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Abstract Stabilization for multi-group coupled models stochastic by delay feedback control and nonlinear

impulsive control are considered in this paper. Using graph theory and Lyapunov method, some sufficient

conditions are acquired by some control methods. Those criteria are easier to verify and no need to solve any

linear matrix inequalities. These results can be designed more easily in practice. At last, the effectiveness

and advantage of the theoretical results are verified by an example.
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1 Introduction

On a mathematical network model, directed graphs are usually composed of vertices and directed

arcs [1–4]. At each vertex, the local dynamics are often represented by differential equations. It is

called the vertex systems.

For example, the vertex systems

(
x′i

y′i

)
= Ai

(
xi

yi

)
, i = 1, 2.

Let Ai =
(

−2 2

−2 1

)
. The eigenvalues of Ai are − 1

2 ±
√
7
2 i. We know the solution of the vertex systems is

globally asymptotically stable.

Linearly coupled systems are considered in the following:

(
x′1

y′1

)
= A1

(
x1

y1

)
+

(
2x2 − x1

0

)
,
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(
x′2

y′2

)
= A2

(
x2

y2

)
+

(
2x1 − x2

0

)
,

whose coefficient matrix

A =




−3 2 2 0

−2 1 0 0

2 0 −3 2

0 0 −2 1




has a positive eigenvalue 0.2361, and then the coupled system is unstable.

In fact, real systems are often subject to some external disturbances. Those external disturbances may

destroy or change system dynamic behavior. The stochastic perturbation is an important form in real

world.

Then, a general multi-group coupled stochastic model is depicted in the following:





dx
(i)
k (t) =

[
f
(i)
k (t, xk(t), xk(t− τ(t))) +

l∑

h=1

H
(i)
kh

(
x
(i)
k (t), x

(i)
h (t)

)]
dt

+ g
(i)
k

(
t, x

(i)
k (t), x

(i)
k (t− τ(t))

)
dω(t),

x
(i)
k (t) = ψ

(i)
k (s), s ∈ [−τ, 0].

(1)

where t > t0, τ(t) : [t0,∞) → [0, τ ] is continuous, and k ∈ L = {1, 2, . . . , l},

f
(i)
k

(
x
(i)
k (t), x

(i)
k (t− τ(t)), t

)
: Rmi × Rmi × [t0,∞) → Rmi ,

g
(i)
k

(
x
(i)
k (t), x

(i)
k (t− τ(t)), t

)
: Rmi × Rmi × [t0,∞) → Rmi×m,

x
(i)
k (t) = ((x

(1)
k (t))T, (x

(2)
k (t))T, . . . , (x

(mi)
k (t))T)T ∈ Rmi represents performance and state of the k-th

group,
∑n

i=1mi = m, mi ∈ Z+. H
(i)
kh (x

(i)
k (t), x

(i)
h (t)) : Rmi × Rmi → Rmi is the dispersal of the i-th

component from the h-th group to the k-th group, τ = max{τ(t)}. It should be pointed out that

H
(i)
kh = 0 when and only when there is no dispersal between the h-th group and the k-th group for the

i-th component.

There are l vertices in every digraph. (G, Ai) stands for the i-th component in the k-th group vertex

system. Then system (1) can be described by n digraphs.

Throughout this paper, we have assumed that f
(i)
k (0, 0, t) ≡ 0, H

(i)
kh (0, 0) ≡ 0, g

(i)
k (0, 0, t) ≡ 0.

Thus, to make multi-group stochastic models achieve stabilization has been an interesting and chal-

lenging issue. So far, various methods have been used to study the stabilization of systems. For example,

adaptive control methods [5–8], active control methods under the compound systems [9, 10], variable

structure system control methods [11], feedback control methods for a class of uncertain nonlinear sys-

tems [12–15], observer-based control methods [16], coupling control or nonlinear control methods [17–22],

and impulsive control methods [23–28]. We discuss the stabilization of multi-group coupled stochastic

models by delay feedback control and nonlinear impulsive control.

The whole paper is arranged as follows. In Section 2, we first introduce some basic concepts and

lemmas, which are all needed later. In Section 3, some results are obtained for stabilization of linear

multi-group models by delay feedback control and nonlinear impulsive control. In Section 4, an example

is given to illustrate the correctness and feasibility of the obtained conclusions.

2 Preliminaries

At first, we give some basic notations. Define R = (−∞,+∞), Rn is n-dimensional Euclidean space,

R+ = [0,+∞), and Z+ = {1, 2, . . . , n, . . .}. Define L = {1, 2, . . . , l} andN = {1, 2, . . . , n}. The superscript

“T” indicates the transpose. ‖ · ‖ is the Euclidean norm for n-dimensional vector. ‖A‖ =
√
trace(ATA)
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is its trace norm. V (x, t) ∈ C2,1(Rm × R+;R+) is continuously twice differentiable in x and once in t.

(Ω,F , {Ft}t>0, P ) is a complete probability space. Filtration {Ft}t>0 satisfies the usual conditions. W (·)

is the appropriate-dimensional Brownian motion defined on the complete probability space. Let E(·) be

the mathematical expectation operator on probability measure.

For a real symmetric matrix, λmin(·) and λmax(·) denote the minimum and maximum eigenvalues. If

X and Y are symmetric matrices, X > Y (X > Y ) means that X − Y is semi-positive definite (positive

definite); diag(·) expresses the diagonal matrix; I is the unit matrix of appropriate dimension. Rn×m

denotes the set of all n×m real matrices.

Let G = (L,E) be a digraph which contains a vertex set L and a edge set E. The arc (k, h) indicates

from initial vertex k to terminal vertex h. Each arc (h, k) is assigned a weight akh > 0 in a digraph

G. In G, akh > 0 denotes there is only one arc from vertex h to vertex k. The weight W (G) of G

is the product of all arc weights. A directed path P has its distinct vertices k1, k2, . . . , ks and arc set

{(ki, ki+1) : i = 1, 2, . . . , s − 1}. If ks = k1, a directed path C is called a directed cycle. If a connected

subgraph T contains no cycles, it is called a tree. For any pair of distinct vertices, if there is only one

directed path from one to the other, a digraph G is strongly connected. (G, A) indicates the digraph with

weight matrix A. If W (C) =W (−C) for all directed cycles C, a weighted digraph (G, A) is balanced. −C

expresses the reverse of C, i.e., the direction of all arcs in C is reversed. If Q̃ expresses the reverse of Q

and (G, A) is balanced, then W (Q) =W (Q̃). The Laplacian matrix of (G, A) is often defined as

L =




∑
k 6=1

a1k −a12 · · · −a1n

−a21
∑
k 6=2

a2k · · · −a2n

...
...

. . .
...

−an1 −an2 · · ·
∑
k 6=n

ank




.

Proposition 1 ([3, 4]). Suppose n > 2. Then

ci =
∑

T ∈Ti

W (T ), i = 1, 2, . . . , n, (2)

where ci is a cofactor of the i-th element of diag(L). Here Ti is the set of all spanning trees T of (G, A).

All spanning trees T are rooted at vertex i. In particular, if the digraph is strongly connected, it has

ci > 0 (1 6 i 6 n).

Lemma 1 ( [3, 4]). Suppose n > 2. ci is defined by Proposition 1. Then the following equation is

established:
n∑

i,j=1

ciaijFij(xi, xj) =

n∑

Q∈Q

W (Q)

n∑

(s,r)∈E(CQ)

Fr,s(xr , xs), (3)

where Fij(xi, xj) is arbitrary function, Q is the set of all spanning unicyclic graphs of (G, A).

Lemma 2 ( [3, 4]). Suppose n > 2. ci is defined by Proposition 1. Then the following equation is

established:
n∑

i,j=1

ciaijGi(xi) =

n∑

i,j=1

ciaijGj(xj), (4)

where Gi(xi), 1 6 i 6 n, are arbitrary functions.

Remark 1. The proof of Proposition 1, Lemmata 1 and 2 can be seen in [3, 4].

Definition 1. The trivial solution of (6) is mean square exponential stability if for any ξ ∈ Cb
F0

([−τ, 0];

Rn),

lim
t→∞

sup
1

t
log(E|x(t, ξ)|2) < 0 a.s.
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Definition 2. Let V
(i)
k , V

(i)
k (x

(i)
k , t) ∈ C2,1(R+ × Rmi ;R+). V

(i)
k (x

(i)
k , t) is twice continuously differ-

entiable in x
(i)
k and differentiable in t. an operator LV

(i)
k is defined by the following form:

LV
(i)
k =

∂V
(i)
k

∂t
+
∂V

(i)
k

∂x
(i)
k

f(t, ·) +
1

2
trace

[
gT(t, ·)

∂2V
(i)
k

(∂x
(i)
k )2

g(t, ·)

]
,

where
∂V

(i)
k

∂x
(i)
k

= (
∂V

(i)
k

∂x
(i1)

k

,
∂V

(i)
k

∂x
(i2)

k

, . . . ,
∂V

(i)
k

∂x
(imi

)

k

),
∂2V

(i)
k

(∂x
(i)
k

)2
= (

∂2V
(i)
k

∂x
(ij)

k
∂x

(is)
k

)mi×mi
.

Lemma 3. For any X,Y ∈ Rn and ǫ > 0, the following matrix inequality:

2XTY 6 ǫXTQX + ǫ−1Y TQ−1Y

holds, in which Q ∈ Rn×n is any matrix with Q > 0.

Lemma 4 ([29]). For Eq. (6), let λ, p, c1 > 0, c2 > 0 and q > 1. Suppose that there is a function

V ∈ C2,1(Rd × R+;R+) such that

c1|x|
p 6 V (x, t) 6 c2|x|

p, for all (x, t) ∈ Rd × [t0 − τ,∞),

moreover,

ELV (φ, t) 6 −λEV (φ(0), t),

for all t > t0, φ ∈ Lp
Ft
([−τ, 0];Rd) satisfying

EV (φ(θ), t + θ) < qEV (φ(0), t), −τ 6 θ 6 0.

Therefore for all ξ ∈ Lp
Ft
([−τ, 0];Rd),

E|x(ξ, t)|p 6
c2
c1
E|ξ|pe−γ(t−t0), on t > t0,

where γ = min{λ, log(q)/τ}.

Remark 2. The proof of Lemma 4 can be seen in [29].

3 Main results

This section is concerned with stabilization of coupled stochastic system by delay feedback control and

delay nonlinear impulsive control. Suppose that we are given an unstable linear stochastic differential

equation (SDE)




dx
(i)
k (t) =

[
A

(i)
k x

(i)
k (t) +

l∑

h=1

H
(i)
kh

(
x
(i)
k (t), x

(i)
h (t)

)]
dt+

(
C

(i)
k x

(i)
k (t) +D

(i)
k x

(i)
k (t− τ(t))

)
dω(t),

x
(i)
k (t) = ψ

(i)
k (s), s ∈ [−τ, 0],

(5)

where w(t) = (w1(t), . . . , wm(t)) is a Brownian motion with m-dimensional. It is required to find some

controls U
(i)
k (t, xk(t − τ(t))) in the drift part. Based on the past state, the controlled system can be

written as follows:





dx
(i)
k (t) =

[
A

(i)
k x

(i)
k (t) +

l∑

h=1

H
(i)
kh

(
x
(i)
k (t), x

(i)
h (t)

)
+ U

(i)
k (t, xk(t− τ(t)))

]
dt

+
(
C

(i)
k x

(i)
k (t) +D

(i)
k x

(i)
k (t− τ(t))

)
dω(t),

x
(i)
k (t) = ψ

(i)
k (s), s ∈ [−τ, 0].

(6)

In the following, we discuss the stabilization of controlled system. Let us now begin to discuss the

stabilization problem proposed in Section 1. At first, given an unstable SDE (5), we design a linear delay

feedback controller to make the system (6) stability. Let U
(i)
k (t, x

(i)
k (t − τ(t))) = F

(i)
k x

(i)
k (t − τ(t)). The

stabilization problem is to design F
(i)
k ’s so that the controlled system (6) becomes stable.
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3.1 Delay feedback control

Theorem 1. Assume that

(i) There exists a constant a
(i)
kh such that

l∑

h=1

(
x
(i)
k

)T
H

(i)
kh

(
x
(i)
k , x

(i)
h

)
6

l∑

h=1

a
(i)
kh

(∥∥∥x(i)k

∥∥∥
2

+
∥∥∥x(i)h

∥∥∥
2
)
;

(ii) For every i ∈ N, let digraph (G, Ai) be strongly connected and balanced, where matrix Ai =

(a
(i)
kh)l×l, and along each directed cycle CQi

of digraph (G, Ai), where a
(i)
kh > 0, c

(i)
k > 0, λ1 = mink,i{λ

(i)
1k},

λ2 = maxk,i{λ
(i)
2k};

(iii) If t > t0, φ
(i)
k ∈ Lp

Ft
([−τ, 0];Rmi) satisfy

EV
(
φ
(i)
k (θ), t+ θ

)
< qEV

(
φ
(i)
k (0), t

)
for all − τ 6 θ 6 0,

for all initial data ξ
(i)
k ∈ Cb

Ft0
([−τ, 0];Rmi);

(iv)

F
(i)
k = −

(
C

(i)
k

)T
D

(i)
k .

Then the controlled system SDE (6) is exponential stability in mean square and the Lyapunvov expo-

nent is less than or equal to −(λ1 − qλ2), where q ∈ (1, λ1

λ2
) is the unique root of λ1 − qλ2 = log(q)/τ.

Proof.

V (x, t) =

l∑

k=1

n∑

i=1

c
(i)
k V

(i)
k

(
x
(i)
k , t

)
=

l∑

k=1

n∑

i=1

c
(i)
k

∥∥∥x(i)k

∥∥∥
2

, k ∈ L, i ∈ N.

LV
(i)
k

(
x
(i)
k , t

)
=2
(
x
(i)
k

)T
[
A

(i)
k x

(i)
k (t) +

l∑

h=1

H
(i)
kh

(
x
(i)
k (t), x

(i)
h (t)

)
+ F

(i)
k x

(i)
k (t− τ(t))

]

+ trace

[(
C

(i)
k x

(i)
k (t) +D

(i)
k x

(i)
k (t− τ(t))

)T (
C

(i)
k x

(i)
k (t) +D

(i)
k x

(i)
k (t− τ(t))

)]

=2
(
x
(i)
k (t)

)T
A

(i)
k x

(i)
k (t) + 2

l∑

h=1

a
(i)
kh

(∥∥∥x(i)k

∥∥∥
2

+
∥∥∥x(i)h

∥∥∥
2
)
+ 2

(
x
(i)
k (t)

)T
F

(i)
k x

(i)
k (t− τ(t))

+

((
C

(i)
k x

(i)
k (t) +D

(i)
k x

(i)
k (t− τ(t))

)T (
C

(i)
k x

(i)
k (t) +D

(i)
k x

(i)
k (t− τ(t))

))

6
(
x
(i)
k (t)

)T(
2A

(i)
k +

(
C

(i)
k

)T
C

(i)
k

)
x
(i)
k (t) + 2

(
x
(i)
k (t)

)T(
F

(i)
k +

(
C

(i)
k

)T
D

(i)
k

)
x
(i)
k (t− τ(t))

+
(
x
(i)
k (t− τ(t))

)T (
D

(i)
k

)T
D

(i)
k x

(i)
k (t− τ(t)) + 2

l∑

h=1

a
(i)
kh

(∥∥∥x(i)k

∥∥∥
2

+
∥∥∥x(i)h

∥∥∥
2
)

=
(
x
(i)
k (t)

)T
(
2A

(i)
k +

(
C

(i)
k

)T
C

(i)
k + 4

l∑

h=1

a
(i)
khI

)
x
(i)
k (t)

+
(
x
(i)
k (t− τ(t))

)T (
D

(i)
k

)T
D

(i)
k x

(i)
k (t− τ(t)) + 2

l∑

h=1

a
(i)
kh

(∥∥∥x(i)h

∥∥∥
2

−
∥∥∥x(i)k

∥∥∥
2
)

=−
(
x
(i)
k (t)

)T
Ω11x

(i)
k (t) +

(
x
(i)
k (t− τ(t))

)T
Ω22x

(i)
k (t− τ(t))

+ 2

l∑

h=1

a
(i)
kh

(∥∥∥x(i)h

∥∥∥
2

−
∥∥∥x(i)k

∥∥∥
2
)

6− λ
(i)
1k

∥∥∥x(i)k

∥∥∥
2

+ λ
(i)
2k

∥∥∥x(i)k (t− τ(t))
∥∥∥
2

+ 2
l∑

h=1

a
(i)
kh

(∥∥∥x(i)h

∥∥∥
2

−
∥∥∥x(i)k

∥∥∥
2
)
,
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where Ω11 = −2A
(i)
k − (C

(i)
k )TC

(i)
k −4

∑l
h=1 a

(i)
khI, Ω22 = (D

(i)
k )TD

(i)
k , λ

(i)
1k = λmin(Ω11), λ

(i)
2k = λmax(Ω22).

So, we can compute

LV (x, t) =

l∑

k=1

n∑

i=1

c
(i)
k L

∥∥∥x(i)k

∥∥∥
2

6−
l∑

k=1

n∑

i=1

c
(i)
k λ

(i)
1k

∥∥∥x(i)k

∥∥∥
2

+
l∑

k=1

n∑

i=1

c
(i)
k λ

(i)
2k

∥∥∥x(i)k (t− τ(t))
∥∥∥
2

+ 2

l∑

k=1

n∑

i=1

c
(i)
k

l∑

h=1

a
(i)
kh

(∥∥∥x(i)h

∥∥∥
2

−
∥∥∥x(i)k

∥∥∥
2
)

6− λ1V (x, t) + λ2V (y, t− τ(t)) +

l∑

k=1

n∑

i=1

l∑

h=1

c
(i)
k a

(i)
kh

(∥∥∥x(i)h

∥∥∥
2

−
∥∥∥x(i)k

∥∥∥
2
)

=− λ1V (x, t) + λ2V (y, t− τ(t)) +
n∑

i=1

∑

Qi∈Q

W (Qi)
∑

(k,h)∈E(CQi
)

(∥∥∥x(i)h

∥∥∥
2

−
∥∥∥x(i)k

∥∥∥
2
)
.

By condition (i), the weighted digraph (G, Ai) is balanced. Without loss of generality,

E(CQi
) = {(i1, i2), (i2, i3), . . . , (il−1, il), (il, i1)},

so we have

l∑

(k,h)∈E(CQi
)

(
Q

(i)
k

(
x
(i)
k

)
−Q

(i)
h

(
x
(i)
h

))

=
(
Q

(i)
i2

(
x
(i)
i2

)
−Q

(i)
i1

(
x
(i)
i1

))
+
(
Q

(i)
i3

(
x
(i)
i3

)
−Q

(i)
i2

(
x
(i)
i1

))

+ · · ·+
(
Q

(i)
il

(
x
(i)
il

)
−Q

(i)
il−1

(
x
(i)
il−1

))
+
(
Q

(i)
i1

(
x
(i)
i1

)
−Q

(i)
il

(
x
(i)
il

))

= 0.

From the Lemmata 1 and 2, we obtain

LV (x, t) 6 −(λ1 − qλ2)V (t, x).

By the Lemma 4, the controlled system SDE (6) is mean square exponential stability and the Lyapunvov

exponent is less than or equal to −(λ1 − qλ2).

3.2 Delay nonlinear impulsive control

Design a delay nonlinear impulsive controller

U
(
t, x

(i)
k

)
=

∞∑

l=1

Rl

(
x
(i)
k (t), x

(i)
k (t− τ(t))

)
δ(t− tl),

where

δa(t) = δ(t− a) = 0, (t 6= a),

∫ +∞

−∞
δa(t)dt = 1,

x
(i)
k (t+l ) = Q̃l

(
x
(i)
k (tl), x

(i)
k (tl − τ(tl))

)
,

so that U(t, x
(i)
k ) is an impulsive controller.
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In the following, Eq. (6) can be written the impulsive system





dx
(i)
k (t) =

[
A

(i)
k x

(i)
k (t) +

l∑

h=1

H
(i)
kh

(
x
(i)
k (t), x

(i)
h (t)

)]
dt+

[
C

(i)
k x

(i)
k (t) +D

(i)
k x

(i)
k (t− τ(t))

]
dω(t),

x
(i)
k (t+l ) = Q̃l

(
x
(i)
k (tl), x

(i)
k (tl − τ(tl))

)
,

x
(i)
k (t) = ψ

(i)
k (s), s ∈ [−τ, 0],

(7)

where the impulse times tl satisfy 0 = t0 < t1 < · · · < tl < · · · , tl → +∞, as l → ∞.

Lemma 5. Suppose xi > 0, ai > 0, i = 1, 2, . . . , n, and p is a positive integral number. The inequality

holds as follows: (
n∑

i=1

aixi

)p

6

(
n∑

i=1

ai

)p−1( n∑

i=1

aix
p
i

)
.

Lemma 6 ([30]). Let us consider the impulsive differential inequalities as follows:






D+v(t) 6 av(t) + b1[v(t)]τ1 + b2[v(t)]τ2 + · · ·+ bm[v(t)]τm , t 6= tl, t > 0,

v(tl) 6 plv(t
−
l ) + q1l[v(t

−
l )]σ1 + q2l[v(t

−
l )]σ2 + · · ·+ qrl[v(t

−
l )]σr

, t = tl, l ∈ N+,

v(t) = φ(t), t ∈ [t0 − τ, t0],

(8)

where a, bi, pl, qil, ti are constants and bi > 0, pl > 0, qil > 0, τi > 0, i = 1, 2, . . . ,m, v(t) > 0,

[v(t)]τi = supt−τi(t)6s6t v(s), [v(t
−
l )]σi

= suptl−σi(tl)6s6tl
v(s), φ(t) is continuous on [t0 − τ, t0], and v(t)

is continuous except tl, l ∈ N+. The consequence {tl} satisfies 0 = t0 < t1 < t2 < · · · < tl < tl+1, . . . ,

and liml→+∞ tl = +∞. Suppose

pl +

r∑

j=1

qjl < 1,

a+

∑m
i=1 bi

pl +
∑r

j=1 qjl
+

ln(pl +
∑r

j=1 qjl)

tl+1 − tl
< 0.

Therefore there are some constants β̃ > 1 and λ > 0 such that

v(t) 6 ‖φ‖τ β̃e
−λ(t−t0), t > t0,

where ‖φ‖τ = supt0−τ6s6t0
‖φ(s)‖, τ = max{τi, σj , i = 1, 2, . . . ,m, j = 1, 2, . . . , r}.

The proof of Lemme 6 is given in [30].

Theorem 2. Assume that

(i) There exists a constant a
(i)
kh such that

l∑

h=1

(
x
(i)
k

)T
H

(i)
kh

(
x
(i)
k , x

(i)
h

)
6

l∑

h=1

a
(i)
kh

(∥∥∥x(i)k

∥∥∥
2

+
∥∥∥x(i)h

∥∥∥
2
)
;

(ii) For every i ∈ N, let digraph (G, Ai) be strongly connected and balanced, where matrix Ai =

(a
(i)
kh)l×l, and directed cycle CQi

of digraph (G, Ai), where a
(i)
kh > 0, c

(i)
k > 0 λ̃1 = maxk,i{λ̃

(i)
1k}, λ̃2 =

maxk,i{λ̃
(i)
2k};

(iii) There exist nonnegative constants αs (s = 0, 1) such that

‖Q̃l (v0, v1) ‖ 6 α0‖v0‖+ α1‖v1‖;

(iv) β0 + β1 < 1, and λ̃1 +
λ̃2

β0+β1
+ ln(β0+β1)

tl+1−tl
< 0, where β0 = α0(α0 + α1), β1 = α1(α0 + α1).

Therefore, the controlled system SDE (7) is mean square exponential stability and the Lyapunvov

exponent is not greater than −λ.
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Proof. Let us consider the following Lyapunov function:

V (x, t) =

l∑

k=1

n∑

i=1

c
(i)
k V

(i)
k

(
x
(i)
k , t

)
=

l∑

k=1

n∑

i=1

c
(i)
k

∥∥∥x(i)k

∥∥∥
2

, k ∈ L, i ∈ N.

The operator LV
(i)
k along the trajectory of impulsive system (7) yields, and by Lemma 3, for t 6= tl,

LV
(i)
k

(
x
(i)
k , t

)
=2
(
x
(i)
k

)T
[
A

(i)
k x

(i)
k (t) +

l∑

h=1

H
(i)
kh

(
x
(i)
k (t), x

(i)
h (t)

)]

+ trace

[(
C

(i)
k x

(i)
k (t) +D

(i)
k x

(i)
k (t− τ(t))

)T (
C

(i)
k x

(i)
k (t) +D

(i)
k x

(i)
k (t− τ(t))

)]

62
(
x
(i)
k (t)

)T
A

(i)
k x

(i)
k (t) + 2

l∑

h=1

a
(i)
kh

(∥∥∥x(i)k

∥∥∥
2

+
∥∥∥x(i)h

∥∥∥
2
)

+

((
C

(i)
k x

(i)
k (t) +D

(i)
k x

(i)
k (t− τ(t))

)T (
C

(i)
k x

(i)
k (t) +D

(i)
k x

(i)
k (t− τ(t))

))

6
(
x
(i)
k (t)

)T(
2A

(i)
k + 2

(
C

(i)
k

)T
C

(i)
k

)
x
(i)
k (t) + 2

l∑

h=1

a
(i)
kh

(∥∥∥x(i)k

∥∥∥
2

+
∥∥∥x(i)h

∥∥∥
2
)

+
(
x
(i)
k (t− τ(t))

)T(
2
(
D

(i)
k

)T
D

(i)
k

)
x
(i)
k (t− τ(t))

=
(
x
(i)
k (t)

)T
(
2A

(i)
k + 2

(
C

(i)
k

)T
C

(i)
k + 4

l∑

h=1

a
(i)
khI

)
x
(i)
k (t) + 2

l∑

h=1

a
(i)
kh

(∥∥∥x(i)h

∥∥∥
2

−
∥∥∥x(i)k

∥∥∥
2
)

+
(
x
(i)
k (t− τ(t))

)T(
2
(
D

(i)
k

)T
D

(i)
k

)
x
(i)
k (t− τ(t))

=
(
x
(i)
k (t)

)T
Ω̃11x

(i)
k (t) +

(
x
(i)
k (t− τ(t))

)T
Ω̃22x

(i)
k (t− τ(t))

+ 2
l∑

h=1

a
(i)
kh

(∥∥∥x(i)h

∥∥∥
2

−
∥∥∥x(i)k

∥∥∥
2
)

6λ̃
(i)
1k

∥∥∥x(i)k

∥∥∥
2

+ λ̃
(i)
2k

∥∥∥x(i)k (t− τ(t))
∥∥∥
2

+ 2

l∑

h=1

a
(i)
kh

(∥∥∥x(i)h

∥∥∥
2

−
∥∥∥x(i)k

∥∥∥
2
)
,

where Ω̃11 = 2A
(i)
k +2(C

(i)
k )TC

(i)
k +4

∑l
h=1 a

(i)
khI, Ω̃22 = 2(D

(i)
k )TD

(i)
k , λ̃

(i)
1k = λmax(Ω̃11), λ̃

(i)
2k = λmax(Ω̃22).

So, we can compute

LV (x, t) =
l∑

k=1

n∑

i=1

c
(i)
k L

∥∥∥x(i)k

∥∥∥
2

6−

l∑

k=1

n∑

i=1

c
(i)
k λ̃

(i)
1k

∥∥∥x(i)k

∥∥∥
2

+

l∑

k=1

n∑

i=1

c
(i)
k λ̃

(i)
2k

∥∥∥x(i)k (t− τ(t))
∥∥∥
2

+ 2

l∑

k=1

n∑

i=1

c
(i)
k

l∑

h=1

l∑

h=1

(
Q

(i)
k

(
x
(i)
k

)
−Q

(i)
h

(
x
(i)
h

))

6λ̃1V (x, t) + λ̃2V (y, t− τ(t)) +

l∑

k=1

n∑

i=1

l∑

h=1

c
(i)
k a

(i)
kh

(
Q

(i)
k

(
x
(i)
k

)
−Q

(i)
h

(
x
(i)
h

))

=λ̃1V (x, t) + λ̃2V (y, t− τ(t)) +
n∑

i=1

∑

Qi∈Q

W (Qi)
∑

(k,h)∈E(CQi
)

(
Q

(i)
k

(
x
(i)
k

)
−Q

(i)
h

(
x
(i)
h

))
.

By condition (i), the weighted digraph (G, Ai) is balanced. Without loss of generality,

E(CQi
) = {(i1, i2), (i2, i3), . . . , (il−1, il), (il, i1)},
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so we have

l∑

(k,h)∈E(CQi
)

(
Q

(i)
k

(
x
(i)
k

)
−Q

(i)
h

(
x
(i)
h

))

=
(
Q

(i)
i2

(
x
(i)
i2

)
−Q

(i)
i1

(
x
(i)
i1

))
+
(
Q

(i)
i3

(
x
(i)
i3

)
−Q

(i)
i2

(
x
(i)
i1

))

+ · · ·+
(
Q

(i)
il

(
x
(i)
il

)
−Q

(i)
il−1

(
x
(i)
il−1

))
+
(
Q

(i)
i1

(
x
(i)
i1

)
−Q

(i)
il

(
x
(i)
il

))

= 0.

From Lemmata 1 and 2, we have

LV (x, t) =

l∑

k=1

n∑

i=1

c
(i)
k L

∥∥∥x(i)k

∥∥∥
2

6 λ̃1V (x, t) + λ̃2V (y, t− τ(t)).

For t = tl, by Lemma 5, we can obtain

V (x(t+l ), t
+
l ) =

l∑

k=1

n∑

i=1

c
(i)
k V

(i)
k

(
x
(i)
k (t+l ), t

+
l

)

=
l∑

k=1

n∑

i=1

c
(i)
k

∥∥∥x(i)k (t+l )
∥∥∥
2

=

l∑

k=1

n∑

i=1

c
(i)
k

∥∥∥Q̃l

(
x
(i)
k (tl), x

(i)
k (tl − τ(tl))

)∥∥∥
2

6 β0

l∑

k=1

n∑

i=1

c
(i)
k

∥∥∥x(i)k (tl)
∥∥∥
2

+ β1

l∑

k=1

n∑

i=1

c
(i)
k

∥∥∥x(i)k (tl − τ(tl))
∥∥∥
2

= β0V (tl) + β1[V (tl)]τ .

(9)

By Lemma 6, there are some constants β̃ > 1 and λ > 0 such that

V (x, t) 6 ‖φ‖τ β̃e
−λ(t−t0), t > t0.

The controlled system SDE (7) is mean square exponential stability and the Lyapunvov exponent is not

greater than −λ.

4 An example

At last, an example is given to illustrate the effectiveness of the conclusions in the paper. To simplify

calculations, we only consider w(t) as a scalar Brown motion.





dx
(i)
k (t) =

(
A

(i)
k x

(i)
k (t) +

2∑

h=1

H
(i)
kh

(
x
(i)
k (t), x

(i)
h (t)

))
dt+

(
C

(i)
k x

(i)
k (t) +D

(i)
k x

(i)
k (t− τ)

)
dω(t),

x
(i)
k (t) = ψ

(i)
k (s), s ∈ [−τ, 0],

(10)

where x
(i)
k (t) = (x

(i1)
k , x

(i2)
k )T ∈ R2, x

(i)
k (t − τ(t)) = (x

(i1)
k (t − τ(t)), x

(i2)
k (t − τ(t)))T ∈ R2, τ = 1,

c
(1)
k = 2× 10−6, c

(2)
k = 2× 10−6, N = {1, 2}, i = 1, 2, L = {1, 2}, k = 1, 2, mi = 2,

∑2
h=1 akh = 1.

Let A
(1)
k = A

(2)
k =

(
−8 −2

2 −5

)
, C

(1)
k = C

(2)
k =

(
−1 2

−1 1

)
, D

(1)
k = D

(2)
k =

(
0.5 1

0 0.5

)
, H

(1)
kh = H

(2)
kh =

1
3a

(i)
kh(x

(i)
k − x

(i)
h ).

This stochastic differential equation (SDE) is unstable. Please refer to [29].



Zhang C L, et al. Sci China Inf Sci July 2018 Vol. 61 070212:10

Then the delay feedback control system can be depicted as follows:





dx
(i)
k (t) =

[
A

(i)
k x

(i)
k (t) +

2∑

h=1

H
(i)
kh

(
x
(i)
k (t), x

(i)
h (t)

)
+ U

(i)
k (t, xk(t− τ))

]
dt

+
(
C

(i)
k x

(i)
k (t) +D

(i)
k x

(i)
k (t− τ)

)
dω(t),

x
(i)
k (t) = ψ

(i)
k (s), s ∈ [−τ, 0].

(11)

Case I. Delay feedback control. Let U
(i)
k (t, xk(t − 1) = F

(i)
k x

(i)
k (t − 1), where F

(i)
k = −(C

(i)
k )TD

(i)
k .

We can compute Ω11 = −2A
(i)
k − (C

(i)
k )TC

(i)
k − 4

∑2
h=1 a

(i)
khI =

(
10 7

−1 1

)
, Ω22 = (D

(i)
k )TD

(i)
k =

(
0.25 0.5

0.5 1.25

)
,

λ
(i)
1k = λmin(Ω11) = 1.8599, λ

(i)
2k = λmax(Ω22) = 1.4571, and

l∑

h=1

(
x
(i)
k

)T
H

(i)
kh

(
x
(i)
k , x

(i)
h

)
6

1

3

l∑

h=1

a
(i)
kh

(
x
(i)
k

)T (
x
(i)
k − x

(i)
h

)

=

l∑

h=1

1

3
a
(i)
kh

(∥∥∥x(i)k

∥∥∥
2

−
(
x
(i)
k

)T
x
(i)
h

)

6
l∑

h=1

a
(i)
kh

(
1

2

∥∥∥x(i)k

∥∥∥
2

+
1

6

∥∥∥x(i)h

∥∥∥
2
)

6

l∑

h=1

a
(i)
kh

(∥∥∥x(i)k

∥∥∥
2

+
∥∥∥x(i)h

∥∥∥
2
)
.

Let λ1 = mink,i{λ
(i)
1k}, λ2 = maxk,i{λ

(i)
2k}.

So, the conditions of Theorem 1 are satisfied. Then the controlled system (11) is exponential stability

in mean square and the Lyapunvov exponent is not greater than −(λ1 − qλ2).

Case II. Delay nonlinear impulsive control. U(t, x
(i)
k ) =

∑∞
l=1 Rl(x

(i)
k (t), x

(i)
k (t− τ))δ(t− tl), i = 1, 2.

Then the system (11) can be rewritten as follows:





dx
(i)
k (t) =

[
A

(i)
k x

(i)
k (t) +

l∑

h=1

H
(i)
kh

(
x
(i)
k (t), x

(i)
h (t)

)]
dt

+
[
C

(i)
k x

(i)
k (t) +D

(i)
k x

(i)
k (t− τ)

]
dω(t),

x
(i)
k (t+l ) = Q̃l

(
x
(i)
k (tl), x

(i)
k (tl − τ)

)
,

x
(i)
k (t) = ψ

(i)
k (s), s ∈ [−τ, 0].

(12)

Let tl+1 − tl = 0.05, β0 = 0.1, β1 = 0.1.

We can also compute Ω̃11 = 2A
(i)
k + 2(C

(i)
k )TC

(i)
k + 4

∑l
h=1 a

(i)
khI =

(
−8 −10

−2 4

)
, Ω̃22 = 2(D

(i)
k )TD

(i)
k =

(
0.5 1

1 2.5

)
, λ̃

(i)
1k = λmax(Ω̃11) = 5.4833, λ̃

(i)
2k = λmax(Ω̃22) = 2.9142, λ̃1 = maxk,i{λ̃

(i)
1k} = 5.4833, λ̃2 =

maxk,i{λ̃
(i)
2k} = 2.9142.

Let β0 = 0.1, β1 = 0.1, β0 + β1 < 1, it is easy to verify λ̃1 +
λ̃2

β0+β1
+ ln(β0+β1)

tl+1−tl
< 0.

So, the conditions of Theorem 2 are satisfied. Then the controlled system (12) is exponential stability

in mean square and the Lyapunvov exponent is not greater than −λ.
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