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Dear editor,
Nonbinary low-density parity-check (NBLDPC)
codes have the ability of approaching capacity
when decoded iteratively using a probabilistic de-
coding algorithm. With the increase of the finite
field size q, NBLDPC codes over GF(q) have much
better performance under iterative decoding for
a constant code length. For q sufficiently large,
there is no significant performance improvement
while increasing q, moreover the column weights
of the parity-check matrices of the best codes tend
to 2. As an important class of NBLDPC codes,
(2, ρ)-regular NBLDPC codes over GF(q) (q > 64),
whose parity-check matrices have row weight ρ

and column weight 2, perform well over various
channels. This class of NBLDPC codes, so-called
NBLDPC cycle codes, has attracted much atten-
tion [1–3]. Among these works, all designed codes
have good performance. For a given code rate and
code length, it is of great interest to study which
one of them has the best error performance.

In this article, we first present an algorithm to
search for an ensemble of NBLDPC cycle codes
for a given row weight and code length. From
the perspective of isomorphism, we classify the
resulting codes into non-isomorphic codes based
on their corresponding Tanner graphs. By ana-
lyzing the cycles of NBLDPC cycle codes, a sim-
ple algorithm for counting short cycles, also ap-

plicable to (γ, ρ)-regular quasi-cyclic (QC) LDPC
codes, is proposed. According to these two algo-
rithms, we can obtain non-isomorphic NBLDPC
cycle codes with optimized cycle distribution for
a given code length and code rate. Moreover, in
order to improve the error performance in the wa-
terfall and error-floor regions, we employ the cycle
cancellation method [4] to optimize nonzero field
elements in the parity-check matrices of NBLDPC
cycle codes. Different from the prior study of [5],
we in this article analyze the cycle structure of
NBLDPC cycle codes and propose a new algorithm
for counting and enumerating cycles in the Tan-
ner graphs of NBLDPC cycle codes. Moreover, we
present an efficient exhaustive search of NBLDPC
cycle codes based on isomorphism theory. It is
shown in [6] that connected cycles may influence
the performance of NBLDPC cycle codes. How-
ever, in order to find out the best one from all
non-isomorphic NBLDPC cycle codes simply, we
only consider cycle distribution.

Isomorphism and NBLDPC cycle codes. Two
Tanner graphs G1(V1, C1) and G2(V2, C2) are iso-
morphic, denoted by G1(V1, C1) ∼= G2(V2, C2), if
there exist bijections f1 : V1 → V2 and f2 : C1 →
C2 such that there is an edge between v1 ∈ V1 and
c1 ∈ C1 if and only if there is an edge between
f1(v1) ∈ V2 and f2(c1) ∈ C2. Let A1 and A2 be
the biadjacency matrices of G1(V,C) and G2(V,C),
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respectively. Equivalently, A1 and A2 are isomor-
phic, denoted by A1

∼= A2, if there are bijections
f1 and f2 such that the elements (A1)ij = 1 if
and only if (A2)f1(i)f2(j) = 1. If A1 and A2 are
isomorphic, their corresponding exponent matrices
are also isomorphic. Consider two LDPC codes C1
and C2 given by the null spaces of A1 and A2, re-
spectively. If A1 and A2 are isomorphic, we say
that two codes C1 and C2 are isomorphic.

Based on Theorems 1 and 3 in Appendix A, the
parity-check matrix of an NBLDPC cycle code of
length ρL can be simplified as

HP =

[

I(0) I(0) · · · I(0)

I(p0)(= I(0)) I(p1) · · · I(pρ−1)

]

, (1)

where p0 = 0 and 0 6 pi 6 L− 1 for 1 6 i 6 ρ− 1.
For a ∈ {p0, . . . , pρ−1}, I(a) is an L × L square
matrix obtained by replacing ones of circulant per-
mutation matrix (CPM) I(a) with the nonzero el-
ements of GF(q). In order to avoid the cycles of
length 4 in the NBLDPC cycle codes, we assume
that ρ 6 L. Here we denote such square matrices
I(a) over GF(q) as SMs I(a) for short. Obviously,
the exponent matrix of HP is

P =

[

0 0 · · · 0

p0(= 0) p1 · · · pρ−1

]

. (2)

Notice that such P can also be obtained based
on Corollary 1 in [7]. Different from their study, we
give the conclusion from the perspective of CPMs
and their row permutations.

Cycles in NBLDPC cycle codes. A cycle in the
Tanner graph of the NBLDPC cycle code C over
GF(q) given by the null space of HP is associated
with a family of the ordered SMs inHP . As shown
in [5], a 2i-cycle in the Tanner graph of C (or HP )
is represented by an ordered sequences of SMs

I(0), I(0), I(pj1), I(pj2), . . . , I(0), I(pji−1
), I(pji),

where ji+1 = j1, 0 6 jk 6 ρ − 1, jk 6= jk+1, and
0 6 pjk 6 L − 1 for 1 6 k 6 i. More simply, such
a 2i-cycle can be written as type (pj1 , pj2 , . . . , pji).
In order to classify cycles into distinct types, we
give the equivalent relation of cycles as follows.

Theorem 1. Let pm, p′m ∈ {0, 1, . . . , L − 1}, for
0 6 m 6 i − 1. Type (p0, p1, . . . , pi−1) and type
(p′0, p

′
1, . . . , p

′
i−1) are equivalent if there exist some

c such that p′m = pm+c (mod i) for all m.
Let g be the girth of the code C. For g 6 2i 6

2g − 2, the necessary and sufficient condition for
the existence of a 2i-cycle in the Tanner graph of
the code C corresponds to the following relation:

i
∑

k=1

(−1)k(0− pjk) = 0 (mod L), (3)

with j1 = ji+1 and jk 6= jk+1.

An efficient exhaustive search of non-isomor-

phic exponent matrices. We can see from (2) that
the size of the search space of P is (L)ρ−1, since
0 6 pi 6 L − 1, 1 6 i 6 ρ − 1. As L and ρ in-
crease, this number is horrible. By employing iso-
morphism theory, we can further reduce the search
space. Notice that, for ρ being large, the size of
the search space is still too large although it can be
reduced. Moreover, for high rate codes, i.e., ρ ≈ L,
the search space is limited. Hence, the exhaustive
search is suitable for NBLDPC cycle codes with
moderate code rates.

Based on Theorem 4 in Appendix A, isomor-
phism of the exponent matrices (or their cor-
responding parity-check matrices and codes) re-
duces strongly the size of search space. An ex-
haustive search of non-isomorphic exponent ma-
trices can be achieved. According to (1) in
Theorem 4 in Appendix A, we can construct
NBLDPC cycle codes with girth at least 8, and
then we only need an exhaustive search for test-
ing all possible combinations of p1, p2, . . . , pρ−1

in the exponent matrix P given by (2), where
p1, p2, . . . , pρ−1 ∈ {1, 2, . . . , L − 1} are distinct.
Therefore, the size of search space is further

limited to
(

L−1
ρ−1

)

= (L−1)!
(ρ−1)!(L−ρ)! with L > ρ.

This also results in
(

L−1
ρ−1

)

exponent matrices.
Based on these exponent matrices, we can eas-
ily construct

(

L−1
ρ−1

)

NBLDPC cycle codes with
girth at least 8. Furthermore, we can also clas-
sify these codes (or exponent matrices) into non-
isomorphic codes (or non-isomorphic exponent
matrices) based on (2) and (3) in Theorem 4
in Appendix A. The resulting non-isomorphic
codes (or exponent matrices) are served as out-
put. On the other hand, we can also look for
the non-isomorphic codes (or non-isomorphic ex-
ponent matrices) in the process of searching the
combinations of p1, p2, . . . , pρ−1. We first find an
exponent matrix, then calculate out its isomor-
phic exponent matrices based on (2) and (3) in
Theorem 4 in Appendix A. The resulting matrices
are stored and available for the following process.
Next, we continue to search another exponent ma-
trix which is different from the ones obtained ear-
lier and then find its isomorphic exponent matri-
ces as well. Repeat the above process until all the
(

L−1
ρ−1

)

combinations of p1, p2, . . . , pρ−1 are found.
In our search, the latter procedure is employed. To
show the effectiveness of our proposed algorithm,
some search results of non-isomorphic exponent
matrices are given in Table B1 in Appendix B.

An algorithm for counting and enumerating cy-

cles in NBLDPC cycle codes. Based on the afore-
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mentioned, a 2i-cycle can be expressed as an i-
tuple, i.e., type (p0, p1, . . . , pi−1). Hence, to find
2i-cycles is equivalent to the search of i-tuples,
whose elements are chosen from the elements of
the second row in the exponent matrix P such
that (3) holds. The proposed algorithm consists
of three steps: (i) determine the nonequivalent
types of cycles and their corresponding number of
cycles; (ii) exhaustively search for nonequivalent
types of cycles based on the exponent matrix P

in (2); (iii) calculate the number of cycles with
different lengths.

Based on (3), the necessary and sufficient con-
dition for the existence of a 2i-cycle of type
(pj1 , pj2 , . . . , pji) is

− pj1 + pj2 + · · ·+ (−1)ipji = 0 (mod L),

with jk 6= jk+1, ji+1 = j1, jk ∈ {0, 1, . . . , ρ − 1},
and g 6 2i 6 2g − 2. Hence, the search of such
an i-tuple (pj1 , pj2 , . . . , pji) can be easily done by
a computer program. It is obvious that this is an
exhaustive search and the computational complex-
ity is about O(ρi), where 2i is the length of the
searched cycles. When 2i > 2g, Eq. (3) is not suf-
ficient, since i-tuple which consists of several short
cycles also satisfies (3). Hence, the tuple (or type
of large cycles) which consists of types of several
small cycles should be removed. For example, 4-
tuple (or type) (1, 1, 2, 2) contains type (1, 1) and
type (2, 2) of 4-cycles, then there exist no 8-cycles
of type (1, 1, 2, 2). Finally, nonequivalent types are
obtained. With these resultant types and the num-
ber of their corresponding cycles, the total number
of 2i-cycles can be calculated. Notice that types
of cycles of lengths 4, 8, 12, 16, 20 and their corre-
sponding number of cycles are given in Figure C1
and Table C1 in Appendix C, and a compari-
son with four competitive algorithms for counting
short cycles is given in Table D1 in Appendix D.

Optimized NBLDPC cycle codes. It was shown
in [8] that NBLDPC codes with large girth and
small number of shortest cycles have good perfor-
mance. Based on the above algorithm for count-
ing short cycles, cycle distributions of all non-
isomorphic NBLDPC cycle codes can be obtained
for a given ρ and L. Thus, NBLDPC cycle codes
with larger girth and smaller number of short cy-
cles can be chosen as optimized codes.

In order to improve error performance in the wa-
terfall and error-floor regions, we optimize nonzero
finite field elements of the parity-check matrices
to increase symbol/bit distance of the proposed
NBLDPC cycle codes by using the cycle cancel-
lation method [4]. The key of the method is to
cancel short cycles as much as possible. It is re-
markable that we can clearly find out short cycles
of NBLDPC cycle codes to be optimized. There-

fore, the cancel process of short cycles can be easily
performed by properly selecting nonzero field ele-
ments of GF(q). Note that the optimized code, in
which most of short cycles have been cancelled, is
used as the output code. To show the good perfor-
mance of our proposed codes, numerical simulation
results and analysis are given in Appendix E.

Conclusion. In this article, we studied the iso-
morphism of NBLDPC cycle codes and proposed
an efficient exhaustive algorithm to find an en-
semble of non-isomorphic LDPC cycle codes for a
given row weight and code length. Also proposed
is a simple algorithm for counting and enumerat-
ing short cycles of NBLDPC cycle codes. Based
on these two algorithms and the cycle cancella-
tion method, we can easily construct an NBLDPC
cycle code with optimized cycle distribution for a
given code rate and code length. Simulation re-
sults show that the designed codes perform well
under iterative decoding.
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