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Abstract Event detection remains a challenge because of the difficulty of encoding the word semantics

in various contexts. Previous approaches have heavily depended on language-specific knowledge and pre-

existing natural language processing tools. However, not all languages have such resources and tools available

compared with English language. A more promising approach is to automatically learn effective features from

data, without relying on language-specific resources. In this study, we develop a language-independent neural

network to capture both sequence and chunk information from specific contexts and use them to train an

event detector for multiple languages without any manually encoded features. Experiments show that our

approach can achieve robust, efficient and accurate results for various languages. In the ACE 2005 English

event detection task, our approach achieved a 73.4% F-score with an average of 3.0% absolute improvement

compared with state-of-the-art. Additionally, our experimental results are competitive for Chinese and

Spanish.
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1 Introduction

Event extraction is an important and fundamental task in nature language processing (NLP) and com-

putational linguistics [1, 2]. Event extraction is crucial in understanding user generated text on social

networks or breaking news [3, 4]. In this study, we focus on event detection [5–7], which performs as a

vital role in the overall task of event extraction and serves as an intermediate step for the subsequent

event extraction sub-tasks (e.g., argument identification and argument typing). Following the statement

of automatic content extraction (ACE)1), every event can be clearly expressed by some event triggers,

which can be a verb or a phrase. Therefore, our goal is to extract these event triggers and precisely

classify them into specific types.

Event detection or event trigger extraction is a crucial and challenging sub-task of event extraction,

because the same event might appear in the form of various trigger expressions and an expression might

represent different event types in different contexts. Figure 1 shows two examples. In S1, “release” is a

verb concept and a trigger for “Transfer-money” event, while in S2, “release” is a noun concept and a

trigger for “Release-parole” event.

Event detection is typically regarded as a type of text classification problem in literature. Most of the

previous methods [8–12] built an event detector with numerous lexical and syntactic features. Although

*Corresponding author (email: qinb@ir.hit.edu.cn)
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Figure 1 (Color online) Event type and syntactic parser results of an example sentence.

Table 1 Top 8 most similar words (in three clusters)

Injure Score Fight Score Fire Score

Injures 0.602 Fighting 0.792 Fires 0.686

Hurt 0.593 Fights 0.762 Aim 0.683

Harm 0.592 Battle 0.702 Enemy 0.601

Maim 0.571 Fought 0.636 Grenades 0.597

Injuring 0.561 Fight 0.610 Bombs 0.585

Endanger 0.543 Battles 0.590 Blast 0.566

Dislocate 0.529 Fighting 0.588 Burning 0.562

Kill 0.527 Bout 0.570 Smoke 0.558

such approaches perform reasonably well, features are often derived from language-specific resources and

output of pre-existing natural language processing toolkits (e.g., name tagger and dependency parser),

thereby making these methods difficult to apply to other languages. Additionally, feature engineering is

labor intensive and prone to error propagation. For example, in S2, when predicting the type of a trigger

candidate “release”, the clue word “court” can help the classifier label “release” as a trigger of a “Release-

parole” event. However, for feature engineering methods, establishing a relation between “court” and

“release” is difficult, because no direct dependency path exists between them.

We overcome these problems by developing a neural network based approach that focuses on learning

a sufficient representation of each word with the whole sequence information for trigger detection. Specif-

ically, distributed representation learning has been widely used in modeling complex structures and has

proven to be effective for many NLP tasks, such as machine translation [13,14], relation extraction [15,16]

and sentiment analysis [17]. We argue that the distributed representation also helps to improve event

detection results. Following the distributional hypothesis [18], we obtain similar words like those shown

in Table 1, when we simply learn general word embeddings from a large corpus (e.g., Wikipedia) for each

word. We can see that similar words, such as those centered around “injure”, “fight” and “fire”, converge

to similar types.

In this paper, we also find that sequence and chunk are two types of meaningful language-independent

structures for event detection. For example, considering S2 again, when extracting the trigger “release”,

the detector can utilize the forward sequence information to capture the semantic of the clue word

“court”. In addition, in S1, “European Union” and “20 million euros” are two chunks indicating that

this sentence is related to an organization and financial activities, respectively. These clues greatly help in

inferring “release” as a trigger of a “Transfer-money” event. Therefore, our hybrid neural network (HNN)

incorporates two types of neural networks (i.e., bidirectional LSTM (Bi-LSTM) and convolutional neural

network (CNN)) to model both sequence and chunk information from free contexts.
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We evaluate our system on the event detection task for various languages with available ground-

truth event detection annotations. Our approach achieved a 73.4% F-score with an average of 3.0%

absolute improvement compared with state-of-the-art in English event detection task. The results are also

competitive for Chinese and Spanish. We demonstrate that our combined model outperforms traditional

feature-based methods with respect to generalization performance across languages because of (i) its

capacity to model the semantic representations of each word by capturing both sequence and chunk

information, and (ii) the use of word embeddings to induce a more general representation for trigger

candidates.

The major contributions of this work are as follows:

• We present a novel neural network approach by integrating Bi-LSTM and CNN for sentence-level

event detection.

• We report empirical results on ACE datasets and demonstrate that our approach outperforms the

state-of-the-art event trigger extraction model for English.

• Our model is language independent without any supervised NLP tools and resources, and shows

promising performance in Chinese and Spanish event trigger extraction.

The remainder of this paper is organized as follows. Section 2 introduces the related work. Section 3

presents an overview of the neural architecture, including the trigger detector and training process.

Section 4 demonstrates the experiments and Section 5 concludes this study.

This paper is a substantial extension of our earlier work in [19]. We herein add new experimental

results, a comprehensive description of the models, more details about our method, and an comprehensive

analysis of the results.

2 Related work

Event detection is a fundamental problem in information extraction and NLP [11, 20], which aims to

detect the event trigger of a sentence [9]. The majority of the existing methods regard this problem as a

classification task and use machine learning methods with hand-crafted features, such as lexical (e.g., full

word, pos tag), syntactic (e.g., dependency features) and external knowledge (WordNet) features [21].

Ji and Grishman [9] combined global evidence from related documents with local decisions for event

extraction. Some studies leveraged richer evidence, such as cross-entity [8] and joint inference [22].

Other researchers treat event extraction as the task of predicting the structure of an event in a sentence.

McClosky [23] portrayed the problem of biomedical event extraction as a dependency parsing problem.

Goyal et al. [24] tried to use a distributional semantic model (DSM) to represent events. However, the

DSM ignores the structure within the context, thus reducing the distribution to a bag of words. Li [22]

presented a joint framework for ACE event extraction based on structured perceptron with beam search.

To derive more information from the sentence, they proposed to extract entity mentions, relations and

events in the ACE task based on the unified structure.

Despite the effectiveness of the feature-based methods, we argue that manually designing feature tem-

plates is typically labor intensive. Moreover, feature engineering requires expert knowledge and rich

external resources, which may not be available for low-resource languages. Furthermore, a desirable

approach should automatically learn informative representations from data so that it could be easily

adapted to different languages. Neural network has recently emerged as a powerful method of automati-

cally learning text representation from data and performed well various NLP tasks. For event detection,

two recent studies [5,20] explored the neural network to learn continuous word representation and regard

it as the feature to infer whether a word is a trigger. Nguyen [5] presented a CNN with entity type

information and word position information as extra features. However, their system limits the context to

a fixed window size, which leads to the loss of word semantic representation for long sentences.

Here, we introduce a HNN to learn continuous word representation. Compared with the feature-based

approaches, our method does not require feature engineering and can be directly applied to different

languages. Compared with the previous neural models, we retain the advantage of CNN [5] in capturing
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Figure 2 (Color online) Illustration of our model for the event trigger extraction (the trigger candidate here is “release”).

Fv and Bv are the output of Bi-LSTM, while C2 and C3 are the output of CNN with convolutional filters with widths of

2 and 3, respectively.

local contexts. Besides, we also incorporate a Bi-LSTM to model the preceding and following information

of a word because studies demonstrate that LSTM excels in capturing long-term dependencies in a

sequence [17, 25].

3 Our approach

In this section, we introduce our neural network, which combines Bi-LSTM and CNN to learn a continuous

representation for each word in a sentence (Figure 2). This representation is used to predict whether

the word is an event trigger. We first used a Bi-LSTM to encode the semantics of each word with its

preceding and following information. We then added a CNN to capture the structure information from

local contexts. Taking advantage of the word semantic representation, our approach did not rely on any

language-specific resources or complex features (syntactic or dependency parsing) and thus was easily

adapted to multiple languages.

3.1 Bi-LSTM

In this subsection, we describe the Bi-LSTM model for event detection. The Bi-LSTM is a type of

bidirectional recurrent neural network (RNN), which can simultaneously model the word representation

with its preceding and following information. Word representations can be considered as features to

detect triggers and their event types.

The power of Bi-LSTM lies in its ability to capture long-term dependencies in a sequence from both

directions. Bi-LSTM has been successfully used in many natural language processing tasks [13, 17, 26].

This successful usage makes Bi-LSTM for event extraction contain richer sentence information than ma-

jority of the previous methods, which only used event arguments [11,22] or dependence information [27].

Additionally, sequence information is a general and reliable structure for most languages.

Figure 2 presents the details of Bi-LSTM for event trigger extraction. We utilize a similar approach [20]

and take every words of the sentence as the input. Each token is transformed by looking up word

embeddings. We specifically use the skip-gram model to pre-train the word embeddings to represent each

word. This model is one of the state-of-the-art models used to capture the distributed representation for

many NLP tasks [28, 29]. All word vectors are stacked in a word embedding matrix Lw ∈ R
d×|V |, where

d is the dimension of the word vector and |V | is the vocabulary size.

Figure 2 shows that Bi-LSTM comprises two LSTM neural networks, namely a lower one LSTMF and

an upper one LSTMB, to model the preceding and following contexts, respectively. The input of LSTMF

is the preceding contexts plus the word as the trigger candidate. The input of LSTMB is the following

contexts plus the word as the trigger candidate. We run LSTMF from the beginning to the end of a

sentence, and run LSTMB from the end to the beginning of a sentence. Afterwards, we concatenate the



Feng X C, et al. Sci China Inf Sci September 2018 Vol. 61 092106:5

Output gateInput gate

Forget gate

Cell

Figure 3 LSTM cell.

output Fv and Bv of LSTMF and LSTMB, respectively and feed them into a softmax layer to classify

the event type of the current word. Alternatively, the last hidden vectors of LSTMF and LSTMB could

be averaged or summed as well.

Additionally, compared with the standard RNN, Bi-LSTM does not face the problem of gradient

vanishing or exploding [30]. The reason lies in LSTM’s usage of a more sophisticated and powerful

LSTM cell as the transition function, such that long-distance semantic correlations in a sequence could

be better modeled.

Figure 3 illustrates a single LSTM memory cell. We can see that the LSTM cell contains three

multiplicative gates: the input i, output o and forget gates f , which provide continuous analogs of

writing, reading and resetting operations for the cells, respectively. More precisely, the input to the cells

is multiplied by the activation of the input gate; the output to the net is multiplied by that of the output

gate; and the previous cell values are multiplied by the forget gate. The net can only interact with the

cells via the gates. The LSTM cell is calculated as follows:

g(t) = φ(Wgxx
(t) +Wghh

(t−1) + bg),

i(t) = σ(Wixx
(t) +Wihh

(t−1) + bi),

f (t) = σ(Wfxx
(t) +Wfhh

(t−1) + bf ),

o(t) = σ(Woxx
(t) +Wohh

(t−1) + bo),

s(t) = φ(g(t) ⊙ i(t) + s(t−1) ⊙ f (t)),

h(t) = s(t) ⊙ o(t).

The value of the hidden layer at time t is the vector h(t), whereas h(t−1) is the value output by each

memory cell in the hidden layer at the previous time. x is the input word vector. We use tangent φ as

the input node g following the state-of-the-art design of [31]. The activation function of gates i, o and

f is the sigmoid σ. Wgx, Wgh, Wix, Wih, Wfx, Wfh, Wox and Woh are the parameters of input node g

and gates i, o and f .

3.2 Convolution neural network

In Subsection 3.1, we introduced the way to model a word semantic representation via the Bi-LSTM

model using its preceding/following history information. We also argued that local context is extremely

useful in detecting the trigger and event type. For example, “take over” and “take off” have the same

word “take”, but they indicate diverse event types. The former means “transfer-ownership”, whereas the

latter denotes “transport”.

A CNN excels in capturing salient features from a sequence of objects [32]. Hence, we designed a CNN

to capture some local chunks. This approach was been used for event detection in previous studies [5,20].

we specifically used multiple convolutional filters with different widths to produce the local context
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Figure 4 (Color online) CNN structure.

representation because they can capture the local semantics of n-grams of various granularities, which

are proven powerful for event detection. In our work, multiple convolutional filters with width of 2 and

3 encode the semantics of bigrams and trigrams in a sentence. This local information can also help our

model fix some errors due to lexical ambiguity.

Figure 4 illustrates the CNN with three convolutional filters. Let us consider a sentence comprising

n words as {w1, w2, . . . , wi, . . . , wn}. Each word wi is mapped to its embedding representation ei ∈ R
d.

Additionally, we add a position feature (PF) defined as the relative distance between the current word

and the trigger candidate. A convolutional filter is a list of linear layers with shared parameters. Let lcf
be the width of a convolutional filter, and let Wcf and bcf be the shared parameters of the linear layers

in the filter. The input of a linear layer is the concatenation of the word embeddings in a fixed-length

window size lcf , which is denoted as ucf = [ei; ei+1; . . . ; ei+lcf−1] ∈ R
d×lcf . The output of a linear layer

is calculated as follows:

Ocf = Wcf · ucf + bcf ,

where Wcf ∈ R
d×lcf , bcf ∈ R

len. We denote len as the output length of linear layer. We feed the output

of a convolutional filter to a MaxPooling layer and obtain an output vector with a fixed length to capture

the semantics of local contexts.

3.3 Output

Finally, we concatenate the bidirectional sequence features: Fv and Bv, which are learned from the Bi-

LSTM, and the local context features: C2 and C3, which are the output of the CNN with convolutional

filters having widths of 2 and 3, as a single vector O = [Fv,Bv,C2,C3]. We then exploit a softmax

approach to identify the trigger candidates and classify each trigger candidate as a specific event type.

The softmax function is calculated as follows, where C is the number of event types:

softmaxi =
exp(xi)∑C

i′=1 exp(xi′ )
.

3.4 Training

We train all aforementioned models using a generic stochastic gradient descent (SGD) forward and back-

ward training procedure. The loss function in our model is the cross-entropy errors of the event trigger

identification and trigger classification.

loss = −
∑

s∈T

∑

w∈s

C∑

c=1

P g
c (w) · log(Pc(w)),



Feng X C, et al. Sci China Inf Sci September 2018 Vol. 61 092106:7

Table 2 Hyperparameters used in our experiments on three languages

Language
Word embedding Gradient learning method

Embedding corpus Embedding dimension Learning method Parameters

English NYT 300 SGD learning rate r = 0.03

Chinese Gigword 300 Adadelta p = 0.95, δ = 1e−6

Spanish Gigword 300 Adadelta p = 0.95, δ = 1e−6

Table 3 # of documents

Data set English ACE2005 Chinese ACE2005 Spanish ERE

Train set 529 513 93

Dev set 30 60 12

Test set 40 60 12

where T is the training data; s is a sentence and w is a word in the sentence. We regard each sentence

in each epoch as a batch. In the event trigger identification task, C is the binary value (1 indicates a

word is a trigger, while 0 indicates it is not a trigger). In the trigger classification task, C is the number

of event types. Pc(w) is the probability of predicting w as type c given by the softmax layer, whereas

P g
c (w) indicates whether class c is the correct classification result with a value of 0 or 1. We differentiate

the loss function through back-propagation with all the related parameters. We initialize all parameters

to form a uniform distribution U(−0.01, 0.01). We set the widths of the convolutional filters as 2 and 3.

The number of feature maps is 300, and the PF dimension is 5. Table 2 illustrates the setting parameters

used for the three languages in our experiments [33].

4 Experiments

We applied the developed approach for event detection on various data sets and evaluated the effectiveness

separately [1,2]. Here, we focused on the event trigger identification and event trigger classification tasks

defined in the ACE evaluation, where an event is defined as a specific occurrence. More precisely, our

first was to extract the event triggers without the need to classify them. The second task involved

identifying the event triggers and classifying them into specific types. In this section, we describe the

detailed experimental settings and discuss the results.

4.1 Dataset and evaluation

We evaluated the proposed approach on various languages (i.e., English, Chinese, and Spanish) with

Precision (P), Recall (R) and F-measure (F), respectively. Table 3 shows the detailed description of

the data sets used in our experiments. We utilized the ACE2005 corpus and followed the settings in

the previously reported studies [10, 20, 34, 35] for English2) and Chinese3). We used ERE (annotation of

entities, relations, and events)4) as the benchmark corpus for Spanish, since there are no previous work on

event evaluation. As the first event extraction system on this corpus, we used a 10-fold cross validation

as the evaluation metric. We abbreviate our model as HNNs.

4.2 Baseline methods

We compared our approach with the following baseline methods.

(1) MaxEnt, a baseline feature-based method, which trains a maximum entropy classifier with some

lexical and syntactic features [9].

(2) Cross-event [12], using document-level information to improve the performance of the ACE event

extraction.

2) English data set. https://catalog.ldc.upenn.edu/LDC2008T19.
3) Chinese data set. https://catalog.ldc.upenn.edu/Chinese Gigaword Fifth Edition.
4) Spanish data set. https://catalog.ldc.upenn.edu/LDC96S35.
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Table 4 Comparison of different methods on the English event detection

Model
Trigger identification Trigger classification

Precision Recall F-score Precision Recall F-score

MaxEnt 76.2 60.5 67.4 74.5 59.1 65.9

Cross-event N/A N/A N/A 68.7 68.9 68.8

Cross-entity N/A N/A N/A 72.9 64.3 68.3

Joint model 76.9 65.0 70.4 73.7 62.3 67.5

PSL N/A N/A N/A 75.3 64.4 69.4

PR N/A N/A N/A 68.9 72.0 70.4

CNN 80.4 67.7 73.5 75.6 63.6 69.1

RNN 73.2 63.5 67.4 67.3 59.9 64.2

LSTM 78.6 67.4 72.6 74.5 60.7 66.9

Bi-LSTM 80.1 69.4 74.3 81.6 62.3 70.6

FN N/A N/A N/A 77.6 65.2 70.7

ANN N/A N/A N/A 76.8 67.5 71.9

HNN 80.8 71.5 75.9 84.6 64.9 73.4

(3) Cross-entity [8], extracting events using cross-entity inference.

(4) Joint model [22], a joint structured perception approach incorporating multi-level linguistic features

to simultaneously extract event triggers and arguments such that local predictions can be mutually

improved.

(5) PSL [36], Liu’s probabilistic soft logic model employs both latent local and global information for

event detection reported to be the best feature-based system.

(6) Pattern recognition [27], using a pattern expansion technique to extract the event triggers.

(7) CNN [20], which exploits a dynamic multi-pooling CNN for event trigger detection.

(8) FN [37], Liu’s FN-Based approach leverages the annotated corpus of FrameNet to alleviate data

sparseness problem of event detection based on the observation that frames in FrameNet are analogous

to events in ACE.

(9) ANN [38], a system explicitly exploiting argument information for event detection via supervised

attention mechanisms.

4.3 Comparison on English

Table 4 shows the overall performance of all methods on the ACE2005 English corpus. Our approach

significantly outperformed all previous methods. The better performance of HNN can be further explained

by the following points:

(1) Compared with the feature-based methods, such as MaxEnt, Cross-event, Cross-entity, and Joint

model, neural network-based methods, including CNN, Bi-LSTM and HNN, performed better because

they can better utilize of word semantic information and avoid the errors propagated from the NLP tools,

which may hinder the performance for event detection.

(2) Bi-LSTM can capture both preceding and following sequence information, which are much richer

than the dependency path. For example, in S2, the semantic of “court” can be delivered to release by

a forward sequence in our approach, which is an important clue that can help to predict “release” as a

trigger for “release-parole”. Explicit feature-based methods cannot establish a relation between “court”

and “release” because they belong to different clauses, and no direct dependency path exists between

them. However in our approach, the semantics of “court” can be delivered to release by a forward

sequence.

(3) CNN can capture structured context information, which is useful for predicting the event type of a

trigger candidate. For example, “take over” and “take off” have the same word “take”, but they indicate

diverse event types. The former means “transfer-ownership” whereas the latter denotes “transport”.

Therefore, combining Bi-LSTM and CNN, we can achieve a 5.4% performance improvement on trigger
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Table 5 Case study for English event detection

English sentence examples Li [11] Chen [20] Our method

Davies is leaving (end-position) to become chairman of Missing error Classification error Correct

the London school of economics, one of the best-known

parts of the University of London.

Palestinian security forces returned Monday to the positions Missing error Correct Correct

they held in the Gaza Strip before the outbreak of the

33-month Palestinian uprising (attack) as Israel removed

all major checkpoints in the coastal territory, a Palestinian

security source said.

U.S. and British troops were moving on the strategic southern Missing error Missing error Correct

port city of Basra Saturday after a massive aerial assault

pounded (attack) Baghdad at dawn.

Thousands of Iraq’s majority Shiite Muslims marched Classification error Correct Correct

(transport) to their main mosque in Baghdad to

mark the birthday of Islam’s founder Prophet Mohammed.

identification’s F-measure over the joint model and 3% gain on trigger classification F-measure over the

state-of-the-art (pattern recognition).

(4) Cross-entity system achieves a higher recall because it uses not only sentence-level information

but also document-level information. It utilizes event concordance to predict a local trigger’s event type

based on cross-sentence inference. For example, an “attack” event is more likely to occur with a “killed”

or “die” event rather than a “marry” event. However, this method heavily relies on lexical and syntactic

features, thus the precision is lower than neural-based methods.

(5) RNN and LSTM perform marginally worse than Bi-LSTM. An obvious reason is that RNN and

LSTM only consider the preceding sequence information of the trigger, which may result in missing some

important following clues. Considering S1 again, when extracting the trigger “releases”, both models will

miss the following sequence “20 million euros to Iraq”, which may seriously hinder the performance of

RNN and LSTM for event detection.

Table 5 lists some real cases of different methods for event detection. “Missing error” means the system

fails to detect the word as an event trigger, whereas the “classification error” means the event type is

not correct though the system can identify the word as a trigger. Neural network-methods, including [20]

and our method can extract more event triggers. The reason might be that neural network could take

advantage of lexical probabilities in a manner that is difficult to capture with limited size of the training

corpus. Additionally, we find that our model is good at capturing long distance information. For example,

in the first sentence, London School and University of London are clues for predicting the event type of

“leaving”, both of which contribute much to inferring the tag of “leaving”.

4.4 Comparison on Chinese

We followed a previous work [34] and employed language technology platform [39] to perform word

segmentation for Chinese.

Table 6 shows the comparison results between our model and the state-of-the-art methods [11, 34].

MaxEnt [11] was a pipeline model, which employed human-designed lexical and syntactic features. Rich-

C was developed by [34] and incorporated Chinese-specific features to improve Chinese event detection.

Our method outperformed the other methods based on human designed features for the event trigger

identification and achieved comparable F-score for the event classification.

4.5 Spanish extraction

Table 7 presents the performance of our method on the Spanish ERE corpus. The results showed that

the HNN approach performed better than LSTM and Bi-LSTM. This finding indicated that our proposed

model could achieve the best performance in multiple languages compared with the other neural network
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Table 6 Results on the Chinese event detection

Model
Trigger identification Trigger classification

Precision Recall F-score Precision Recall F-score

MaxEnt 50.0 77.0 60.6 47.5 73.1 57.6

Rich-C 62.2 71.9 66.7 58.9 68.1 63.2

HNN 74.2 63.1 68.2 77.1 53.1 63.0

Table 7 Results on the Spanish event detection

Model
Trigger identification Trigger classification

Precision Recall F-score Precision Recall F-score

LSTM 62.2 52.9 57.2 56.9 32.6 41.6

Bi-LSTM 76.2 63.1 68.7 61.5 42.2 50.1

HNN 81.4 65.2 71.6 66.3 47.8 55.5

Event classification

Figure 5 Comparison of the three languages.

methods. We did not compare our system with other systems [40], because they reported the results on

a non-standard data set.

4.6 Comparison of the three languages

We take our method (HNN) as an example and conduct a horizontal comparison on English, Chinese,

and Spanish.

Figure 5 shows the experimental results of HNN on the three languages. The model achieved better

precision, recall and F-score on English than on Chinese and Spanish. On the Chinese corpus, the model

needed a Chinese word segmentation model, which might induce some noise. Meanwhile, on the English

corpus, the words were naturally separated by space. For Spanish, we believe that the low performance

was due to the lack of training data. The performance of a machine learner depends on the feature

representation and the size of training data. Our method introduced a method of learning a language-

independent feature representation. However, for Spanish, the training data only includes 93 documents,

which was much less than those for English (529) and Chinese (513).

5 Conclusion

We introduced a language-independent neural network model that incorporates both Bi-LSTM and CNN

to capture sequence and structure semantic information from specific contexts for event detection. Com-

pared with the traditional event detection methods, our approach does not rely on any linguistic resources

and thus can be easily applied to any language. Moreover, our model can be effectively trained end-to-end

with supervised event trigger identification and classification objects. We conducted experiments using

various languages (i.e., English, Chinese and Spanish). The empirical results showed that our approach
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achieved a state-of-the-art performance in English and competitive results in Chinese. We also found that

the Bi-LSTM was powerful for trigger extraction, specifically in capturing the preceding and following

contexts in a long distance. As future work, we plan to incorporate discourse information into our neural

network, which might help our system model the event structure better. This information has proven to

be successful in sentiment classification [17].
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