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Abstract Long period pseudo-random sequence plays an important role in modern information processing

systems. Base on residue number system (RNS) and permutation polynomials over finite fields, a pseudo-

random sequence generation scheme is proposed in this paper. It extends several short period random

sequences to a long period pseudo-random sequence by using RNS. The short period random sequences are

generated parallel by the iterations of permutation polynomials over finite fields. Due to the small dynamic

range of each iterative calculation, the bit width in hardware implementation is reduced. As a result, we

can use full look-up table (LUT) architecture to achieve high-speed sequence output. The methods to

find proper permutation polynomials to generate long period sequences and the optimization algorithm of

Chinese remainder theorem (CRT) mapping are also proposed in this paper. The period of generated pseudo-

random sequence can exceed 2100 easily based on common used field programmable gate array (FPGA) chips.

Meanwhile, this scheme has extensive freedom in choosing permutation polynomials. For example, 10905

permutation polynomials meet the long period requirement over the finite field Fq with q 6≡ 1(mod 3) and

q 6 503. The hardware implementation architecture is simple and multiplier free. Using Xilinx XC7020

FPGA chip, we implement a sequence generator with the period over 250, which only costs 20 18kb-BRAMs

(block RAM) and a small amount of logics. And the speed can reach 449.236 Mbps. The National Institute

of Standards and Technology (NIST) test results show that the sequence has good random properties.
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1 Introduction

Digital pseudo-random sequence is very important and has been widely used in modern information

processing systems, including communication, encryption/decryption, scrambling, etc. Methods based

on linear or non-linear feedback shift registers, congruential and chaotic mapping are common approaches

to generating pseudo-random sequence. The pseudo-random code is not only the basis of multiple access of

spread spectrum communication system but also the key of synchronization in 4G mobile communication

systems [1]. Feedback shift register has a simple and efficient implementation architecture [2,3]. However,

it only has small amount of polynomials and has been widely studied. Thus, it is not an appropriate

choice in security communication or encryption systems [1,4–7]. In the past few decades, pseudo-random

sequence generation method based on chaotic mapping has been deeply studied. The classical chaotic
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mappings include Tent, Chebyshev and Logistic mapping. A method using two chaotic sequences to

generate new chaotic mapping was proposed in [6]. Araki et al. [8] analyzed the performance of Logistic

maps in integer domain. These methods have similar problems with traditional chaotic mappings. That

is, the calculation bit width of its iterative loop will be extremely huge. For example, the output rate

can only reach tens of megabits per second of the sequence with period about 250 based on traditional

chaotic mapping. Fernando used memristors to generate pseudo-random sequence [9]. Test results based

on National Institute of Standards and Technology (NIST) shown the good random properties. However,

it is difficult to design the analog circuit for system synchronization. Ref. [10] proposed a method based

on semiconductor laser technology to generate the extremely high-speed chaotic sequence (up to 40 Gbps)

and analyzed the theoretical limit of the generation rate. However, this method is hard to be implemented

in general applications.

Pseudo-random sequence generated by chaotic method has long period property and good randomness,

which is a good choice for security and encryption systems. Because of the finite word length effect, the

iterative bit width is directly related to the period of classical chaotic mapping. For example, the common-

used methods, such as Logistic, Tent and Chebyshev maps can only reach the period of 108 at 60-bits

width. Hence, period extension is usually required in practice for traditional chaotic mapping and requires

more complex computation. On the other hand, excessive calculation bit width will result in the increase

of iterative boundaries in the hardware implementation, thus, the high sequence output rate is difficult to

be achieved. Residue number system (RNS) is one of the important contributions to the world for ancient

China, which uses several parallel and independent smaller calculations to complete large calculations

to reduce the hardware complexity. RNS has been deeply studied and widely used in encryption and

digital signal processing (DSP) systems. Aiming at the problem of large bit width calculation during the

iteration for random sequence generation, Harris Corporation proposed a sequence generation method

based on RNS and special chaotic polynomials [11], and pointed out that its information entropy is similar

to white noise [12]. However, it only gave the selection method of cubic iterative polynomial with specific

form in published literature. And the principles is not analyzed in detailed.

In this paper, we propose a high speed digital pseudo-random sequence generation scheme based on

permutation polynomials and RNS. We also present the polynomial selection method and the optimization

for Chinese remainder theorem (CRT) mapping. This scheme uses several relatively prime permutation

polynomials over the finite field to complete iterative operations independently and parallel. The iterative

loop has smaller computation delay. Hence the iterative speed can be ensured. Then, the iterative results

of each channel are extended by optimized CRT to a single equivalent integer ring. Thus, we can get an

extremely long period and high-speed sequence output. The NIST test results show that the generated

sequence can pass all NIST test items and has good randomness. Besides, the proposed scheme has a great

degree of freedom in iteration polynomials selection. For example, it has 10905 permutation polynomials

that meet the long period requirement just over finite field Fq with q 6≡ 1(mod 3) and q 6 503. Finally,

we propose a multiplier-free architecture and implement the proposed scheme in Xilinx XC7Z020 field

programmable gate array (FPGA) chip. The implementation results show that its generation rate can

reach up to 449.236 Mbps, and this is about 11 times of traditional method implemented on the same

platform. And the sequence period is also 250 times of traditional method. For hardware consumption,

it only costs 20 18 kb-BRAMs (block RAM) and a few logic resources.

2 RNS and permutation polynomial

2.1 Residue number system

RNS is a non-weight numerical representation system and defined by a set of relatively prime radix

{m1,m2, . . . ,mL} [13]. An integer X can be represented in RNS as {x1, x2, . . . , xL}, in which xi is the

residue of X mod mi and denoted as xi = 〈X〉mi
. The integers in the range of [0,M) can be uniquely

represented in this RNS, where M = ΠL
i=1mi. Let the representations of integers A, B and C in RNS

be {a1, a2, . . . , aL}, {b1, b2, . . . , bL} and {c1, c2, . . . , cL} respectively. According to the rules of modulo
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operations, if ci = (ai∆bi) mod mi, then C = 〈A∆B〉M , where “∆” can be the addition, subtraction or

multiplication. The RNS integer {x1, x2, . . . , xN} can be converted to the corresponding integer X by

the celebrated CRT,

X =

〈

L
∑

i=1

Mi

〈

Mi
−1
〉

mi

xi

〉

M

, (1)

where Mi = M/mi, 〈M
−1
i 〉mi

is the modulo multiplicative inverse of Mi mode mi and 〈〈M−1
i 〉mi

Mi〉mi
=

1. CRT is one of the fundamental theorems in RNS and plays an important role in RNS for R/B (residue

to binary) conversion, scaling, magnitude comparison, and overflow detection, etc.

In RNS, modulo multiplications and additions in residue channels are mutually independent, which

embodies the parallelism property of RNS and can achieve better performance of area, latency, and power

consumption. On the other hand, small integers in RNS can be mapped to traditional binary system

by CRT. That is, we can use low complex computation in RNS to complete extremely large number

computation in the traditional binary system and achieve high-speed output. In this paper, we just use

these properties of RNS to get long period and high speed sequence output.

2.2 Permutation polynomial

Permutation polynomial is the polynomial that can express complete residue classes [14,15]. A polynomial

f(x) ∈ Fq(x), if the associated function f : a → f(a) from Fq and Fq is a permutation of Fq, then f(x) is

a permutation polynomial of Fq [16]. Equally, permutation polynomial also can be defined as that f(x)

is permutation polynomial of Fq if and only if one of the following conditions holds:

(1) function f : c → f(c) is one-to-one (an injection);

(2) function f : c → f(c) is onto (a surjection);

(3) f(x) = a has a solution in Fq for each a in Fq;

(4) f(x) = a has a unique solution in Fq for each a in Fq.

However, these four conditions can only be used to verify whether a polynomial is a permutation

polynomial, but cannot generate a permutation polynomial. Dickson polynomial can be used to generate

permutation polynomial on given finite fields, this polynomial is as

gk(x, a) =

[k/2]
∑

j=0

k

k − j

(

k − j

j

)

(−a)jxk−2j , (2)

where k is the order of the polynomial and a ∈ Fq\{0}. By using Dickson polynomial, we can find all

permutation polynomials of degree at most five over all finite fields shown in Table A1 in Appendix A.

With careful selection of the constant term of permutation polynomial, the iteration period of each finite

field will be the longest. This is the foundation of long period sequence scheme proposed in this paper.

3 Pseudo-random sequence generation method based on RNS and permuta-

tion polynomial

3.1 Generation method

3.1.1 Iterative method and iteration period of permutation polynomial over finite field

Assuming fl(x) is a permutation polynomial over finite fields Fql , and the order of finite field is ml,

l = 1, 2, . . . , L. According to Subsection 2.2, if x ∈ [0,ml), then fl(x) ∈ [0,ml), they satisfy the injection

and surjection relation. The iterative process of permutation polynomials fl(x) over finite field Fql is

defined as

xl
k+1

= fl(x
l
k
), (3)

the iterative period pl of (3) is defined as follows: assuming that the initial iterative value is xl
0 and

{xl
1, x

l
2, . . . , x

l
N} is a set of N (N = 1, 2, 3, . . .) times iterative results, if the iterative result is one of the
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Figure 1 The proposed pseudo-random sequence generation method base on permutation polynomial and RNS.

elements of {xl
0, x

l
1, x

l
2, . . . , x

l
N} by the (N + 1)th iteration, then iterative period is N . Because fl(x) is

permutation polynomial, obviously, 0 < pl 6 ml.

3.1.2 Iterative period extension based on CRT

Assuming that pl = ml, GCD(mi,mj) = 1 and i 6= j, (GCD(mi,mj) is the greatest common divisor

of mi and mj), where mj is the order of each finite field. In other words, the orders of finite field are

relatively prime. Obviously, iterative polynomials generate no more than ΠL
l=1ml different residue vectors

{x1
k, . . . , x

l
k, . . . , x

L
k }, where k ∈ [0,ΠL

l=1ml). According to CRT, residue vectors {x1
k, . . . , x

l
k, . . . , x

L
k }

generated by L iterative processes over finite field are one to one mapping with an integer Xk. Because

pl = ml and GCD(mi,mj) = 1, the period of generated integer Xk also is ΠL
l=1ml.

The above procedure can be described in Figure 1. The iterations of L polynomials over L finite fields

generate L integer rings, denoted as Ri (i = 1, 2, . . . , L). Then, CRT is used to convert residue vector

{x1
k, . . . , x

l
k, . . . , x

L
k } to its corresponding integer Xk. The CRT converting results will generate a new

integer ring over the finite fields [0,ΠL
l=1ml). If the iterative polynomial fl(x) is nonlinear, the output

sequence of ring R has random property. In Figure 1, the post-processing module may contain Gauss

mapping, sequence balance adjustment, bit mapping in terms of different applications.

Figure 1 shows that several small iterative loops are mapped to an equivalent iterative loop with

extremely long period by using CRT. In turn, this method also replaces the finite field iteration which

has large dynamic range with parallel iteration on several small range finite fields. As a result, the

iterative boundary of loops is decreased and the generation rate is improved. In Figure 1, the method

to select permutation polynomial is the key of randomness and long period of output sequence. And the

optimization of CRT is the basic for reducing complexity.

3.2 Polynomial selecting method

According to Subsection 2.2, the mapping from x to f(x) is one-to-one if f(x) is a permutation polynomial.

However, the iterative period of permutation polynomial cannot always reach its order when the iteration

is defined as (3). The precondition of pl = ml is the basic to get extremely long period sequence for

our method in this paper. So, we need to select permutation polynomial carefully to guarantee this

requirement.

3.2.1 lost state and multiple loops problem

For permutation polynomial fl(x
l), if xl

a = fl(x
l
a) and the initial iteration value is xl

a, then

xl
k+1 = fl(x

l
k) = xl

k. (4)
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Figure 2 The state transition diagram of the iteration of

permutation polynomial.

Figure 3 The state transition diagram of the iteration of

f(x) =
〈

x3 + x2 + 2x+ 3
〉

5
.

Thus, each iteration has the same result and pl = 1, that is so-called lost state. Even though xl
a is

not chosen as the initial iterative value, the iterative period cannot reach up to ml because of the lost

state. Consequently, the longest period characteristic cannot be guaranteed. For example, the iterative

process according to (3) of permutation polynomial f(x) = 〈x3 + 3x2 + 3x+ 1〉5 on finite field Fq and

q 6≡ 1(mod 3) can be shown in Figure 2.

In which, the state transition loops are 0 → 1 → 3 → 4 → 0 and 2 → 2, the longest iterative loop

period is state 4, and state 2 is the lost state.

On the other hand, if 1 < pl < ml − 1 for any initial iterative value, the multi-loop problem will exist

so that any iterative loop fl(x) cannot achieve the longest period. Thus, the longest period characteristic

cannot be ensured. Take the permutation polynomial f(x) = 〈x3 + x2 + 2x+ 3〉5 on finite field Fq

q 6≡ 1(mod 3) as an example, its state transition is shown as Figure 3.

There are 2 iterative loops in Figure 3, 0 → 3 → 0 and 1 → 2 → 4 → 1. Obviously, the period

of two loops cannot reach up to 5 and the long period characteristics cannot be achieved. Therefore,

permutation polynomial with the longest period has only one iterative loop.

3.2.2 Permutation polynomial selection

In order to ensure the randomness of the sequence, the permutation polynomial should have nonlinear

characteristic. Since permutation polynomial cannot ensure the longest period characteristics in itera-

tions, thus, permutation polynomial should be carefully selected to eliminate the above problems and

make the random sequences after CRT extension have the longest period ΠL
l=1ml (i.e., the iterative period

of each iteration loop is ml).

Using the standard permutation polynomial in Table A1, we can generate many permutation poly-

nomials. In fact, the constant term of permutation polynomial means its mapping offset on finite field.

Different mapping offset leads to different number of iterative loops, but it would not change the per-

mutation characteristic of permutation polynomial. We proposed Algorithm 1 for searching the constant

terms of permutation polynomial so that the iterative period is the longest.

According to the definition of iterative period, the basic idea of this algorithm is as follows. Firstly,

choose a permutation polynomial 〈f(x)〉m without constant term. Then, choose an initial value x0 = k

to perform the iteration xk+1 = 〈f(xk) + c〉m, where c is the constant term and its value range is 0 to

m− 1. When current iterative result equal to initial iterative result at the first time, stop the iterating.

Finally, judge whether the number of iteration equals to the longest period. If condition is satisfied, the

constant c satisfies the condition of single loop iteration. Otherwise, lost state or multiple-loop situation

is existed.

Using this algorithm, we have searched the single loop permutation polynomial over finite field Fq

q 6≡ 1(mod 3) and q 6 503. There are 10905 polynomials meeting requirement. Table A2 in Appendix A

gives some of them on this condition. Therefore, the method proposed in this paper has extremely large

freedom in polynomial selection.

3.3 Optimization for CRT

CRT is the most important method for converting RNS to the binary system. By using CRT, the value of

integer and the arithmetic operations in RNS are one-to-one with those in traditional weighted systems.

However, the large modulo operation in (1) is inefficient in practice. On the other hand, the output
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Algorithm 1 An algorithm for selecting the constant term of permutation polynomial with the longest iterative period

1: Choosing a permutation polynomial 〈f(x)〉m;

2: x0 = k, x1 = 〈f(x0) + c〉m %setting iterative initial value and computing the corresponding results;

3: for c = 0, . . . ,m − 1 %the value range of constant term c in permutation polynomial;

do

4: for i = 1, . . . ,m %the number of iteration is increasing;

do

5: xi+1 = 〈f(xi) + c〉m; %iterative polynomial computation;

6: if xi+1 = x1 %if the current result equal to initial result;

then

7: break;

8: if i 6= m %if the current result equals to initial result and the number of iteration does not equal to m;

then

9: loop period is i; %multiple-loop situation are existing, constant c does not satisfy the longest period

property;

10: else

11: loop period is m; %iterative period reached maximum, constant c satisfy the longest period property;

12: end if

13: end if

14: end for

15: end for

of the scheme in this paper is a random sequence. If the mapping between RNS and binary system is

unique, the output sequence will still have long period property. Thus, we do not need to guarantee the

one-to-one property in arithmetic operations. As for the randomness of sequences, regardless of whether

they are accurately numerical value mapped by CRT, special tests still are necessary. According to the

above analysis, the computation of (1) can be optimized as

Xk =

L
∑

l=1

Mlx
l
k. (5)

Compared with (1), Eq. (5) removes the production of 〈Mi
−1〉mi

and the last modulo M operation.

We will prove that the mapping of (5) is one-to-one between {x1
k, . . . , x

l
k, . . . , x

L
k } and Xk as following.

Proof. Let Xi and Xj be the results of remainder vector {x1
i , . . . , x

l
i, . . . , x

L
i } and {x1

j , . . . , x
l
j , . . . , x

L
j }

mapped by (5) respectively. Assuming Xi = Xj , if we can prove that {x1
i , . . . , x

l
i, . . . , x

L
i } is equal to

{x1
j , . . . , x

l
j , . . . , x

L
j }, we can conclude that the map of (5) is injective.

According to (5), we have

Xi −Xj =
∑L

l=1
Ml(x

l
i − xl

j) =
∑L

l=1
Mlαl, (6)

where αl = xl
i − xl

j . Because xl
i ∈ [0,mi), so αl ∈ (−mi,mi).

Firstly, consider the two-channel residue vectors {x1
i , x

2
i } and {x1

j , x
2
j}, their mapping results are Xi

and Xj respectively. If mapping results by using (5) are equal, then

Xi −Xj = M1α1 +M2α2 = m2α1 +m1α2 = 0. (7)

Thus,
m2

m1
= −

α2

α1
. (8)

Note that GCD(m1,m2) = 1, the condition of α1 > m1, α2 > m2 is necessary for (8) to be established.

But it does not satisfy the requirement of αl ∈ (−ml,ml). So, α1 = α2 = 0 is necessary for (7).

For three-channel residue vectors {x1
i , x

2
i , x

3
i } and {x1

j , x
2
j , x

3
j}, the mapping results by (5) are Xi and

Xj respectively. If the computation results of (5) are equal, then

Xi −Xj = m2m3α1 +m1m3α2 +m1m2α3 = (m2α1 +m1α2)m3 +m1m2α3 = 0. (9)

Thus,
m2α1 +m1α2

α3
= −

m1m2

m3
. (10)
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Because GCD(m3,m1m2) = 1 and α3 ∈ (−m3,m3), similarly, Eq. (11) is necessary for (9) to be

established,

α3 = m2α1 +m1α2 = 0. (11)

Considering the condition of (7) and (11) to be established, we can get α1 = α2 = α3 = 0. Thus, the

mapping of (5) is injective for three-channel mapping.

Let Xi and Xj be the mapping results of L-channel remainder vectors {x1
i , . . . , x

l
i, . . . , x

L
i } and {x1

j , . . . ,

xl
j , . . . , x

L
j } by (5). If Xi = Xj , then

Xi −Xj = mL(mL−1(· · ·m3(m2α1 +m1α2) +m1m2α3)

+m1m2 · · ·mL−2αL−1) · · ·+m1m2 · · ·mL−1αL = 0. (12)

Similarly, due to GCD(mL,m1m2 · · ·mL−1) = 1 and αL ∈ (−mL,mL), we have

αL = mL(mL−1(· · ·m3(m2α1 +m1α2)

+m1m2α3) +m1m2 · · ·mL−2αL−1) = 0. (13)

The rest can be done in the same manner, we have

αl = 0 (l = 1, 2, . . . , L). (14)

This means that if the mapping results of residue vectors {x1
i , . . . , x

l
i, . . . , x

L
i } and {x1

j , . . . , x
l
j , . . . , x

L
j }

by (5) are equal, they must be equal. So, the mapping of (5) is one-to-one.

By improving the CRT mapping as shown in (5), the large modulo M operation is eliminated. Mean-

while, the multiplication of 〈Mi
−1〉mi

is also eliminated. Thus, the complexity of implementation can be

significantly simplified.

4 Random test and analysis

The most important characteristic of pseudo-random sequence is randomness. In this section, we perform

detailed randomness test and analysis for the sequence generated by the proposed scheme.

4.1 Test environment setting

4.1.1 polynomial selection

From Table A1 in Appendix A and the constant term searching algorithm, we select six permutation

polynomials on the finite field Fq with q 6≡ 1(mod 3) and show them as














































f1(x) =
〈

x3 + 3x2 + 3x+ 59
〉

251
,

f2(x) =
〈

x3 + 6x2 + 12x+ 77
〉

347
,

f3(x) =
〈

x3 + 9x2 + 27x+ 111
〉

443
,

f4(x) =
〈

x3 + 12x2 + 48x+ 42
〉

467
,

f5(x) =
〈

x3 + 15x2 + 75x+ 288
〉

479
,

f6(x) =
〈

x3 + 21x2 + 147x+ 8
〉

503
.

(15)

The period of sequence Xk generated by this group polynomials is M = 251×347×443×467×479×503

(about 252). If the generation speed is 100 Mbps, the period cycle is about 1.38 year.

4.1.2 Test tool

In this paper, the common used test tool, NIST, is adopted to evaluate the randomness of sequences

generated by the proposed scheme. NIST test standard contains 15 test items, including frequency

detection, discrete fourier transform test, linear complexity test, etc. This paper takes the latest software

STS-2.1.2 with the standard of NIST SP800-22. In NIST test standard, each test item will generate a

p value. If p value > 0.01, the corresponding test item is regarded as having passed the test [17].
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Table 1 Test results for the proposed pseudo-random sequence generation scheme

Test item
Passing rate p value p value Passing rate [6] p value [6]

p value > 0.01 Average Std p value > 0.01 Average

Frequency test 99.20% 0.4994 0.1372 98.00% 0.1538

Frequency test within a block 99.15% 0.4948 0.0182 99.00% 0.7792

Runs test 98.65% 0.5065 0.3433 100.00% 0.4944

Test for the longest run 99.05% 0.4971 0.1705 99.00% 0.5141

Binary matrix rank test 98.70% 0.4985 0.0935 99.00% 0.8832

Discrete Fourier transform 99.00% 0.4842 0.2865 98.00% 0.0428

Non-overlapping template 99.20% 0.5043 0.0986 98.38% 0.4794

Overlapping template 98.90% 0.5249 0.1426 100.00% 0.2493

Maurer’s universal 98.75% 0.4960 0.6358 100.00% 0.1917

Linear complexity test 99.00% 0.5034 0.0218 98.00% 0.1154

Serial test 98.85% 0.4936 0.4220 98.50% 0.2523

Approximate entropy test 98.85% 0.5012 0.4215 99.00% 0.4373

Cumulative sums test 99.35% 0.5012 0.1212 98.00% 0.5087

Random excursions test 97.75% 0.5183 0.3868 98.89% 0.4506

Random excursions variant 98.95% 0.5134 0.3046 99.01% 0.2544

The number of success items 15/15 – – 15/15 –

Table 2 The number of items which failed in individual sequence set testing

The number of items p value < 0.001 in each 15 test items The number of sequence sets

5 2

4 3

3 7

2 37

1 215

0 1736

Total 2000

4.2 Results and analysis

Because the length of the sequence of each test in STS-2.1.2 is no more than one million. We perform

2000 tests with sequence length of 106 and set the initial iterative value of (15) at random for each test.

The test results are shown in Table 1.

In Table 1, the 1st and 4th column are passing rate when significance level α is 0.01 [18], the former

is our test results and the latter is from reference [6]. The 2nd and last column are average of p value,

the former is our test results and the latter is from reference [6]. The 3rd column is standard error of our

p value test results. Table 1 shows that the passing rate of all test items is over 96.5%, which meets the

threshold requirement of passing rate of NIST SP800-22 standard [18]. Besides, Table 1 shows that most

of p value averages value are more than that in [6], which indicates that the randomness of sequences

generated by the method proposed in this paper is better than [6]. Table 2 gives the number of sequences

corresponding to the number of items with p value < 0.01.

In Table 2, 1736 of 2000 sequences can pass all of the test items. 215 sequences only fail in one test

item. Only 7 sequences fail in 3 test items and only 2 sequences fail in 5 test items. It shows that there

is not any sequence generated by the method proposed in this paper cannot pass the random number

testing standard in all of items, and there is only minority sequence failling in a few test items. This

indicates that the generated sequences have good randomness.
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5 Implementation based on FPGA and performance analysis

The main advantage of the proposed pseudo-random sequence generation method is that the pseudo-

random sequence with extremely long period can be generated by several small iterative loops. Thus,

each iterative loop has small iterative boundary, and it is easy to achieve high-speed output in hardware

implementation. Figure 4 is the FPGA implementation architecture based on the proposed scheme.

Large dynamic range and long period output can be obtained by the combination of several channels due

to each remainder channel can choose the finite field which has smaller dynamic range, such as smaller

than 10 bits. As a result, the iterative computation of each channel can be implemented by look-up

table (LUT). In addition, in order to further improve the generation speed, the CRT-based mapping part

also uses LUT. The LUT depth of each iterative loop is the order of the finite field of the channel, and

the corresponding bit width is B bits. Based on topology transitivity, take low C-bit data of the CRT

extended output as input of the binary bit mapping model. If there are 10 channels, each channel has

10 bits iterative width and each CRT mapping LUT has 16 bits width, a total of 260 kb LUTs is needed.

It is easy to be implemented in modern mainstream FPGA chips by Block Memory. Another benefit

of this architecture based on LUT is that the data in LUT can be pre-computed and configured by the

selected finite field permutation polynomial. Meanwhile, the iterative polynomials of each iterative loop

have a great degree of selection freedom. Thus, the proposed method and architecture is more flexible in

practice.

Figure 5 is the FPGA implementation architecture of traditional method. Table 3 is the comparison

results of hardware consumption, speed and sequence period between our method and traditional chaotic
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Table 3 Implementation comparison based on FPGA

Traditional architecture Proposed architecture

LUT 681 (1%) 245 (0%)

Register 181 (0%) 52 (0%)

BRAM 0 (0%) 20 (14%)

DSP 27 (12%) 0 (0%)

Generated speed 39.853 Mbps 449.236 Mbps

Period 240 290

mapping. In hardware implementations, the proposed architecture has 10 iterative loops. For traditional

methods, the long-period characteristics obtained only by increasing the iterative loop width. This must

cause the extremely slow output speed. Therefore, we use a common used periodic expansion method

in conventional method based architecture. In which, it includes a Logistic mapping module, a Tent

mapping module and an M-sequence generating module. The mutual scrambling result of them is taken

as the final output sequence. Both of them is implemented by Xilinx XC7Z020 chip. As one of SOC chips,

XC7Z020 is a commonly used low-cost SOC chip but it is not very good at area and speed. However,

the speed of the proposed architecture still reaches up to more than 449.236 Mbps and is about 11 times

as great as traditional architecture. Meanwhile, the sequence period of our method is about 250 times

of that of traditional method. In terms of the FPGA resource consumption, our method mainly costs

14% of the on-chip BRAM resources and only one third of the traditional method of LUT resources.

Furthermore, the traditional method needs about 12% on-chip multipliers and our method is multiplier-

free. Therefore, the method proposed in this paper has remarkable advantages no matter in the long

period characteristics of sequences, hardware resource cost or generating speed.

6 Conclusion

Based on RNS and permutation polynomial over finite fields, a long period, high speed, and low complexity

pseudo-random sequence generation scheme is proposed in this paper. We also propose a permutation

polynomial selection method to ensure long period characteristics. In addition, an optimization of CRT

mapping is presented and proved in detail. This scheme combines the non-linear iterative results on

several small finite fields into an extremely large number ring and gets extremely long period pseudo-

random sequence. The main advantages of the proposed generation scheme are as follows: (1) the

iterative boundary of each iterative loop is very small, hence the speed can be improved significantly;

(2) it is much easier to implement the extremely long period expansion only by increasing the iterative

channels; (3) polynomial selection has very large freedom; (4) the implementation complexity is simplified

and LUT can be used to implement this calculation, the generating speed can be further increased and

flexible configurable capabilities can be provided. A special test based on NIST is taken in this paper.

The results show that the generated sequences have good randomness. The implementation based on

FPGA shows that the speed of our architecture is about 11 times of traditional ones and the period is

about 250 times of that generated by traditional methods. Compared with traditional architecture, our

architecture mainly costs BRAM resources and is multiplier-free.
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Appendix A

Table A1 The standard permutation polynomials of degree at most five over all finite fields

The standard permutation polynomial over finite field Fq q

x Any value

x2 q ≡ 0(mod 2)

x3 q 6≡ 1(mod 3)

x3 − ax (a ∈ Fq a a not a square) q ≡ 0(mod 3)

x4 ± 3x q = 7

x4 + a1x
2 + a2x ( if x = 0 is the exclusive root in Fq) q ≡ 0(mod 2)

x5 q 6≡ 1(mod 5)

x5 − ax (a ∈ Fq) ( a not a fourth power) q ≡ 0(mod 5)

x5 − ax (a2 = 2) q = 9

x5 ± 2x2 q = 7

x5 + ax3 ± x2 + 3a2x (a ∈ Fq a not a square) q = 7

x5 + ax3 + 5−1a2x (a arbitrary) q ≡ ±2(mod 5)

x5 + ax3 + 3a2x (a ∈ Fq a not a square) q = 13

x5 − 2ax3 + a2x (a ∈ Fq a not a square) q ≡ 0(mod 5)
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https://doi.org/10.1007/s11432-015-0756-1
https://doi.org/10.1109/TCYB.2014.2363168
https://doi.org/10.1109/JQE.2013.2280917
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Table A2 A few permutation polynomials over finite field Fq and q 6≡ 1(mod 3) and q 6 503 with single iterative loop

m {q, r, s, c}

11 {1, 1, 4, 1}, {1, 6, 1, 2}, {1, 4, 9, 3}, {1, 3, 3, 4}, {1, 2, 5, 5}, {1, 10, 4, 10}

47 {1, 22, 36, 1}, {1, 31, 7, 2}, {1, 7, 32, 3}, {1, 24, 5, 4}, {1, 25, 36, 46}

59 {1, 24, 15, 2}, {1, 40, 22, 3}, {1, 18, 49, 4}, {1, 25, 51, 5}, {1, 5, 28, 57}

71 {1, 39, 10, 1}, {1, 67, 29, 2}, {1, 12, 48, 3}, {1, 19, 2, 4}, {1, 32, 10, 70}

83 {1, 21, 64, 1}, {1, 51, 37, 2}, {1, 6, 12, 3}, {1, 32, 37, 4}, {1, 62, 64, 82}

131 {1, 27, 112, 1}, {1, 62, 15, 2}, {1, 63, 13, 3}, {1, 11, 84, 5}, {1, 16, 129, 130}

251 {1, 12, 48, 1}, {1, 103, 106, 2}, {1, 15, 75, 3}, {1, 57, 79, 4}, {1, 239, 48, 250}

311 {1, 84, 175, 1}, {1, 23, 280, 2}, {1, 36, 121, 3}, {1, 40, 15, 4}, {1, 227, 175, 310}

347 {1, 244, 182, 1}, {1, 33, 16, 3}, {1, 115, 13, 6}, {1, 38, 250, 8}, {1, 103, 182, 346}

443 {1, 163, 144, 1}, {1, 240, 151, 2}, {1, 25, 356, 3}, {1, 57, 197, 5}, {1, 280, 144, 442}

467 {1, 396, 435, 1}, {1, 288, 95, 2}, {1, 82, 62, 3}, {1, 31, 9, 5}, {1, 71, 435, 466}

479 {1, 69, 150, 1}, {1, 324, 25, 2}, {1, 67, 219, 3}, {1, 53, 138, 5}, {1, 410, 150, 478}

491 {1, 21, 147, 1}, {1, 127, 139, 2}, {1, 33, 363, 3}, {1, 10, 197, 5}, {1, 470, 147, 490}

503 {1, 109, 104, 1}, {1, 267, 122, 2}, {1, 271, 1, 3}, {1, 8, 189, 5}, {1, 394, 104, 502}
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