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Abstract To tackle systems with both uncertainties and time delays, several modified active disturbance

rejection control (ADRC) methods, including delayed designed ADRC (DD-ADRC), polynomial based pre-

dictive ADRC (PP-ADRC), Smith predictor based ADRC (SP-ADRC) and predictor observer based ADRC

(PO-ADRC), have been proposed in the past years. This paper is aimed at rigorously investigating the

performance of these modified ADRCs, such that the improvements of each method can be demonstrated.

The capability to tackle time delay, the necessity of stable open loop and the performance of rejecting un-

certainties for these methods are fully studied and compared. It is proven that large time delay cannot be

tolerated for the stability of the closed-loop systems based on DD-ADRC and PP-ADRC. Moreover, stable

open loop is shown to be necessary for stabilizing the closed-loop systems based on SP-ADRC. Furthermore,

the performance of rejecting the “total disturbance” at low frequency for these modified ADRCs is evaluated

and quantitatively discussed. Finally, the simulations of a boiler turbine system illustrate the theoretical

results.
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1 Introduction

Time delays, both in the input and the output of systems, are ubiquitous in engineering practice [1–4]. In

the last decades, the control approaches featured with time delay compensation have been substantially

developed, such as Smith predictor (SP), predictor observer (PO), model predictive control (MPC),

etc [5–9]. These time delay compensation based control approaches have been rigorously proven to be

effective for the systems with exactly known model information [6, 10, 11]. Nevertheless, uncertainties,

which are commonly encountered in physical plants, can deteriorate the performance of tracking and

even destroy the stability of the existing control systems with compensation schemes considering time

delay only. Hence, designing the controller to handle both uncertainties and time delays is a fundamental

problem in practical engineering.

In the last decades, uncertainty estimator/observer based control approaches have been widely em-

ployed in many industrial sectors due to their intuitive structure of two degree of freedom, i.e., one to

achieve estimation and compensation for uncertainties, and the other to force the closed-loop system
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to have the desired performance. Inspired by such effective method for uncertainty rejection, lots of

literatures have concerned with the control approaches with both time delay compensation and uncer-

tainty cancellation. In [12], disturbance observer (DO) based control scheme for integral processes with

time delay was firstly presented, and its performance of rejecting two typical disturbances (ramp distur-

bances and step disturbances) was rigorously studied. Moreover, the engineering applications of the DO

based control approach for time delay systems were presented in [13, 14], where the stability conditions

for this method are analyzed based on Popov criterion. The control scheme combining MPC and DO,

proposed in [15], achieved setpoint tracking despite both model mismatches and external disturbances.

Additionally, the control approach, which combines DO and the truncated predictor feedback method,

was developed for time delay systems with uncertainty in [16] and the corresponding stability condition

was studied via Krasovskii functionals. Moreover, several modifications of active disturbance rejection

control (ADRC) based on different predictive methods were discussed in the literatures [17–22]. The con-

ventional ADRC, proposed in [23], utilizes extended state observer (ESO) to timely estimate the “total

disturbance”, i.e., the total effect of both internal uncertainties and external disturbances. The strong

robustness of ADRC against various uncertainties has been well proven for systems without delay [24–26].

Therefore, it is natural to develop modified ADRCs for uncertain systems with delays.

In [20], the delayed designed ADRC (DD-ADRC) was rigorously analyzed, where the control signal is

delayed in ESO to match the time delay in the system plant. In the meanwhile, a linear matrix inequality

(LMI) was presented as the stability condition for the closed-loop system based on DD-ADRC. Rational

polynomial approximation is another widely used method for dealing with time delay in ADRC designs.

The polynomial based predictive ADRC (PP-ADRC), which provides the prediction for control input or

system output according to the prediction model calculated by rational polynomial approximation, was

studied in [17, 18]. To obtain the predictions of the system state and the “total disturbance”, the SP

based ADRC (SP-ADRC) was proposed in [20], which designs ESO via the predictive output generated

by SP. Since PO in terms of infinite-dimensional differential equations is capable of predicting the system

state, [22] proposed the PO based ADRC (PO-ADRC) for a class of nonlinear uncertain systems with

output delay. Actually, the modified designs of ADRC, including DD-ADRC, PP-ADRC, SP-ADRC, and

PO-ADRC, have been an active issue in controlling uncertain systems with time delay. However, the

performance analyses as well as the improvements of these modified ADRCs have not been fully studied

and comprehensively compared. Thus, practitioners will have the headache of selecting the modification

for their specific plants. In this paper, the performance of these modified ADRCs will be rigorously

investigated in terms of the following.

(i) The capability to tackle time delay is discussed. It is proven that, to ensure the stability of closed-

loop system, DD-ADRC and PP-ADRC have limitations with respect to the size of the time delay,

whereas SP-ADRC and PO-ADRC can handle arbitrarily large time delay.

(ii) The necessity of stable open loop for the stability of the closed-loop system is studied. It is proved

that stable open loop is necessary for stabilizing the corresponding closed-loop system based on SP-ADRC.

Moreover, it is shown that the stability of the closed-loop systems based on DD-ADRC, PP-ADRC and

PO-ADRC can be achieved despite unstable open loop.

(iii) The capability to reject uncertainties is analyzed. The capabilities of modified ADRCs to reject

“total disturbance” at low frequency are explicitly discussed. Furthermore, the quantitative study for the

first order system with time delay shows that by tuning the bandwidth of ESO, PP-ADRC can perform

better uncertainty rejection than the other modifications.

Finally, the simulations of a boiler turbine system demonstrate the theoretical results in this paper.

The remainder of this paper is organized as follows. The system description is presented in Section 2.

In Section 3, the detailed introductions for modified ADRCs, including DD-ADRC, PP-ADRC, SP-

ADRC, and PO-ADRC are provided. In Section 4, the capability of modified ADRCs to tackle time

delay is discussed. The necessity of stable open loop for the stability of the closed-loop systems based on

modified ADRCs is demonstrated in Section 5. The discussions on the capability to reject uncertainty

are shown in Section 6. The simulations of a boiler turbine system are shown in Section 7. Finally, the

conclusion is given in Section 8.
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2 System description

Consider the following class of n-th order nonlinear uncertain systems with input delay

ẋ(t) = Ax(t) +B(u(t− τ) + δ(x(t), t)), y(t) = CTx(t), t > t0, (1)

where x(t) ∈ R
n is the system state vector, y(t) ∈ R is the measured output, u(t) ∈ R is the control

input with the known input delay τ and δ(x(t), t) ∈ R is an unknown and continuously differentiable

function. In the frame of ADRC, δ(x(t), t) is referred to the “total disturbance”, including both external

disturbances and unmodeled dynamics. Moreover, the nominal model (A ∈ R
n×n, B ∈ R

n×1, C ∈ R
n×1)

is exactly known. Additionally, t0 is the initial time. This paper is concerned with the performance of

the system (1) in the time region t ∈ [t0,∞). Hence, all time-varying variables are assumed to be zero

before the initial time t0.

The system (1) can model various practical systems in the fields of process control and chemical

engineering, such as boiler turbine systems [27], temperature control systems [28], chemical reactor con-

centration systems [29, 30] and water tank systems [31]. Therefore, control design for the system (1) is

an important and practical issue. Since both steady tracking error and transient tracking performance

are crucial in the control process, this paper is aimed at achieving the ideal trajectory of the states for

t ∈ [t0,∞) against both uncertainties and input delay in (1). The dynamics of the ideal trajectory x∗(t)

is assumed to be

ẋ∗(t) = Ax∗(t)−BKT(x∗(t)− r(t)), x∗(t0) = x(t0), (2)

where the feedback gain K ∈ R
n×1 is designed such that

AK = A−BKT (3)

has the desired eigenvalues and x∗(t) satisfies the required transient performance, such as small overshoot

and short rising time. Additionally, r(t) is the reference signal of the system state vector x(t), which is

assumed to be bounded.

Assumption 1. There exists a positive rmax such that ‖r(t)‖ 6 rmax for t > t0.

In addition, the controllability and the observability of the system (1), are assumed as follows.

Assumption 2. The system (1) is controllable. The system state x(t) and the “total disturbance”

δ(x(t), t) are observable.

The condition of the observability of the system state and the “total disturbance” for general nonlinear

uncertain systems is referred to [32].

Remark 1. Although the system (1) is in the form of input delay, the control design and analysis in

this paper can be applied to the system with both input and output delay since the latter one can be

equivalently transformed into the former one. Consider the following uncertain system with both input

and output delay.

ẋIO(t) = AxIO(t) +B(u(t− τu) + δIO(xIO(t), t)), y(t) = CTxIO(t− τy), t > tIO,0, (4)

where xIO(t) ∈ R
n is the system state vector, δIO ∈ R is the “total disturbance” and tIO,0 is the initial

time. In addition, τu and τy are the time delay for the input signal u(t) and the output signal y(t),

respectively. By denoting

x(t) = xIO(t− τy), δ(· , t) = δIO(· , t− τy), τ = τu + τy, t0 = tIO,0 + τy, (5)

the uncertain system (4) becomes the system (1), which is in the form of only input delay.

3 Modified ADRCs for time delay systems

In this section, four types of modified ADRCs for the uncertain system with input delay (1) are in-

troduced in details. To distinguish the variables of the modified ADRCs, (xa, ya, ua, δa) with (a =
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DD,PP,PPo, SP,PO) are used for the system state, the system output, the control input and the “total

disturbance” in the control system based on DD-ADRC, PP-ADRC of input type, PP-ADRC of output

type, SP-ADRC and PO-ADRC, respectively. Thus, the system plant (1) is reformulated as

ẋa(t) = Axa(t)+B(ua(t−τ)+δa(xa(t), t)), ya(t) = CTxa(t), t > t0, a = DD,PP,PPo, SP,PO. (6)

In addition, for the sake of talking convenience, the following useful notations are introduced. Denote

Ae =

[

A B

0 0

]

, Be =

[

B

0

]

, Ce =

[

C

0

]

,

ALe,a = Ae−Le,aC
T
e , AL,a = A−LaC

T, Le,a = [
La

Lδ,a
], La ∈ R

n×1, Lδ,a ∈ R, a = DD,PP,PPo, SP,PO.

Additionally, the Laplace transforms of the reference signal, the control input, the system output and

the “total disturbance” are denoted as follows:

R(s) = L(r(t))(s), Ua(s) = L(ua(t))(s), Ya(s) = L(ya(t))(s), ∆a(s) = L(δa(xa(t), t))(s), (7)

where (a = DD,PP,PPo, SP,PO) and L(·) denotes the Laplace transform.

3.1 Delayed designed ADRC (DD-ADRC)

Since the input signal u(t) is delayed in the system (6), it appears that this delay information could be

considered in the design of ADRC. Ref. [20] proposes a simple and intuitive design that the control signal

in ESO has the matched time delay, i.e.,

[

˙̂xDD(t)
˙̂
δDD(t)

]

= Ae

[

x̂DD(t)

δ̂DD(t)

]

+ Le,DD(yDD(t)− ŷDD(t)) +BeuDD(t− τ), ŷDD(t) = CTx̂DD(t), (8)

where uDD(t − τ) is the delayed input signal, and the observer parameter vector Le,DD is chosen such

that ALe,DD is Hurwitz. Additionally, x̂DD(t) and δ̂DD(t) are the estimations of the system state xDD(t)

and the “total disturbance” δDD(xDD(t), t), respectively. Therefore, with the aim of tracking the ideal

trajectory x∗(t) against the “total disturbance” δDD(xDD(t), t), the control input is designed as follows:

uDD(t) = −KT(x̂DD(t)− r(t+ τ)) − δ̂DD(t), t > t0. (9)

Finally, the DD-ADRC based closed-loop system is obtained, i.e., (6), (8) and (9).

3.2 Polynomial based predictive ADRC (PP-ADRC)

PP-ADRC was first proposed in [17]. The core of this method is providing an approximation for the time

delay system via rational polynomial approximation. Notice that the Laplace transform of u(t− τ) is

L(u(t− τ))(s) = e−τsL(u(t))(s). (10)

To deal with the non-rational function e−τs, rational polynomial approximation, such as Taylor expansion

[17, 23] and Pade approximation [18], can be applied. The most representative and simplest one is the

first-order Taylor expansion, which is presented as

eτs ≈ τs+ 1 or e−τs ≈
1

τs+ 1
. (11)

Based on the rational polynomial approximation (11), there are two designs of PP-ADRC that one is of

input type and the other is of output type. First, the PP-ADRC of input type is introduced. Due to the

Laplace transform (10) and the rational polynomial approximation (11), the approximation of u(t − τ),

denoted as uc(t), satisfies

L(uc(t))(s) =
1

τs+ 1
L(u(t))(s). (12)
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According to (12) and the system plant (6), the rational polynomial approximation based system is

obtained as follows:

˙̄xPP(t) = Ax̄PP(t) +B(uc(t) + δ̄PP(x̄PP(t), t)), yPP(t) = CTx̄PP(t), (13)

u̇c(t) = −
1

τ
uc(t) +

1

τ
uPP(t), (14)

where x̄PP and δ̄PP are the system state and the “total disturbance” in the rational polynomial approx-

imation based system, respectively. For the rational polynomial approximation based system (13) and

(14), there is an intuitional control approach, that is, applying ADRC to design the virtual control signal

uc(t) based on (13) and solving the control input uPP(t) from (14). In particular, the ESO for (13) is

designed as follows:

[

˙̂xPP(t)
˙̂
δPP(t)

]

= Ae

[

x̂PP(t)

δ̂PP(t)

]

+ Le,PP(yPP(t)− ŷPP(t)) +Beuc(t), ŷPP(t) = CTx̂PP(t), (15)

where the observer parameter Le,PP is selected to let ALe,PP be Hurwitz. Moreover, x̂PP(t) and δ̂PP(t)

are the estimations of the system state and the “total disturbance”, respectively. To achieve the ideal

trajectory (2), the virtual control signal uc(t) is designed as

uc(t) = −KT(x̂PP(t)− r(t)) − δ̂PP(t), t > t0. (16)

Then, the control input uPP(t) is solved from (14) as follows:

uPP(t) = τu̇c(t) + uc(t). (17)

Since the control input uPP(t) is obtained as a prediction via the rational polynomial approximation

(11), the control approach (15)–(17) is named as PP-ADRC of input type. The corresponding closed-

loop system is then obtained, i.e., (6) and (15)–(17).

Subsequently, the PP-ADRC of output type will be introduced. The key of the PP-ADRC of output

type is to get the prediction for the output yPPo. Then, by inputting the predictive output into ESO,

the predictions for the system state xPPo and the “total disturbance” δPPo can be acquired. Finally, by

the predictive values for the system state and the “total disturbance”, the control design is featured with

two degree of freedom which is similar with (9) and (16).

Since

L(yPPo(t+ τ))(s) = eτsYPPo(s), (18)

combined with the rational polynomial approximation (11), the predictive value of the output yPPo(t+τ)

is obtained as

yp,PPo(t) = τ ẏPPo(t) + yPPo(t). (19)

Based on the predictive output (19), the ESO is constructed as

[

˙̂xPPo(t+ τ)
˙̂
δPPo(t+ τ)

]

= Ae

[

x̂PPo(t+ τ)

δ̂PPo(t+ τ)

]

+ Le,PPo(yp,PPo(t)− ŷPPo(t+ τ)) +BeuPPo(t), ŷPPo(t+ τ)

= CTx̂PPo(t+ τ), (20)

where the observer parameter Le,PPo is designed to make ALe,PPo be Hurwitz. Moreover, x̂PPo(t + τ)

and δ̂PPo(t+ τ) are the predictions for the system state and the “total disturbance”, respectively. Then,

aimed at achieving the ideal trajectory (2), the control input is designed as

uPPo(t) = −KT(x̂PPo(t+ τ) − r(t+ τ)) − δ̂PPo(t+ τ), t > t0. (21)

Finally, the PP-ADRC of output type based closed-loop system is obtained, i.e., (6) and (19)–(21).

Furthermore, the following lemma illuminates the relationship between the PP-ADRC of input type

(15)–(17) and the PP-ADRC of output type (19)–(21).
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Lemma 1. For the uncertain system with input delay (6), consider the PP-ADRC of input type (15)–

(17) and the PP-ADRC of output type (19)–(21). Let the initial values of (xa, x̂a) be zero for (a =

PP,PPo) and the observer parameters be the same, i.e., Le,PP = Le,PPo, then

UPP(s) = Guy,PP(s)YPP(s) +Gur,PP(s)R(s), UPPo(s) = Guy,PPo(s)YPPo(s) +Gur,PPo(s)R(s), (22)

where

Guy,PP(s) = Guy,PPo(s), Gur,PP(s)e
τs = Gur,PPo(s)(τs+ 1). (23)

According to (23), the transfer functions from the system output y to the control input u are the same

for the PP-ADRC of input type and output type. Since the same system plant (6) is considered, the

stability of the closed-loop systems based on the PP-ADRC of input type and output type is identical.

Therefore, in the rest of this paper, only the analysis of the PP-ADRC of input type is presented to

investigate the capability of PP-ADRC.

3.3 Smith predictor based ADRC (SP-ADRC)

Different from the prediction design via rational polynomial approximation of PP-ADRC, SP-ADRC is

aimed at using SP to get the predictive value of the system output ySP(t+ τ), which is the input of the

ESO [19]. Since the input signal, the system output and the nominal model (A,B,C) are known, SP in

the time domain has the following form:

˙̄xSP(t) = Ax̄SP(t)+BuSP(t−τ), ȳSP(t) = CTx̄SP(t), yp,SP(t) = ySP(t)− ȳSP(t)+ ȳSP(t+τ), t > t0, (24)

where x̄SP(t) is the state of SP and yp,SP(t) is the output of SP for predicting the system output ySP(t+τ).

Then, to obtain the predictions for the system state xSP and the “total disturbance” δSP, the prediction

yp,SP(t) is used in the design of ESO as follows:

[

˙̂xSP(t+ τ)
˙̂
δSP(t+ τ)

]

= Ae

[

x̂SP(t+ τ)

δ̂SP(t+ τ)

]

+Le,SP(yp,SP(t)−ŷSP(t+τ))+BeuSP(t), ŷSP(t+τ) = CTx̂SP(t+τ), (25)

where Le,SP is the designed parameter such that ALe,SP is Hurwitz. Moreover, x̂SP(t+ τ) and δ̂SP(t+ τ)

are the predictions for the system state and the “total disturbance”, respectively. To achieve the ideal

trajectory (2), the control input is designed as

uSP(t) = −KT(x̂SP(t+ τ)− r(t + τ))− δ̂SP(t+ τ), t > t0. (26)

Finally, the SP-ADRC based closed-loop system is acquired, i.e., (6) and (24)–(26).

3.4 Predictor observer based ADRC (PO-ADRC)

Predictor observer (PO), essentially in terms of infinite-dimensional differential equations, is capable of

predicting the system state under known model information. Therefore, it is natural to combine PO and

ESO for uncertain systems with time delays. The extended state predictor observer is proposed in [22],

which is constructed as follows:














[

˙̂xPO(t+ τ)
˙̂
δPO(t+ τ)

]

= Ae

[

x̂PO(t+ τ)

δ̂PO(t+ τ)

]

+ eAeτLe,PO(yPO(t)− ŷPO(t+ τ)) +BeuPO(t),

ŷPO(t+ τ) = CTx̂PO(t) + CT
e

∫ τ

0 e
AesLe,PO(yPO(t− s)− ŷPO(t+ τ − s))ds,

(27)

where the parameter vector Le,PO is chosen such that ALe,PO is Hurwitz. Additionally, x̂PO(t + τ) and

δ̂PO(t+ τ) are the predictions for the system state xPO and the “total disturbance” δPO, respectively. To

track the ideal trajectory (2) against the “total disturbance”, the control input is designed as follows:

uPO(t) = −KT(x̂PO(t+ τ)− r(t + τ)) − δ̂PO(t+ τ), t > t0. (28)
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Finally, the PO-ADRC based closed-loop system is obtained, i.e., (6), (27) and (28).

The ideas and the designs of modified ADRCs, including DD-ADRC, PP-ADRC, SP-ADRC and PO-

ADRC, have been introduced in detail. In the next section, the capabilities of these modified ADRCs to

tackle time delay will be presented.

4 Capability to tackle time delay

The following theorem shows that for DD-ADRC and PP-ADRC, the stability condition for the corre-

sponding closed-loop systems depends on the size of time delay.

Theorem 1. Consider the system (6) with Assumptions 1 and 2, and δ = 0. Then, for any nonzero

controller parameters (K, Le,DD, Le,PP), there exists a positive τ∗ such that the DD-ADRC (8) and (9),

and the PP-ADRC (15)–(17) based closed-loop systems are both unstable for τ = τ∗.

The proof of Theorem 1 is presented in Appendix A. From Theorem 1, the stability of the closed-loop

systems based on DD-ADRC and PP-ADRC has a restriction on the size of time delay.

Compared with DD-ADRC and PP-ADRC, the SP-ADRC and the PO-ADRC based closed-loop sys-

tems are able to be stable for arbitrarily large time delay, as indicated in the following theorem.

Theorem 2. Consider the system (6) with Assumptions 1 and 2, and δ = 0. Let AK , ALe,SP and

ALe,PO be Hurwitz and the initial value of the SP (24) satisfy x̄SP(t0) = xSP(t0). Then, the closed-loop

systems based on the SP-ADRC (24)–(26) and the PO-ADRC (27) and (28) are both stable for any τ > 0.

The proof of Theorem 2 is given in Appendix A. From Theorem 2, the stability of the PO-ADRC and

the SP-ADRC based closed-loop systems can be ensured for arbitrarily large time delay under the same

condition for DD-ADRC and PP-ADRC.

In conclusion, SP-ADRC and PO-ADRC can handle arbitrarily large time delay for suitable controller

parameter. However, DD-ADRC and PP-ADRC have limitations on the size of time delay.

5 Necessity of stable open loop

For the closed-loop systems based on modified ADRCs, the influence of the matrix A is studied in this

section, which is started from the stability condition for the SP-ADRC based closed-loop system.

Theorem 3. Consider the SP-ADRC based closed-loop system (6) and (24)–(26) with Assumptions 1

and 2. Let the “total disturbance” be nonzero constant. Then, A being Hurwitz is necessary for the

tracking error ‖xSP(t)− x∗(t)‖ to be bounded for any t > t0.

The proof of Theorem 3 is given in Appendix A. According to Theorem 3, even if the “total disturbance”

is constant, the stability of the closed-loop system based on the SP-ADRC (24)–(26) requires the condition

that the matrix A is Hurwitz, which implies that the corresponding open-loop system is stable. Actually,

the requirement of stable open loop is implicated by that the dynamic equation of the prediction error

(ySP(t+ τ) − yp,SP(t)) depends on the matrix A. Hence, the unstable matrix A results in the boundless

estimation error of the ESO in SP-ADRC (25), as long as there exists uncertainty in the system (6).

Compared with SP-ADRC, for the DD-ADRC (8) and (9), and the PP-ADRC (15)–(17), the corre-

sponding closed-loop systems can be stable for constant disturbance if the control parameters (K, Le,DD,

Le,PP) are designed such that the matrices AK , ALe,DD and ALe,PP are Hurwitz, which is illustrated in

the following theorem.

Theorem 4. Consider the system (6) with Assumptions 1 and 2, and A being unstable. Let the “total

disturbance” be nonzero constant and let AK , ALe,DD and ALe,PP be Hurwitz. Then, for the DD-ADRC

(8) and (9), and the PP-ADRC (15)–(17) based closed-loop systems, there exists a positive τ∗∗ such that

the tracking errors ‖xDD(t)− x∗(t)‖ and ‖xPP(t)− x∗(t)‖ are bounded for any t > t0 and any τ < τ∗∗.

The proof of Theorem 4 is presented in Appendix A. From Theorem 4, the condition of stable open

loop is no longer required for stabilizing the closed-loop systems based on DD-ADRC and PP-ADRC if

the time delay is small.
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For PO-ADRC, even if the open-loop system is unstable and the time delay is large, the corresponding

closed-loop system is stable if the control parameters (K, Le,PO) are designed such that the matrices AK

and ALe,PO are Hurwitz, as indicated in the following theorem.

Theorem 5. Consider the PO-ADRC based closed-loop system (6) and (27)–(28) with Assumptions 1

and 2. Let

|δPO(xPO, t)| 6 αx‖xPO‖+ αd, (29)

where αx and αd are positives. Let AK and ALe,PO be Hurwitz. Then, there exist αx in (29) and a

positive γ such that the tracking error satisfies

‖xPO(t)− x∗(t)‖ 6 γ (‖xPO(t0)− x̂PO(t0)‖+ αd + αx(rmax + ‖xPO(t0)‖)) , t > t0. (30)

The proof of Theorem 5 is presented in Appendix A. Theorem 5 illustrates that the PO-ADRC can

handle the systems (6) with unstable open loop and any large time delay. Additionally, the boundary of

the tracking error, which is related to the initial values, the size of uncertainty and the boundary of the

reference signal, is explicitly displayed in (30).

6 Capability to reject uncertainty

For the closed-loop systems based on modified ADRCs, the influences on the tracking error and estimation

error are from three aspects, i.e., the initial values of the system state and the states of observers, the

reference signal, and the “total disturbance”. In this section, the capabilities of modified ADRCs to

handle uncertainty, which are the influences from the “total disturbance”, are discussed. Hence, without

loss of generality, it is assumed that the initial values and the reference signal are zero in this section.

Denote the estimation errors for the system state and the “total disturbance” as

xe,a = xa − x̂a, δe,a = δa − δ̂a, a = DD, PP, SP, PO, (31)

respectively. In addition, the corresponding Laplace transforms are denoted as

Xe,a(s) = L(xe,a)(s), ∆e,a(s) = L(δe,a)(s), a = DD, PP, SP, PO. (32)

Moreover, the following notations are presented.

Gδeδ,DD(s) = s(s+ Lδ,DDC
T(sI −AL,DD)

−1B)−1, Gxeδ,DD(s) = (sI −AL,DD)
−1BGδeδ,DD(s), (33)























Gδeδ,PP(s) = (s+ (e−τs(1 + τs)− 1)Lδ,PPC
TMPPB)(s+ e−τs(1 + τs)Lδ,PPC

TMPPB)−1,

Gxeδ,PP(s) = (1− e−τs(1 + τs)(1 −Gδeδ,PP(s)))MPPB,

MPP = (sI −AL,PP + (1− e−τs(1 + τs))BKT(sI −A+ e−τs(1 + τs)BKT)−1(sI −A))−1

· (sI −AK)(sI −A+ e−τs(1 + τs)BKT)−1,

(34)

{

Gδeδ,SP(s) = (s+ (1− e−τs)Lδ,SPC
T(sI −AL,SP)

−1B)(s+ Lδ,SPC
T(sI −AL,SP)

−1B)−1,

Gxeδ,SP(s) = (sI −AL,SP)
−1(−LSPC

T(sI −A)−1(e−τs − 1) +Gδeδ,SPI)B,
(35)



























Gδeδ,PO(s) = (s+ (1− e−τs)Lδ,POC
T(sI −AL,PO)

−1B)(s+ Lδ,POC
T(sI −AL,PO)

−1B)−1,

Gxeδ,PO(s) =
(

sI −A+
[

I 0
]

eAeτLe,POEs

)−1

Gδeδ,POB,

Es =

(

1 + CT
e

∫ τ

0

e−(sI−Ae)ξdξLe,PO

)−1

CTe−τs,

(36)























Gyδ,DD(s) = CT (sI −A+ e−τsBKT )−1(e−τsBKTGxeδ,DD(s) +B − e−τs(1−Gδeδ,DD)B),

Gyδ,PP(s) = CT(sI− A+ e−τs(1 + τs)BKT)−1(e−τs(1 + τs)(BKTGxeδ,PP −(1−Gδeδ,PP(s))B) +B),

Gyδ,SP(s) = CT(sI −A+BKT)−1(BKTGxeδ,SP +BGδeδ,SP),

Gyδ,PO(s) = CT(sI −A+BKT)−1(BKTGxeδ,PO +BGδeδ,PO).
(37)
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Table 1 Comparison of the capabilities of modified ADRCs to reject uncertainty

lim
ω→0

Gyδ,a(jω)

Gyδ,b(jω)
, a, b = DD,PP,SP,PO The main part

Gyδ,PP(jω)

Gyδ,DD(jω)
2ωo+KB

τω2
o+2ω0+KB

O( 1
ωo

)

Gyδ,PP(jω)

Gyδ,SP(jω)
A(2ωo+KB)

τAKω2
o+2Aωo+2AK

O( 1
ωo

)

Gyδ,PP(jω)

Gyδ,PO(jω)
A2(2ωo+KB)

(KB(eAτ−1)+AAKτ)ω2
o+2A(BKeAτ+AK)ωo+A2BKeAτ O( 1

ωo
)

Gyδ,DD(jω)

Gyδ,SP(jω)

A(τω2
o+2ωo+BK)

τAKω2
o+2Aωo+2AK

A
AK

+O( 1
ωo

)

Gyδ,DD(jω)

Gyδ,PO(jω)

A2(τω2
o+2ωo+BK)

(KB(eAτ−1)+AAKτ)ω2
o+2A(BKeAτ+AK)ωo+A2BKeAτ

A2τ

KB(eAτ−1)+AAKτ
+ O( 1

ωo
)

Gyδ,SP(jω)

Gyδ,PO(jω)

A(τAKω2

o+2Aωo+2AK)

(KB(eAτ−1)+AAKτ)ω2
o+2A(BKeAτ+AK)ωo+A2BKeAτ

AAKτ

KB(eAτ−1)+AAKτ
+ O( 1

ωo
)

Then, the following proposition presents the transfer functions from the “total disturbance” to the

estimation error and the system output.

Proposition 1. Consider the system plant (6) with the DD-ADRC (8) and (9), the PP-ADRC (15)–(17),

the SP-ADRC (24)–(26), and the PO-ADRC (27)–(28). Assume that the reference signal r(t) and the

initial value of the system state and the state of observers (xa, x̂a, δ̂a, x̄SP) for (a = DD, PP, SP, PO)

are zero, then

Xe,a(s) = Gxeδ,a(s)∆a(s), ∆e,a(s) = Gδeδ,a(s)∆a(s), Ya(s) = Gyδ,a(s)∆a(s). (38)

From Proposition 1, how the “total disturbance” affects the ESO’s estimation error as well as the

system output is explicitly shown in the form of the transfer function (38), where the definition of

(Gxeδ,a, Gδeδ,a, Gyδ,a) are given in (33)–(37). To further analyze the capabilities of modified ADRCs to

reject uncertainty, by denoting j as imaginary unit, the following proposition is presented.

Proposition 2. Consider the system plant (6) with the DD-ADRC (8) and (9), the PP-ADRC (15)–(17),

the SP-ADRC (24)–(26), and the PO-ADRC (27) and (28). Assume that all conditions in Proposition 1

are satisfied, A is Hurwitz and Assumption 2 is satisfied. Let AK and ALe,a be Hurwitz for (a =

DD, PP, SP, PO). Then, the following equations are hold.

lim
ω→0

Gyδ,a(jω) = 0, a = DD, PP, SP, PO. (39)

Proposition 2 indicates the influence of the “total disturbance” on the system output tends to zero as

the frequency becomes lower owing to (39). Therefore, these four types of modified ADRCs have strong

capability to mitigate uncertainty at low frequency.

Furthermore, the smaller |Gyδ,a(jω)| implies the stronger capability to rejecte the “total disturbance”.

Consequently, the comparison of the capabilities of modified ADRCs to reject uncertainty is demonstrated.

Since |Gyδ,a(jω)| are complex polynomials for high order systems, it is impossible to determine which

|Gyδ,a(jω)| is smaller for general n-th order systems. The following discussion is limited to the first order

uncertain systems with time delay, which are widely used for describing the physical plants in engineering

practice [2, 33, 34].

Theorem 6. Consider the system plant (6) with the system order n = 1 and C = 1. Assume that all

the conditions in Proposition 2 are satisfied. Let the parameters of ESOs be

Le,a =

[

2ωo +A

ω2
o/B

]

, a = DD, PP, SP, PO, (40)

where ωo > 0. Then, the comparison of the capabilities of modified ADRCs to reject uncertainty is shown

in Table 1.

The proof of Theorem 6 is given in Appendix A. In Theorem 6, all the eigenvalues of ALe,a for

(a = DD, PP, SP, PO) are placed at (−ωo, 0) in the complex plane by (40), which implies that the

ESOs have the same bandwidth ωo [35]. The comparison of the capabilities of modified ADRCs to reject
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Figure 1 (Color online) (a) The simulation results of four modified ADRCs for three cases of uncertainties; (b) the

simulation results of four modified ADRCs for the uncertainties of Case 1 and A = 1× 10−3.

uncertainty is quantitatively discussed in Table 1, where the expressions of the comparison between each

two different methods at low frequency are explicitly presented in the 2nd column. Furthermore, to

simplify such complicated expressions, the corresponding magnitudes of the observer bandwidth ωo are

calculated as shown in the 3rd column in Table 1. As a result, PP-ADRC shows the stronger capability to

reject the “total disturbance” than the other modified ADRCs at low frequency by tuning the bandwidth

of ESO to be larger. For DD-ADRC, SP-ADRC and PO-ADRC, the capabilities to reject uncertainty

are on the same level, since the transfer functions have the same magnitudes of the observer bandwidth.

Moreover, if the feedback gain K is selected such that the real parts of AK ’s eigenvalues become smaller,

DD-ADRC is more capable of cancelling the “total disturbance” than SP-ADRC and PO-ADRC.

7 Simulation

In this section, the simulations of the boiler turbine unit modeled in [27] are presented to illustrate

the theoretical results in this paper. The dynamics of the boiler turbine unit has the same form as the

system (1) where the system parameters satisfy (A = −6.9×10−3, B = 4.35×10−2, C = 1, τ = 60, t0 =

0). Moreover, the control input is the fuel rate fed into the furnace and the system output is the power

generated by burning the fuel. The control objective for the boiler turbine system is letting the output

track the reference signal r = 300 (MW) despite various uncertainties. To demonstrate the effectiveness of

the modified ADRCs, the following three typical cases of uncertainties are considered, including external

disturbance (Case 1), unmodeled nonlinear dynamics (Case 2) and parameter perturbation (Case 3).

Case 1: δ =

{

0, 0 6 t < 1000,

5, t > 1000,
Case 2: δ = (Ax(t))2 + sin

(

x(t)

2π

)

+ eA(x(t)−300)
, Case 3: δ =

0.2Ax(t)

B
.

The four main modifications of ADRC, i.e., the DD-ADRC (8) and (9), the PP-ADRC (15)–(17),

the SP-ADRC (24)–(26), and the PO-ADRC (27) and (28), are applied to the boiler turbine system.

With the same observer bandwidth (ωo = 0.015) and the same feedback gain (K = 0.013), the simula-

tion results of the modified ADRCs for the three cases of uncertainties are shown in Figure 1(a). From

Figure 1(a), the response curves of the system output for four modified ADRCs and three cases of uncer-

tainties demonstrate the capabilities of modified ADRCs to deal with both time delay and uncertainties.

Additionally, Figure 1(a) demonstrates that PP-ADRC is more capable of rejecting disturbance than

the other modified ADRCs, since the corresponding closed-loop system has faster tracking performance

despite the uncertainties occurring in t > 1000 s in Case 1 and t > 0 s in Cases 2 and 3.



Chen S, et al. Sci China Inf Sci July 2018 Vol. 61 070223:11

To illustrate the necessity of stable open loop for SP-ADRC to handle uncertainties, the stable open

loop of the boiler turbine system is changed into an unstable one by letting A = 1 × 10−3. With the

same control parameters, Figure 1(b) shows the simulation results of the four modified ADRCs for the

uncertainty of Case 1 and (A = 1× 10−3). Since there is no uncertainty in the boiler turbine system for

0 6 t < 1000 (in s), the closed-loop systems based on modified ADRCs are stable. Since the external

disturbance affects the physical plant for t > 1000 s, the SP-ADRC based closed-loop system becomes

unstable for t > 1000 s, which illustrates that stable open loop is necessary for stabilizing the closed-loop

system based on SP-ADRC. Additionally, the other three modified ADRCs are capable of handling time

delay systems with unstable open loop as shown in Figure 1(b).

8 Conclusion

In this paper, the modified ADRCs for time delay systems, namely, DD-ADRC, PP-ADRC, SP-ADRC

and PO-ADRC, are rigorously studied. Firstly, the capabilities of these modified ADRC to deal with time

delay are discussed. It is shown that the stability of the DD-ADRC and the PP-ADRC based closed-loop

system has the restriction of the size of time delay. Nevertheless, SP-ADRC and PO-ADRC can handle

arbitrarily large time delay when there is no uncertainty. Then, in the discussion of necessity of stable open

loop, the stability of the closed-loop system based on SP-ADRC requires stable open loop, whereas DD-

ADRC, PP-ADRC and PO-ADRC can stabilize uncertain systems even without this condition. Thirdly,

for the capability to reject uncertainty, these modified ADRCs are capable of uncertainty rejection at low

frequency. Furthermore, the quantitative comparison of the capabilities to reject uncertainty between

each two control approaches is explicitly presented. PP-ADRC are more capable of uncertainty rejection

than other modified ADRCs by tuning ESO’s bandwidth. Finally, the simulations of a boiler turbine

system illustrate the theoretical results.

The paper presents a comprehensively comparison of the four main modified ADRCs by rigorous

analysis. It is expected that the results will greatly help practitioners to design the modification of

ADRC in dealing with systems with both uncertainties and time delays.
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Appendix A

Proof of Theorem 1. For the DD-ADRC based closed-loop system (6), (8) and (9), the characteristic function is obtained

as follows:

Fc,DD(s, τ) = (sI −A+BKTe−τs)(sI −ALe,DD). (A1)

Since the control parameters (K, Le,DD) are nonzero, the characteristic function (A1) is related to the time delay τ .

Therefore, there exists τ̃DD > 0 such that the equation Fc,DD(jω, τ̃DD) = 0 has solution ω∗. Hence, there exists τ∗DD > τ̃DD

such that the characteristic equation (Fc,DD(s, τ∗) = 0) has solutions in the right-half plane. The closed-loop system based

on the DD-ADRC (8) and (9) is stable if and only if all the solutions of the characteristic equation (Fc,DD(s, τ) = 0) are in

the left plane1). Hence, the closed-loop system based on the DD-ADRC (8) and (9) is unstable if τ = τ∗DD.

Since the characteristic function of the PP-ADRC based closed-loop system (6) and (15)–(17) is

Fc,PP = det

















sI − A (1 + τs)e−τsBKT (1 + τs)e−τsB

−LPPC
T sI −AL,PP 0

−Lδ,PPC
T Lδ,PPC

T s

















, (A2)

which is also related to time delay, the closed-loop system is unstable for the time delay τ∗PP due to the same proof as in

the case of DD-ADRC.

1) Naito T, Hara T, Hino Y, et al. Differential Equations With Time Lag — Introduction to Functional Differential

Equations. Tokyo: Makino Shoten, 2002.

https://doi.org/10.1016/j.cherd.2010.06.006
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https://doi.org/10.1016/0005-1098(91)90110-N
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Proof of Theorem 2. It will be first proved that the closed-loop system based on the SP-ADRC (24)–(26) is stable for

arbitrarily large time delay. Owing to the system plant (6) and the SP in time domain (24), since the “total disturbance”

δSP = 0, the following equations are obtained.

xSP(t) = eA(t−t0)xSP(t0) +

∫ t

t0

eA(t−θ)BuSP(θ − τ)dθ, x̄SP(t) = eA(t−t0)x̄SP(t0) +

∫ t

t0

eA(t−θ)BuSP(θ − τ)dθ. (A3)

Since the initial values are the same, i.e., xSP(t0) = x̄SP(t0), combined with (24) and (A3), it yields that yp,SP(t) =

ySP(t+ τ). By (25) and (26), the closed-loop system (6) and (24)–(26) is stable due to the stable matrices AK and ALe,SP.

Then, consider the PO-ADRC based closed-loop system (6), (27) and (28). Since the “total disturbance” δPO = 0, the

system (6) is reformulated into the following linear system with time delays.

˙̄xPO(t) = Aex̄PO(t) + Beu(t − τ), yPO(t) = CT
e x̄PO(t), t > t0, (A4)

where the extended state x̄PO(t) = [xT
PO(t) 0]T. According to the stability analysis of the PO based linear time delay

system2), since the matrices AK and ALe,PO are Hurwitz, the closed-loop system (A4), (27) and (28) is stable which

implies that the closed-loop system (6), (27) and (28) is stable.

Proof of Theorem 3. It will be prove that the matrix A being stable is a necessary condition for bounded tracking error

‖xSP(t) − x∗(t)‖ by contradiction. Assume that the matrix A is unstable. Based on the system (6) and the SP in time

domain (24), the following formulas are obtained.


















xSP(t) = eA(t−t0)xSP(t0) +

∫ t

t0

eA(t−θ)B(uSP(θ − τ) + δSP(xSP(θ), θ))dθ,

x̄SP(t) = eA(t−t0)x̄SP(t0) +

∫ t

t0

eA(t−θ)BuSP(θ − τ)dθ.

(A5)

According to (A5), the prediction error of ySP(t + τ), denoted as ey,SP(t), is presented as

ey,SP(t) = yp,SP(t) − ySP(t+ τ)

= CT







∫ t

t0

eA(t−θ)BδSP(xSP(θ), θ)dθ −

∫ t+τ

t0

eA(t+τ−θ)BδSP(xSP(θ), θ)dθ

+ eAt(e−At0 − e−A(t0−τ))(xSP(t0)− x̄SP(t0))






.

(A6)

Since the matrix A is unstable and δSP is a nonzero constant, the prediction error ey,SP(t) will tend to infinity as t tends

to infinity.

On the other hand, Assumption 1 implies that the reference signal r(t) is bounded for t > t0. Combined with the ideal

trajectory (2), it yields that x∗(t) is bounded for t > t0. Moreover, since ‖xSP(t) − x∗(t)‖ is bounded for t > t0, it is

deduced that ySP(t) is bounded for t > t0. Consequently, by the boundless prediction error ey,SP(t) and the inequality

(|yp,SP(t)| > |ey,SP(t)| − |ySP(t+ τ)|), we have that yp,SP(t) is boundless when t tends to infinity.

Since the boundless signal yp,SP(t) is the input of the ESO (25), the estimations x̂SP(t) and δ̂SP(t) are boundless which

leads to an infinity control input uSP(t) due to (26). Hence, the system state xSP(t) is boundless by (6), which is a

contradiction.

Proof of Theorem 4. Since the “total disturbance” is assumed to be zero, according to (A1), the DD-ADRC based

closed-loop system (6), (8) and (9) is stable if and only if all the solutions of the characteristic equation (Fc,DD(s, τ) = 0)

are in the left plane1) . Since Ak and ALe,DD are Hurwitz, all the solutions of the characteristic equation (Fc,DD(s, 0) = 0)

are in the left plane. It should be noted that the solutions of the characteristic equation (Fc,DD(s, τ) = 0) continuously

changes as time delay τ varies. Hence, there exists a region of time delay Ωτ,DD = {τ |τ < τ∗∗DD} such that all the solutions

of the characteristic equation (Fc,DD(s, τ) = 0) are in the left plane for τ ∈ Ωτ,DD.

Owing to a similar derivation, there exists a region of time delay Ωτ,PP = {τ |τ < τ∗∗PP} such that all the solutions of the

characteristic equation (Fc,PP(s, τ) = 0) are in the left plane for τ ∈ Ωτ,PP. By denoting τ∗∗ = min{τ∗∗DD, τ∗∗PP}, the proof

of Theorem 4 is completed.

Proof of Theorem 5. The estimation error and the tracking error of the system state are defined as

xe,PO(t) = xPO(t) − x̂PO(t), ePO(t) = xPO(t) − x∗(t), (A7)

respectively. Accordingly, the PO-ADRC based closed-loop system (6), (27) and (28) becomes


































ėPO(t) = AKePO(t) + B(δ(xPO(t), t)− δ̂PO(t) +KTxe,PO(t)),
[

ẋe,PO(t)

−
˙̂
δPO(t)

]

= Ae

[

xe,PO(t)

−δ̂PO(t)

]

− eAeτLe,PO(yPO(t− τ)− ŷPO(t)) + BeδPO(x(t), t),

ŷPO(t) = CT
e

[

x̂PO(t − τ)

−δ̂PO(t− τ)

]

+ CT
e

∫ τ

0
eAesLe,PO(yPO(t − τ − s)− ŷPO(t − s))ds.

(A8)

It can be verified that the following function:

h̃(σ, t) = yPO(t + σ − τ) − ŷPO(t+ σ) − CT
e eAe(σ−τ)

[

xe,PO(t)

−δ̂PO(t)

]

+

∫ σ

0
CT

e eAeξLe,PO(yPO(t + σ − ξ − τ)− ŷPO(t + σ − ξ))dξ

(A9)

2) Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. Boston: Wiley, 1995.



Chen S, et al. Sci China Inf Sci July 2018 Vol. 61 070223:14

satisfies

∂h̃

∂t
=

∂h̃

∂σ
− CT

e eAe(σ−τ)BeδPO(xPO(t), t),

h̃(0, t) = yPO(t − τ) − ŷPO(t) − CT
e e−Aeτ

[

xe,PO(t)

−δ̂PO(t)

]

,

h̃(τ, t) = 0, (A10)

where σ ∈ [0, τ ] and t ∈ [t0,∞). Substituting (A10) into (A8), it yields that






















ėPO(t) = AKePO(t) + B(δPO(xPO(t), t) − δ̂PO(t) +KTxe,PO(t)),
[

ẋe,PO(t)

−
˙̂
δPO(t)

]

= eAeτALe,POe−Aeτ

[

xe,PO(t)

−δ̂PO(t)

]

− eAeτLe,POh̃(0, t) +BeδPO(xPO(t), t),

∂h̃
∂t

= ∂h̃
∂σ

− CT
e eAe(σ−τ)BeδPO(xPO(t), t), h̃(τ, t) = 0,

(A11)

which implies

η̇(t) = Acη(t) +Hch̃(0, t) + Bcδ(x(t), t),
∂h̃

∂t
=

∂h̃

∂σ
− CT

e eAe(σ−τ)Beδ(x(t), t), h̃(τ, t) = 0, (A12)

where

η(t) =









ePO(t)
[

xe,PO(t)

−δ̂PO(t)

]









, Ac =





AK

[

BKT B
]

0 eAeτALe,POe−Aeτ



 , Hc =

[

0

−eAeτLe,PO

]

, Bc =

[

B

Be

]

. (A13)

Since AK and ALe,PO are Hurwitz, Ac is Hurwitz. Moreover, there exists a positive definite matrix P such that PAc +

AT
c P = −I. Define the following Lyapunov-Krasovskii function:

V (t) = η(t)TPη(t) + a1

∫ τ

0
(1 + ξ)h̃(ξ, t)2dξ, (A14)

where a1 > 0. With (A12), we have

V̇ (t) = −‖η(t)‖2 + 2η(t)TPHch̃(0, t) + 2η(t)TPBcδPO(xPO(t), t) + 2a1

∫ τ

0
(1 + ξ)h̃(ξ, t)

∂h̃

∂ξ
dξ

− 2a1

∫ τ

0
(1 + ξ)δPO(xPO(t), t)h̃(ξ, t)CT

e eAe(ξ−τ)Bedξ

6 −‖η(t)‖2 + 2‖η(t)‖‖PHc‖|h̃(0, t)|+ 2‖η(t)‖‖PBc‖|δPO(xPO(t), t)| − a1h̃(0, t)
2 − a1

∫ τ

0
h̃(ξ, t)2dξ

+ a1
1

θ
δPO(xPO(t), t)2

∫ τ

0
(1 + ξ)|CT

e eAe(ξ−τ)Be|dξ + a1θ

∫ τ

0
(1 + ξ)h̃(ξ, t)2|CT

e eAe(ξ−τ)Be|dξ

(A15)

for any θ > 0. Therefore, the positives a1 and θ can be chosen such that there exist µ1 > 0 and µ2 > 0 to ensure

V̇ (t) 6 −µ1V (t) + µ2|δPO(xPO(t), t)|2. (A16)

According to (29) and the exact form of V (A14), it follows that

‖ePO(t)‖ 6
√

V (t)/
√

λp, |δPO(xPO, t)| 6 αx‖xPO‖+ αd 6 αx‖x
∗‖+ αx

√

V (t)/
√

λp + αd, (A17)

where λp is the minimal eigenvalue of P . Hence, for small enough αx, there exist µ∗

1 > 0 and µ∗

2 > 0 such that

V̇ (t) 6 −µ∗

1V (t) + µ∗

2(αx‖x
∗(t)‖2 + α2

d), (A18)

which implies

V (t) 6 V (t0) +
µ∗

2

µ∗

1

(

αx sup
t∈[t0,∞)

‖x∗(t)‖2 + α2
d

)

. (A19)

Combined with Assumption 1, the ideal trajectory (2) shows that there exists a positive µ∗

3 such that

sup
t∈[t0,∞)

‖x∗(t)‖ 6 µ∗

3(‖xPO(t0)‖ + rmax). (A20)

Moreover, the definitions of h̃ (A9) and V (A14) imply that there exists a positive µ∗

4 such that

‖V (t0)‖ 6 µ∗

4‖xe,PO(t0)‖
2. (A21)

By (A19)–(A21), ePO(t0) = 0 and (A17), the boundary of tracking error (30) is obtained.

Proof of Theorem 6. The notation (A(s) ∼
s→0

B(s)) represents lims→0
A(s)
B(s)

= 1, which implies that A(s) behaves asymp-

totically like B(s) as s tends to zero3). Since (33) and (40) are satisfied and C = 1, by using the notation (A(s) ∼
s→0

B(s)),

it is deduced that

Gδeδ,DD(s) ∼
s→0

−
1

Lδ,DDCTA−1
L,DDB

s ∼
s→0

2

ωo

s, Gxeδ,DD(s) ∼
s→0

A−1
L,DDB

Lδ,DDCTA−1
L,DDB

s ∼
s→0

B

ω2
o

s. (A22)

3) Zorich V Z, Cooke R. Mathematical Analysis I. Berlin: Springer-Verlag, 2004.
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With (37), it follows that

Gyδ,DD(s) ∼
s→0

−CTA−1
K

B

(

KTA−1
L,DDB − 1

Lδ,DDCTA−1
L,DDB

+ τ

)

s ∼
s→0

−
B(τω2

o + 2ωo + BK)

AKω2
o

s. (A23)

Next, for PP-ADRC and SP-ADRC, from (34), (35) and (37), the following equations are obtained owing to the same

derivations (A22) and (A23).

Gyδ,PP(s) ∼
s→0

−
B(2ωo +KB)

AKω2
o

s, Gyδ,SP(s) ∼
s→0

−
B(τAKω2

o + 2Aωo + 2AK)

AKAω2
o

s. (A24)

It should be noted that

eAeξ =

[

1 −B
A

0 1

][

eAξ 0

0 1

][

1 B
A

0 1

]

=

[

eAξ B
A
(eAξ − 1)

0 1

]

. (A25)

For PO-ADRC, combining (A25), (36), (37) and the derivations (A22) and (A23) yields that

Gyδ,PO(s) ∼
s→0

−
B(KB(eAτ − 1) +AAKτ)ω2

o + 2AB(BKeAτ + AK)ωo +A2B2KeAτ

AKA2ω2
o

s. (A26)

By substituting (s = jω) into (A23), (A24) and (A26), the 2nd column of Table 1 is obtained. Furthermore, the 3rd

column of Table 1 is obtained directly from the second column.
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