Li,j

+ αi,j − βi,j −

m
∑

h

µI
hEj,h −

m
∑

h

µE
hEi,h = 0

and






















αi,j(Ri,j − Li,j) = 0, ∀i, j ∈ [1, v]Z ,

βi,j(Ri,j − Ui,j) = 0, ∀i, j ∈ [1, v]Z ,

µI
h((R

I
1×v ·Ev,m)

h
−BMax

h ) = 0, ∀h ∈ [1,m]Z ,

µE
h ((R

E
1×v · Ev,m)

h
−BMax

h ) = 0, ∀h ∈ [1,m]Z .

(20)

To simplify the optimization problem without loss of generality, we consider the borderlines of constraints

(14) and (15) as a special case, whereby we can fully use the bandwidth capability of each VM based on

the proportion of the traffic demand and in our method, we handle it separately. Next, we focus on the

elements Ri,j ∈ (Li,j , Ui,j). According to the first two equations in (20), we get αi,j = βi,j = 0, ∀i, j ∈

[1, v]Z . The latter two equations in (20) indicate that the bandwidth capability of all the VMs must be

fully utilized, otherwise the multipliers µI
h and µI

h will be forced to zero and no solution can be attained.

Hence the result follows as stated.

Eq. (18) indicates that the optimal bandwidth allocation of the VNF pair from VNFi to VNFj can

be simply solved by Lagrange multipliers associated with the VMs hosting the VNFs. As the optimal

multipliers of a given VM are independent of each other, we can use a distributed algorithm to solve

the centralized optimization problem. Next, we concentrate on attaining the optimal vector of Lagrange

multipliers. Given that a VM can host more than one VNF, the number of VNF is usually several times

as many VHFs as VMs. Thus, a distributed algorithm can reduce the computational complexity of the

convex optimization, where the scale of the vector space of the solution is reduced from v2 VNF pairs to

m VMs. We use ℜm to denote the vector space of all possible solutions of the distributed problem.

The primal problem defined in (13)–(17) can be solved through dual-based decomposition. To normalize

the dual function of PB, first we consider an alternative primal problem PB′ , which has the same optimal

solution as PB. The specific objective is given in (21). Based on the conclusion of Proposition 1, we

obtain the Lagrangian L(Rv×v, µ
I
1×m, µE

1×m) of problem PB′ in (22). Compared to (19), the Lagrangian

of centralized problem, Eq. (22) is simplified, where the multipliers αv×v and βv×v are considered to be

zero. To conclude, we get the dual problem PD corresponding to the primal problem, as described by
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(23), where g(µI
1×m, µE

1×m) is the dual function and L(Rv×v, µ
I
1×m, µE

1×m) is the Lagrangian.

PB′ = min
Ri,j

−
∑

j

∑

i

ln(Ri,j − Li,j), ∀Ri,j ∈ J, (21)

L(Rv×v, µ
I
1×m, µE

1×m) = −f(Rv×v) +

m
∑

h

µI
h((R

I
1×v · Ev×m)

h
−BMax

h )

+
m
∑

h

µE
h ((R

E
1×v · Ev×m)

h
−BMax

h ), (22)

PD = max
µI
1×m

,µE
1×m

∈ℜm
g(µI

1×m, µE
1×m)

= max
µI
1×m

,µE
1×m

∈ℜm
inf

Rv×v∈ℜN
L(Rv×v, µ

I
1×m, µE

1×m)

= max
µI
1×m

,µE
1×m

∈ℜm
L(R∗

v×v, µ
I
1×m, µE

1×m). (23)

Since the optimal solution of the primal problem PB′ is unique, the corresponding solutions of problem

PD converge to a unique optimal bandwidth allocation matrix R∗
v×v. To solve the primal problem PB′ , we

first obtain the optimal solution to the dual problem. Using a constant step, we design a gradient-descent

algorithm based on that in [21].

For each h ∈ [1,m]Z , the recursive equation of µI
k and µE

k is given in (24) and (25), respectively.

(µI
h)

k+1
= max

{

0,

[

(µI
h)

(k)
+ γ

∂g(µI
1×m, µE

1×m)

∂µI
h

]}

= max







0,



(µI
h)

(k)
+ γ





v
∑

j

(

v
∑

i

R∗
i,j

)

Ej,h



−BMax
h











, (24)

The bandwidth allocation algorithm is given as Algorithm 2. In lines 2–6, we handle VNF pairs

whose bandwidth demand have less priority than their base bandwidth. Next, for further recursion, we

initialize the parameters of the Nash bargaining game. On line 11, we update the Lagrange multipliers

using a gradient-descent method. Then, we update the corresponding allocation matrix according to

Proposition 1 one line 13. In lines 14–17, we detect whether the solution exceeds the upper bound of

the bandwidth allocation matrix. Finally, a stop condition is executed to accelerate the recursion. The

threshold value of the recursion ∆ is set to a number small enough to guarantee the accuracy of the

bandwidth allocation.

(µE
h )

k+1
= max







0,



(µI
h)

(k)
+ γ





v
∑

i





v
∑

j

R∗
i,j



Ei,h



−BMax
h











. (25)

6 Multilayer encoding genetic algorithm with bandwidth allocation

In this section, we combine the multi-layer genetic algorithm with the bandwidth allocation solution

in one stage. The main reason why existing method cannot execute the process of VNF scheduling

and bandwidth allocation in the same stage is that the scheduling models of those methods involve the

calculation of precedence and placement constraints, both of which are necessary for the bandwidth

allocation solution. As such, VNF scheduling must be solved prior to starting bandwidth allocation. As

we have encoded the two constraints into chromosomes, the process of SFC composition and VNF-FGE

could be separated from the scheduling model, and we can therefore complete the bandwidth allocation

during the iterative evaluation of the multi-layer genetic algorithm.
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Algorithm 2 Bandwidth allocation algorithm

Input: Placement matrix Es×v, demand matrix Dv×v, base bandwidth matrix Bv×v , bandwidth capability matrix BMax
1×m,

the maximum number of iteration MAXNUM;

Output: The solution of bandwidth allocation R∗

v×v;

1: Initialize the lower bound matrix of bandwidth allocation Lv×v and the upper bound matrix Uv×v;

2: while i, j ∈ [1, v]Z do

3: if Di,j 6 Bi,j then

4: R∗

i,j = Di,j ;

5: end if

6: end while

7: Initialize the step-size γ and the Lagrange multiplier (µI
1×m)

(0)
and (µE

1×m)
(0)

;

8: Initialize k = 0 and R
(0)
v×v according to (18);

9: while k < MAXNUM do

10: k = k + 1;

11: Calculate (µI
1×m)

(k)
and (µE

1×m)
(k)

according to (24) and (25);

12: while Ri,j ∈ J do

13: Calculate R
(k)
i,j according to (18);

14: if R
(k)
i,j > Ui,j then

15: R
(k)
i,j = Ui,j ;

16: end if

17: end while

18: if f(R
(k+1)
v×v )− f(R

(k)
v×v) 6 ∆ then

19: R∗

i,j = R
(k)
i,j ;

20: break;

21: end if

22: end while

In Algorithm 3, we propose the entire multilayer encoding genetic algorithm with bandwidth allocation,

ME-GA. For lines 1–3, we initialize the network and genetic parameters for further use. In line 4, we

execute the MEA algorithm to obtain the initial chromosomes. Then, we solve the bandwidth allocation

problem in line 5. For line 6, according to the VNF scheduling model, we calculate the scheduling time

matrix of the initial chromosomes. In lines 7–19, we conduct the evolution procedure to find the optimal

solution of all chromosomes.

Algorithm 3 Multi-layer encoding genetic algorithm (ME-GA)

Input: Service requests of VNFs with precedence constraints and placement constraints;

Output: The optimal chromosome chromλ and scheduling time matrix Xs×v and Ys×v;

1: Compose the SFCs with all possible chaining and generate the parameter Cs×v and M1×v, according to the precedence

constraints and placement constraints;

2: Initialize the basic network parameter Pv×m, Bm×m and Fs×v;

3: Initialize genetic algorithm parameter;

4: Encoding SFCs with MEA to attain the population chromNIND×l, the placement matrix Ev×m and the scheduling

matrix SNIND,l/2;

5: Execute the bandwidth Allocate algorithm for each chromosome according to traffic demand;

6: calculate the scheduling time matrix Xs×v and Ys×v;

7: while gen < MAXGEN do

8: Calculate the fitness and ranking possibility of each chromosome;

9: Operate the crossover process and generate new chromosomes;

10: Operate the mutation process and generate new chromosomes;

11: Execute the bandwidth Allocate algorithm for new chromosomes;

12: Calculate the scheduling time matrix Xs×v andYs×vof new chromosomes;

13: Calculate the fitness of new chromosomes and ranking current population;

14: Update current population with high ranking chromosomes;

15: Select the optimal chromosome for further iteration;

16: gen = gen+1;

17: Decode the optimal chromosome chromλ and save the optimal scheduling matrix SNIND,l/2 and scheduling time

matrix Xs×v and Ys×v;

18: end while

19: Output the optimal chromosome chromλ and scheduling time matrix Xs×v and Ys×v;
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Figure 7 (Color online) Scheduling result of ME-GA

(BRV-GA).

Figure 8 (Color online) Scheduling result of UB-MIP.

7 Simulation results

In this section, we evaluate the performance of our proposed VNF-SCH method (ME-GA) with bandwidth

allocation. In comparison, we considered the MIP method with uniform bandwidth allocation (UB-

MIP) [4] and the two-stage scheduling method (BRV-GA) proposed in [5].

7.1 Parameter configuration

A computer with 4 GB internal storage memory and Intel i7 4790 2.8 GHz CPU model is employed. First,

considering the scale of service request and physical network. Referring to the simulation environment

in [5], we set the maximum number of SFCs s = 100, the maximum number of VMs m = 20, the

maximum number of types of VNFs vT = 10, and the maximum number of VNF in one SFC vS = 5.

Based on the experimental data in [24], we set up our network latency parameter. The elements of the

processing time matrix Pv×m are generated randomly in an area of [2, 10] ms. We uniformly initiated

the base bandwidth of the links between VNFs to 2 Mbps and set the total throughput of a VM is set

to 20 Gbps. Here, we consider two situations in the bandwidth demand matrix Fs×v. For requests of

control plane, as the traffic is light, the element of Fs×v is set to an area of (0, 2] Mbps, while that is

set to [10, 20] Mbps for the data plane. The element of the placement constraints cell vector M1×v is

generated randomly with a domain of [1,m]Z and the size of each candidate VM cell is restricted to 3 at

most, which accords with the majority of VNF-FGE researches. In the recursion of the gradient-descent

algorithm, we use the total recursive step MAXNUM = 20, and step-size γ = 0.7, and set the value of

the stop condition ∆ to 0.01. For the parameters of genetic algorithm, the size of population NIND = 40

and the maximum generation of iterations MAXGEN = 50. The possibilities of crossover and mutation

are set to 90% and 60% respectively.

7.2 Numerical results

First, using a fully connected network with five VMs and two control-plane SFCs comprising five VNFs

each, we set MAXGEN = 50 and simulated the performance of the above three methods (UB-MIP, BRV-

GA, ME-GA). Figure 7 shows the scheduling results of ME-GA, the strategy of which is the same as that

for BRV-GA in this case. Figure 8 shows the scheduling result of UB-MIP, the only method that ignores

the bandwidth allocation. In Figures 7 and 8, the Y label denotes the VM number and X label indicates

the scheduling time. Blocks of different colors denote the VNFs for different SFCs. In the blocks, the

text of the first row indicates the SFC number and scheduling order of the corresponding VNF, where

101 denotes the first VNF of SFC1, and that of the second row illustrates the type of VNF. As control

plane traffic is relatively light, the impact of transmission delay is not obvious, while with the process of

bandwidth allocation, the two methods apply the same scheduling strategy. In this case, the ME-GA and

BRV-GA can both obtain the optimal result of bandwidth allocation to shorten the transmission delay

according to the traffic.
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Table 1 Comparison of different methods in control plane

Method Scheduling time (ms) CPU time (s) Optimality gap (%)

UB-MIP 28 6.3 0

BRV-GA 26.1 1.31 6.8

ME-GA 26.1 0.98 6.8
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Figure 9 (Color online) Scheduling result of ME-GA. Figure 10 (Color online) Scheduling result of BRV-GA.

Table 1 shows the comparison of the three methods in terms of CPU and scheduling time. It is

clear that UB-MIP has the longest scheduling time, reaching 28 ms without optimizing the transmission

delay. Considering bandwidth allocation, the other 2 methods both optimize the scheduling time 6.8%

faster. As for CPU time, UB-MIP possesses the longest CPU time for two main reasons: (i) It solves

the MIP model by the traditional tool, CPLEX, which can figure out the exact solution of our model.

However, the toolbox cannot approach the optimum with a particular gradient, which is usually provided

by an intelligent algorithms like the genetic algorithm. (ii) Not considering the process of bandwidth

allocation, there may be several possible solutions that obtain the optimal results, which increases the

time complexity of the search process. Compared to the performance of the BRV-GA with respect to

time complexity, the ME-GA is a slightly superior. Given that the maximum number of iterations is set

to the same constant, we can conclude that the ME-GA can provide a more efficient solution of VNF-

SCH problem than BRV-GA, in terms of the single loop of iterations. As we have already encoded the

precedence and placement constraints into the chromosome, the bandwidth allocation model no longer

needs to take them into consideration, which could simplify the optimization constraints optimization and

saves more time in calculating the feasible chromosomes of the entire population during the evaluation

process. Moreover, the distributed bandwidth allocation algorithm also shows higher efficiency than that

of the centralized MIP method, which will be addressed in detail later.

Using the same network topology of VMs, we applied the method of ME-GA and BRV-GA to two

data-plane SFCs composed of 5 VNFs each. Figures 9 and 10 show the scheduling results for the ME-GA

and BRV-GA, respectively. As the traffic of data plane grows relatively heavy, the impact of transmission

delay becomes significant. Due to the fine granularity of the bandwidth allocation, the ME-GA has a

shorter scheduling time than the BRV-GA. Comparing Figures 9 and 10, we can draw a conclusion that

the result of bandwidth allocation can affect the VNF schedule strategy. By executing VNF schedule and

bandwidth allocation as separate stages, the BRV-GA neglects the interaction of these two processes,

which may cause it fail to find the optimal policy within limited number of iterations. In the following

analysis, we explain the reason for this.

Table 2 shows the comparison in terms of CPU and scheduling time for the three methods in data-plane

SFCs. In this case, the transmission delay turns to be the determinant of scheduling time. Reaching

57.8 ms, the poor performance of the UB-MIP indicates the importance of bandwidth allocation. As-

sociated with a method of bandwidth allocation via MIP, BRV-GA improves the performance with an

optimization gap of 32.3%. By refining the granularity of the bandwidth allocation, the ME-GA obtains

the shortest scheduling time at 33 ms. Furthermore, when we compare Table 1 with Table 2, it is con-
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Table 2 The comparison of different methods in data plane

Method Scheduling time (ms) CPU time (s) Optimality gap (%)

UB-MIP 57.8 6.3 0

BRV-GA 39.1 1.31 32.3

ME-GA 33 0.98 42.9
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Figure 11 (Color online) Convergence procedure of

scheduling time in control plane.

Figure 12 (Color online) Convergence procedure of

scheduling time in data plane.

cluded that the time complexity of all the above method is related only to the scale of the VM network

and SFCs.

Figures 11 and 12 illustrate the variation of the scheduling time of the optimal chromosome with

the number of iterations for the case of control plane and data plane respectively. As we analyze the

result shown in Figure 11, the curve of ME-GA approaches directly to the optimal solution after several

iterations, whereas that of BRV-GA suffers a long-term stagnation before it finds the optimum allocation

policy. The main reason accounting for the efficient convergence of the ME-GA is that we implement

the bandwidth allocation algorithm during the evaluation. Without considering the interaction between

bandwidth reallocation and VNF scheduling, the BRV-GA executes the two processes in separate stages.

As a result, the optimal chromosome of the first stage (VNF-scheduling) may be replaced by other

chromosomes in the second stage (bandwidth allocation). As we can see in Figures 11 and 12, the alternate

replacement of optimal chromosomes may lead to the stagnation of convergence and the procedure may

ultimately fall into a local optimum. In Figure 12, the curve of the ME-GA shows a plummeting trend and

reaches the convergence point rapidly. However, experiencing several stagnations during the iteration,

the BRV-GA exhibits the trend of falling into a local optimum. Moreover, compared to the method via

MIP, our bandwidth allocation algorithm provides a fine-granularity means of solving the optimization

problem. As the traffic grows heavier, the difference of performance between the two methods tends to

be more obvious.

Next, we study the effect of different sizes of the network service. Figure 13 depicts the CPU time

of the ME-GA and BRV-GA with variation in the number of SFCs. We implemented the algorithms

in a large fully connected 20-node virtual network and set the scale of each SFC to no more than five

VNFs. In this simulation, we configured the traffic of the network service chains from 0 to 20 Mb

uniformly, which can represent the service requests in both the control and data planes. In Figure 13,

our method shows superiority in the performance of CPU time, namely, the execution time. In total,

the CPU time of the two methods show a linear correlation with the number of SFCs, such that as

the number of SFCs increases, the CPU time of the BRV-GA increases more quickly than that of our

method. At the starting point of 10 SFCs, the time difference of the two methods is only 0.8593 s, but

it increases steadily to 7.7343 s by the end point of 100 SFCs. Moreover, after further calculation, we

find that the CPU time of the ME-GA, in general, keeps 45% lower than that of the BRV-GA. Two

reasons are listed to explain the low time complexity of our method. First, the multi-layer encoding

algorithm encodes the precedence and placement constraints into chromosomes and builds a connection
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The number of SFCs
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Figure 13 (Color online) CPU time for different number

of SFCs.

Figure 14 (Color online) Scheduling time for different

number of SFCs.

between the two, so there is no need to calculate them in the optimization problem. Secondly, we apply

a distributed algorithm to solve the bandwidth allocation problem, which can shrink the vector space of

feasible solutions and improve the time efficiency. Using the same parameter configuration, Figure 14

shows the ascending trend of scheduling time when the number of SFCs increases from 10 to 100. As the

SFCs are generated uniformly, the number of them could indicate the traffic traversing across the network

of VMs. In total, the performance of our method is better. Furthermore, its superiority is more apparent

when the scale of network service increases. As the traffic demand becomes heavier, our fine-granularity

bandwidth allocation algorithm clearly shows its advantages in the optimization of transmission delay.

In addition, due to the frequent stagnation in the evaluation process, the BRV-GA may fall into a local

optimal solution within limited number of iterations.

8 Conclusion

In this paper, we studied the important problem of VNF-SCH with transmission delay optimization and

proposed a heuristic algorithm via multilayer genetic algorithm with a distributed bandwidth allocation.

First, to reduce time complexity, we simplified the optimization problem based on the flexible job-shop

model by designing a multi-layer encoding genetic algorithm. Then, we proposed a fine-granularity and

distributed bandwidth allocation approach via Nash bargain solution to optimize the transmission delay

between VMs. Finally, to accelerate the iterative convergence, we integrated the GA-based algorithm

with the proposed bandwidth allocation approach to solve the VNF-SCH problem in just one stage.

The numerical simulation results showed that using our one-stage method, we can realize both shorter

schedules and lower time complexity. Achieving a shorter schedule enables service providers to admit

and serve more flows in its cloud data center, thereby increasing their revenues. In addition, lowering

the time complexity can improve the instantaneity of our dynamic algorithm as well as utilization of

computational resources.
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