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Abstract In this article, we consider the partially observed optimal control problem for forward-backward

stochastic systems with Markovian regime switching. A stochastic maximum principle for optimal control

is developed using a variational method and filtering technique. Our theoretical results are applied to the

motivating example of the risk minimization for portfolio selection.
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1 Introduction

This paper considers the partially observed optimal control problem for forward-backward stochastic

differential equations (FBSDEs) driven by Lévy processes with Markov regime-switching. One of the

motivations of this study was the problem of finding risk-minimizing portfolios in finance, where the risk

is represented in terms of a g-expectation. Suppose that an insurer invests his/her surplus in a financial

market consisting of a risk-free asset (bond) and a risky asset (stock). Specifically, the price process of

the risk-free asset is given by

dS0(t) = r0(t)S0(t)dt, r0 > 0,

and the price process of the risky assets follows the following stochastic differential equation:

dS1(t) = µ(t)S1(t)dt + δ(t)S1(t)dW (t),

where µ(t)(> r0(t)) is the appreciation rate process, and δ(t) is the volatility coefficient, W (t) is a

standard Brownian motion with respect to (Ω,F ,Ft, P̄). In addition,

µ(t) =

{
a, for bull market;

−b, for bear market.
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Strategy v(t) represents the amount invested in the risky asset at time t. Naturally, it is assumed

that v(t) must be adapted to an observation generated sub-filtration Gt. The dynamics of the controlled

process x(t) is given by

dx(t) = (c+ r0(t)(x(t) − v(t)))dt − dC(t) + µ(t)v(t)dt + δ(t)v(t)dW (t), (1)

where C(t) =
∑N(t)

i=1 ζi is a compound Poisson process. It represents the cumulative claims up to time

t, independent of W (t). {N(t)} is a homogeneous Poisson process with intensity λ̄, and the claim sizes

{ζi, i > 1} are independent and identically distributed positive random variables. In addition, we assume

that N(t) is independent of the claim sizes ζi, i > 1.

The policymaker can obtain information from the stock price,




dY (t) =
1

δ(t)

(
µ(t)−

1

2
δ2(t)

)
dt+ dW (t),

Y (0) = 0,

where Y (t) = 1
δ(t) logS(t).

The objective is to find

J(v) = −minEg(X(T )),

where Eg is the g-expectation related to g. The associated backward stochastic differential equation

(BSDE) for the unknowns (y(t), z(t), ξ(t, ζ)) is given by





−dyv(t) = g(t, xv(t), yv(t), zv(t), ξv(t), v(t), α(t))dt

−z̄v(t)dY (t)−
∫∞

0
ξv(t−, ζ)Ñ(dζ, dt),

yv(T ) = φ(xv(T )).

(2)

Under some usual conditions, the forward-backward stochastic differential equation (FBSDE) (1) and (2)

admits a unique solution.

The optimal control problem for a Markov regime-switching model has recently received much atten-

tion, e.g., see Donnelly [1], Donnelly and Heunis [2], and Zhang et al. [3]. Concerning optimal control

problems with partial observation, we refer the readers to Zhang [4], Zhou [5], Tang [6], Wang and Wu [7],

and Wang et al. [8] for more information. The work that was most similar to the current paper was that

of [9], which presented various versions of the stochastic maximum principle. However, their model was

different from ours. First, there was no Markovian switch in their model. More importantly, their in-

formation filtration was an abstract sub-filtration, which did not depend on the control itself. On the

other hand, our information filtration, generated by the observation process, depends on the control in

a coupled manner. Other studies with coupled information included that of Huang et al. [10], which

dealt with the BSDE state equation, and those of Wang et al. [11,12], which considered the FBSDE state

equation and LQ problem, respectively. Other recent studies include [7, 13–15]. We refer the reader to

a recent monograph [16] for a more extensive reference on this subject. None of these studies involved

jumps and a Markovian switch. Moreover, Huang and Zhang [17] investigated the near-optimal maximum

principle of impulse control for a stochastic recursive system.

The rest of this paper is structured as follows. We formulate the partial information stochastic control

problem in Section 2. In Section 3, the necessary condition is established for the optimal control of

the FBSDE with Markovian switching under partial information. Section 4 discusses an example of a

conditional mean field problem.

2 Model

Let
(
Ω,F ,Ft, P̄

)
be a filtered probability space within which the independent real-valued standard Brow-

nian motions W (t) and B(t) are defined. We consider a continuous-time, finite-state, time-homogeneous
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Markov chain {α(t) : t > 0} with a finite state space E = {e1, e2, . . . , eD}, where ek ∈ R
D and the lth

component of ek is the Kronecker delta δkl, for each k = 1, 2, . . . , D. The generator of the Markov chain

is Λ = (λkl)k,l=1,2,...,D. It is assumed that λkl > 0 for k 6= l and ΣD
l=1λkl = 0, so λkk 6 0. In what follows

for each k = 1, 2, . . . , D, we suppose that λkk < 0.

It follows from [18] that α admits the following semimartingale representation:

α(t) = α(0) +

∫ t

0

Λ∗α(s)ds+M(t),

where {M(t)|t ∈ [0, T ]} is an R
D-valued {Ft, P̄} martingale. For each i, j = 1, 2, . . . , D, with i 6= j, and

t ∈ [0, T ], let Jij(t) be the number of jumps from state ei to state ej up to time t. Then,

J ij(t) = λij

∫ t

0

〈α(s), ei〉ds+mij(t),

where mij := {mij(t)|t ∈ T }, with mij(t) :=
∫ t

0
〈α(s−), ei〉d〈M(s), ej〉, is an {Ft, P̄}-martingale. Now,

for each fixed j = 1, 2, . . . , D, let Φj(t) be the number of jumps into state ej up to time t. Then,

Φj(t) =

D∑

i=1

J ij(t) =

D∑

i=1

λij

∫ t

0

〈α(s−, ei)〉ds+

D∑

i=1

mij(t)

≡ λj(t) + Φ̃j(t),

where Φ̃j(t) is an {Ft, P̄}-martingale.

Let (E ,B(E)) be a Polish space with the σ-finite measure ν. Suppose that N(dζ, dt) is a Poisson

random measures on (R+ ×E ,B(R+)×B(E)) under P̄. Then, the compensated Poisson random measure

is given by

Ñ(dζ, dt) = N(dζ, dt)− ν(dζ)dt.

Consider the following forward-backward stochastic differential equations with partial information

(FBSDEP):





dxv(t) = b(t, xv(t), v(t), α(t))dt + σ(t, xv(t), v(t), α(t))dB(t)

+ δ(t, xv(t), v(t), α(t))dW (t)

+

∫

E

η(t, xv(t−), v(t−), ζ, α(t−))Ñ (dζ, dt)

+ γ(t, xu(t−), v(t−), α(t−)) · dΦ̃(t),

− dyv(t) = g(t, xv(t), yv(t), zv(t), z̄v(t), V v(t), ξv(t), v(t), α(t))dt

− zv(t)dB(t)− z̄v(t)dY (t)

−

∫

E

ξv(t, ζ)Ñ (dζ, dt) − V v(t−) · dΦ̃(t),

xv(0) = x0, yv(T ) = φ(xv(T ), α(T )), 0 6 t 6 T,

(3)

where v(·) is a control process taking values in a convex set U ⊆ lR; B and W are independent Brownian

motions that are independent of Ñ and Φ̃; b : [0, T ] × lR × U × S → lR; c : [0, T ] × lR × U × S → lR;

σ : [0, T ]× lR× U × S → lR; η : [0, T ]× lR× U × S → lR; and γ : [0, T ]× lR× U × S → lRD.

Suppose that the observation equation is governed by

{
dY (t) = h(t, xv(t))dt+ dW (t),

Y (0) = 0.
(4)
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Inserting (4) into (3), we have




dxv(t) = b̃(t, xv(t), v(t), α(t))dt + σ(t, xv(t), v(t), α(t))dB(t)

+ δ(t, xv(t), v(t), α(t))dY (t)

+

∫

E

η(t, xv(t−), v(t−), ζ, α(t−))Ñ (dζ, dt)

+ γ(t, xu(t−), v(t−), α(t−)) · dΦ̃(t),

− dyv(t) = g(t, xv(t), yv(t), zv(t), z̄v(t), V v(t), ξv(t), v(t), α(t))dt

− zv(t)dB(t)− z̄v(t)dY (t)

−

∫

E

ξv(t, ζ)Ñ (dζ, dt) − V v(t−) · dΦ̃(t),

xv(0) = x0, yv(T ) = φ(xv(T )), 0 6 t 6 T,

(5)

where b̃ = b− δh.

Consider the following cost functional:

J(v(·)) = Ē

[ ∫ T

0

l (t, xv(t), yv(t), zv(t), z̄v(t), α(t), V v(s), v(s)) dt+ ϕ(xv(T )) + ψ(yv(0))

]
. (6)

Here, Ē denotes the expectation with respect to the filtered probability space (Ω,F ,Ft, P̄).

Let

Gt = σ (Y (s) : 0 6 s 6 t) ,

and let U be a non-empty convex subset of R. Denote the set of admissible controls by

Uad =

{
v
∣∣ v(t) is Gt-adapted U -valued process s.t. Ē

∫ T

0

v(t)8dt <∞

}
.

The optimal control problem is to find the control v to minimize the cost functional (6) over v(·) ∈ Uad,

i.e.,

J(u) = min
v(·)∈Uad

J(v(·)).

For a function g : L2(ν) → R, we defined its Fréchet derivative at ξ ∈ L2(ν) as ∇ξg ∈ L2(ν) such that

〈∇ξg, ξ1〉L2(ν) = lim
ǫ→0

ǫ−1 (g(ξ + ǫξ1)− g(ξ)) , ∀ξ1 ∈ L2(ν).

To characterize the optimal control, we need the following.

Hypothesis 1. The functions b, σ, δ, γ, ξ, φ, g, and h are continuously differentiable with respect to

(x, v), (x, y, z, ξ, V, v), and x. They are bounded by k(1 + |x|+ |v|). In addition,
∫

E

η2(t, x, v, ζ, α)ν(dζ) 6 k(1 + |x|2 + |v|2).

The derivatives bx, bv, σx, σv, δx, δv, ηx, ηv, γx, γv, φx, gx, gy, gz, gV , ∇ξg (Fréchet derivative), gv,

and hx are uniformly bounded and Lipschitz continuous. Moreover, there is a constant C such that

|h(t, x)| 6 C for any (t, x) ∈ ([0, 1]× R).

Let P be a probability measure defined as dP̄ = Zv(t)dP, where



Zv(t) = exp

{∫ t

0

h(s, xv(s))dY (s)−
1

2

∫ t

0

|h(s, xv(s))|2ds

}
,

Zv(0) = 1,

i.e., {
dZv(t) = Zv(t)h(t, xv(t))dY (t),

Zv(0) = 1.
(7)
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Then, the cost functional (6) can be rewritten as

J(v(·)) = E

[∫ T

0

Zv(t) l (t, xv(t), yv(t), zv(t), z̄v(t), V v(s), v(s)) dt

+ Zv(T ) ϕ(xv(T )) + ψ(yv(0))

]
.

(8)

Thus, the original optimization problem is equivalent to minimizing the cost functional (8) over v(·) ∈ Uad

subject to (5) and (7).

3 Stochastic maximum principle

In this section, we will derive the stochastic maximum principle for the cost function (8) subject to (5)

and (7).

For any ǫ ∈ (0, 1) and v+u ∈ Uad, by convexity, u+εv ∈ Uad. Let (x
u+εv(·), yu+εv(·), zu+εv(·), ξu+εv(·, ·),

V u+εv(·)) be the solutions of (5) and (7) with v replaced by u+ εv. From the Burkholder-Davis-Gundy

inequality and Gronwall’s inequality, we have the following estimates (Lemmas 1 and 2). Because the

proofs are routine, we omit them.

Lemma 1. Let Hypothesis 1 hold

sup
06t6T

E|xv(t)|8 6 C

(
1 + E

∫ T

0

|v(t)|8dt

)
,

sup
06t6T

E|yv(t)|2 6 C

(
1 + E

∫ T

0

|v(t)|2dt

)
,

E

(∫ T

0

|zv(t)|2dt+

∫ T

0

|z̄v(t)|2dt+

∫ T

0

∫

E

|ξv(t, ζ)|2ν(dζ)dt

+

∫ T

0

|V v(t)|2dt

)
6 C

(
1 + E

∫ T

0

|v(t)|2dt

)
,

sup
06t6T

E|Zv(t)|2 <∞.

Lemma 2. Let Hypothesis 1 hold. Then, there exists a constant C such that

sup
06t6T

E|xu+εv(t)− xu(t)|8 6 Cε8,

sup
06t6T

E|yu+εv(t)− yu(t)|2 6 Cε2,

E

∫ T

0

|zu+εv(t)− zu(t)|2dt 6 Cε2,

E

∫ T

0

|z̄u+εv(t)− z̄u(t)|2dt 6 Cε2,

E

∫ T

0

∫

E

|ξu+εv(t, ζ) − ξu(t, ζ)|2ν(dζ)dt 6 Cε2,

E

∫ T

0

|V u+ǫv(t)− V u(t)|2dt 6 Cε2,

and

sup
06t6T

E

∫ T

0

|Zu+εv(t)− Zu(t)|2dt 6 Cε2.
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For simplicity of notation, we write

h(t) = h(t, x(t)) and hx(t) = hx(t, x(t)).

With obvious modification, we can introduce notations with h replaced by b̃, σ, δ, η, γ, and g.

We introduce the following variational equations:





dZ1(t) =
[
Z1(t)h(t) + Z(t)hx(t)x

1(t)
]
dY (t),

Z1(0) = 0,
(9)

and 



dx1(t) =
{
b̃x(t)x

1(t) + b̃v(t)v(t)
}
dt+ [σx(t)x

1(t) + σv(t)v(t)]dB(t)

+ [δx(t)x
1(t) + δv(t)v(t)]dY (t)

+

∫

E

[
ηx(t−, ζ)x

1(t−) + ηv(t−)v(t−)
]
Ñ(dζ, dt)

+
[
γx(t−)x1(t−) + γv(t−)v(t−)

]
· dΦ̃(t),

− dy1(t) =
[
gx(t)x

1(t) + gy(t)y
1(t) + gz(t)z

1(t) + gz̄(t)z̄
1(t)

+

D∑

j=1

gVj
(t)V 1j(t)λj +

∫

E

〈
∇ξg(t, ζ), ξ

1
〉
L2(ν)

ν(dζ)

+ gv(t)v(t)
]
dt− z1(t)dB(t) − z̄1(t)dY (t)

−

∫

E

ξ1(t, ζ)Ñ (dζ, dt) − V 1(t) · dΦ̃(t),

x1(0) = 0, y1(T ) = φx(x(T ), α(T ))x
1(T ),

(10)

For any v(·) + u(·) ∈ Uad, it is easy to see that (10) and (9) admit unique solutions under Hypothesis 1.

Furthermore, we have the following lemma.

Lemma 3. If Hypothesis 1 holds, then

E|x1(t)|8 <∞, E|Z1(t)|4 <∞. (11)

Lemma 4. If Hypothesis 1 holds and

ϑ̃ǫ(t) =
ϑu+ǫv(t)− ϑu(t)

ǫ
− ϑ1(t) with ϑ = x, y, z, z̄, V, ξ, Z,

then,

lim
ǫ→0

sup
06t6T

E|x̃ǫ(t)|2 = 0, (12)

lim
ǫ→0

sup
06t6T

E|Z̃ǫ(t)|2 = 0, (13)

and
lim
ǫ→0

sup
06t6T

E|ỹǫ(t)|2 = 0,

lim
ǫ→0

E

∫ T

0

|z̃ǫ(t)|2dt = 0, lim
ǫ→0

E

∫ T

0

|˜̄zǫ(t)|2dt = 0,

lim
ǫ→0

E

∫ T

0

∫

E

|ξ̃ǫ(t, ζ)|2ν(dζ)dt = 0,

lim
ǫ→0

E

D∑

j=1

∫ T

0

|Ṽ j,ǫ(t)|2λjdt = 0.

(14)
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Proof. For simplicity of notation, we denote

bǫx(t) =

∫ 1

0

bx(t, x(t) + κǫ(x1(t) + x̃ǫ(t)), u(t) + κǫv(t), α(t))dκ.

The notation is modified in an obvious manner when b is replaced by other mappings.

It follows from (3) and (10) that x̃ǫ(0) = 0 and

dx̃ǫ(t) =

[
x̃ǫ(t)b̃ǫx(t) + (b̃ǫx(t)− b̃x(t))x

1(t) + (b̃ǫv(t)− b̃v(t))v(t)

]
dt

+

[
x̃ǫ(t)σǫ

x(t) + (σǫ
x(t)− σx(t))x

1(t) + (σǫ
v(t)− σv(t))v(t)

]
dB(t)

+

[
x̃ǫ(t)δǫx(t) + (δǫx(t)− δx(t))x

1(t) + (δǫv(t)− δv(t))v(t)

]
dY (t)

+

∫

E

[
x̃ǫ(t)ηǫx(t, ζ) + (ηǫx(t, ζ)− ηx(t, ζ))x

1(t)

+ (ηǫv(t, ζ) − ηv(t, ζ))v(t)

]
Ñ(dζ, dt)

+

[
x̃ǫ(t)γǫx(t) + (γǫx(t)− γx(t))x

1(t) + (γǫv(t)− γv(t))v(t)

]
dΦ̃(t).

Based on Hypothesis 1, the Hölder inequality, the Burkholder-Davis-Gundy inequality, and an elementary

inequality, we obtain

f(s) ≡ E sup
s6t

|x̃ǫ(s)|4

6 CE

∫ t

0

|x̃ǫ(t)|4ds

+C

(
E

∫ t

0

|x1(s)||b̃ǫx(s)− b̃x(s)|ds

)4

+C

(
E

∫ t

0

|v(s)||b̃ǫv(s)− b̃v(s)|ds

)4

+CE

(∫ t

0

|x1(s)|2|σǫ
x(s)− σx(s)|

2ds

)2

+CE

(∫ t

0

|v(s)|2|σǫ
v(s)− σv(s)|

2ds

)2

+ · · · ,

where the omitted terms are similar to the last two terms. Applying the Lipschitz continuity of bx, bv,

σx, σv, ηx, ηv, γx,γv, and Lemma 3, we arrive at

f(t) 6 C1

∫ t

0

f(s)ds+ ǫ4C2.

Then, Gronwall’s inequality implies

f(t) 6 ǫ4C2e
C1t 6 C3ǫ

4.

Eq. (13) follows from the same arguments used above. Finally, we prove (14). Let

gǫx =

∫ 1

0

gx(x + κǫ(x1 + x̃ǫ), y + κǫ(y1 + ỹǫ), z + κǫ(z1 + z̃ǫ),

z̄ + κǫ(z̄1 + ˜̄zǫ), Vj + κǫ(V 1j + Ṽ ǫj), ξ + κǫ(ξ1 + ξ̃ǫ), u+ κǫv)dκ.
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The other notations used below are defined similarly. Then,





− dỹǫ(t) =
[
gǫx(t)x̃

ǫ(t) + gǫy(t)ỹ
ǫ(t) + gǫz(t)z̃

ǫ(t) + gǫz̃(t)˜̄z
ǫ(t)

+
D∑

j=1

gǫVj
(t)Ṽ ǫj(t)λj +

∫

E

∇ξg
ǫ(t)∇ξg(t)ξ̃

ǫν(dζ)

+ gǫv(t) + bǫ0(t)
]
dt− z̃ǫ(t)dB(t) − ˜̄zǫ(t)dY (t)

−

∫

E

ξ̃ǫ(t, ζ)Ñ (dζdt) − Ṽ ǫ(t) · dΦ̃(t),

ỹǫ(T ) = ǫ−1[φ(xǫ(T ), α(T ))− φ(x(T ), α(T ))]

− φx(x(T ), α(T ))x
1(T, α(T )),

where

bǫ0 = [gǫx − gx]x
1 + [gǫy − gy]y

1 + [gǫz − gz]z
1 + [gǫz̄ − gz̄]z̄

1

+

D∑

j=1

[gǫVj
− gVj

]V 1jλj +

∫

E

[∇ξg
ǫ −∇ξg]ξ

1ν(dζ).

Applying the Itô formula to |ỹǫ(t)|2, noting the assumption, we have

E|ỹǫ(t)|2 + E

∫ 1

t

|z̃ǫ(s)|2ds+ E

∫ 1

t

|˜̄zǫ(s)|2ds+ E

∫ 1

t

∫

E

|ξ̃ǫ(s, ζ)|2ν(dζ)ds

+ E
D∑

j=1

∫ 1

t

|Ṽ ǫj(t)|2λjds

= E

∫ T

t

[
2ỹǫ(s)

(
bǫ1(t)x̃

ǫ(t) + bǫ2(t)ỹ
ǫ(t) + bǫ3(t)z̃

ǫ(t) + bǫ4(t)˜̄z
ǫ(t)

+

D∑

j=1

bǫ5(t)Ṽ
ǫj(t)λj +

∫

E

bǫ6(t)∇ξg(t)ξ̃
ǫν(dζ) + bǫ7(t)

)]
ds

+ E
{
ǫ−1[φ(xǫ(T ), α(T ))− φ(x(T ), α(T ))] − φx(x(T ), α(T ))x

1(T )
}2

6 E

∫ 1

t

K
(
|x̃ǫ(s)|2 + |ỹǫ(s)|2

)
ds+

1

2
E

∫ 1

t

|z̃ǫ(s)|2ds+
1

2
E

∫ 1

t

|˜̄zǫ(s)|2ds

+
1

2
E

∫ 1

t

D∑

j=1

|Ṽ ǫj(t)|2λjds+
1

2

∫ 1

t

∫

E

|ξ̃ǫ(s, ζ)|2ν(dζ) + o(1).

Combining with the first assertion, we see that

E|ỹǫ(t)|2 +
1

2
E

∫ 1

t

|z̃ǫ(s)|2ds+
1

2
E

∫ 1

t

|˜̄zǫ(s)|2ds

+E

∫ 1

t

∫

E

|ξ̃ǫ(s, ζ)|2ν(dζ)ds) +
1

2
E

∫ 1

t

D∑

j=1

|Ṽ ǫj(t)|2λds

6 E

∫ T

t

K|ỹǫ(s)|2ds+ o(1). (15)

Dropping the last four terms on the left hand side of (15), by Gronwall’s inequality, we get the second

statement of the theorem. Finally, we get the last four convergence results of (14) by dropping the first

term on the left hand side of (15).

Hypothesis 2. Now, we suppose that for any t, τ , such that t + τ ∈ [0, T ], and bounded random

variable ς , we can formulate the control process v(s) ∈ U , with

v(s) = ςI[t,t+τ ](s), s ∈ [0, T ],
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where I[t,t+τ ](s) is the indicator function. For any v(s) ∈ Gs, with v(s) bounded and u + v ∈ Uad, we

have such that u(·) + ǫv(·) ∈ Uad for ǫ ∈ (0, 1).

Now, we define
d

dǫ
J(ǫ)

∣∣∣∣
ǫ=0

= lim
ǫ→0

J(u(·) + ǫv(·))− J(u(·))

ǫ
.

It follows from Lemmas 2 and 4 that

0 =
d

dǫ
J(ǫ)

∣∣∣∣
ǫ=0

= lim
ǫ→0

J(u(·) + ǫv(·))− J(u(·))

ǫ

=E

∫ T

0

{
Z1(t)l(t) + Z(t)

[
lx(t)x

1(t) + ly(t)y
1(t) + lz(t)z

1(t)

+ lz̄(t)z̄
1(t) +

D∑

j=1

lVj
V 1j(t)λj + lv(t)v(t)

]}
dt+ E[Z(T )ϕx(x(T ))x

1(T )]

+ ψy(y(0))y
1(0) + E[Z1(T )ϕ(x(T ))].

We define the Hamiltonian H(t, x, y, z, z̄, ξ, v, p, q, r, r̄, θ, s) by

H(t, x, y, z, z̄, V, v, p, q, r, r̄, θ, s)
.
= b̃(x, v)q + σ(x, v)r + δ(x, v)r̄ + g(t, x, y, z, z̄, V, v)p

+ Z(t)l(t, x, y, z, V, v) +

∫

E

η(x, v, α)θ(ζ)ν(dζ) +

D∑

j=1

γj(t, x, α, v)sjλj , (16)

and the adjoint equation as follows:






dp(t) = [gy(t)p(t) + Z(t)ly(t)] dt+ [gz(t)p(t) + Z(t)lz(t)] dB(t)

+ [gz̄(t)p(t) + Z(t)lz̄(t)] dY (t) +

∫

E

∇ξg(t, ζ)p(t)Ñ(dζ, dt)

+

D∑

j=1

(
gVj

(t)p(t) + Z(t)lVj
(t)
)
dΦ̃j(t),

− dq(t) =
[
b̃x(t)q(t) + σx(t)r(t) + δx(t)r̄ + gx(t)p(t) + Z(t)lx(t)

+ β(t)Z(t)hx(t) +

∫

E

ηx(t, e)θ(t, ζ)ν(dζ)

+

D∑

j=1

γjx(t, x, ei, u)s
jλj

]
dt− r(t)dB(t) − r̄(t)dY (t)

−

∫

E

θ(t−, ζ)Ñ(dζ, dt) −

D∑

j=1

sj(t)dΦ̃j(t),

p(0) = ψy(y(0)), q(T ) = φx(x(T ))p(T ) + Z(T )ϕx(x(T )).

(17)

To deal with the additional term Z1(·), we introduce an auxiliary BSDE:

{
− dP (t) = (β(t)h(t, x) + l(t, x(t), y(t), z(t), V (t), v(t))dt − β(t)dY (t),

P (T ) = ϕ(x(T )).
(18)

A unique solution to (18) exists.

It is easy to show that the forward-backward stochastic differential equation (17) has a unique solution.
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Applying Itô’s formula,

E[x1(T )q(T )] = E[φx(x(T ))p(T )x
1(T ) + Z(T )ϕx(x(T ))x

1(T )]

= −E

∫ 1

0

x1(t)(Z(t)lx(t) + p(t)gx(t) + β(z)Z(t)hx(t))dt

+E

∫ 1

0

[
b̃v(t)q(t) + σv(t)r(t) + δv(t)r̄(t)

+

∫

E

ηv(t)θ(t)ν(dζ) +

D∑

j=1

γjv(t)s
jλj

]
v(t)dt,

E[y1(0)p(0)] = E[φx(x(T ))x
1(T )p(T )]− E

∫ T

0

[
Z(t)

(
ly(t)y

1(t)

+lz(t)z
1(t) + lz̄(t)z̄

1(t) +

D∑

j=1

lVj
(t)V 1j(t)λj

)]
dt

+E

∫ T

0

p(t)
[
gx(t)x

1(t) + gv(t)v(t)
]
dt,

and

E[Z1(T )P (T )] = E[Z1(T )ϕ(x(T ))]

= −E

∫ T

0

Z1(t)l(t)dt+ E

∫ T

0

Z(t)β(t)hx(t)x
1(t)dt.

Combining the above three equalities,

E[Z(T )ϕx(x(T ))x
1(T )] + ψy(y(0))y

1(0) + E[Z1(T )ϕ(x(T ))]

= E

∫ T

0

Hv(t)v(t)dt − E

∫ T

0

{
Z1(t)l(t) + Z(T )

(
lx(t)x

1(t) + ly(t)y
1(t)

+lz(t)z
1(t) + lz̄(t)z̄

1(t) +

D∑

j=1

lVj
V 1j(t)λj + lv(t)v(t)

)}
dt.

Therefore, we have

E (Hvv(t)|Gt) = 0.

Thus, we have the following theorem.

Theorem 1. Assume that the Hypotheses 1 and 2 hold. Let v(·) be an optimal control and (x, y, z, z̄, ξ, V,

v) be the corresponding solution of FBSDEP. Then, the maximum principle

E
[
Hv(t, x, y, z, z̄, V, v, p, q, r, r̄, θ, s)

∣∣∣Gt

]
= 0

holds.

The following remark will be useful in the application presented in the next section. The observation

functions h are linear and hence not bounded. Based on a careful check of the proofs in this section, we

note that the boundedness of h is only needed to derive a certain integrability of Z and Z1.

Remark 1. The conclusion remains true when the h bounded in Hypothesis 1 is replaced by

E
(
|Z(t)|2 + |Z1(t)|4

)
<∞.



Zhang S Q, et al. Sci China Inf Sci July 2018 Vol. 61 070211:11

Remark 2. If h = 0, then Z = 1. Therefore, in this special case,

H(t, x, y, z, z̄, V, v, p, q, r, r̄, θ, s)
.
= b(x, v)q + σ(x, v)r + δ(x, v)r̄ + g(t, x, y, z, z̄, V, v)p

+ l(t, x, y, z, V, v) +

∫

E

η(x, v, α)θ(ζ)ν(dζ) +

D∑

j=1

γj(t, x, α, v)sjλj ,

and the adjoint equation is as follows:





dp(t) = [gy(t)p(t) + ly(t)] dt+ [gz(t)p(t) + lz(t)] dB(t)

+ [gz̄(t)p(t) + lz̄(t)] dY (t) +

∫

E

∇ξg(t, ζ)p(t)Ñ (dζ, dt)

+
D∑

j=1

(
gVj

(t)p(t) + lVj
(t)
)
dΦ̃j(t),

− dq(t) =
[
bx(t)q(t) + σx(t)r(t) + δx(t)r̄ + gx(t)p(t) + lx(t)

+

∫

E

ηx(t, e)θ(t, ζ)ν(dζ)

+

D∑

j=1

γjx(t, x, ei, u)s
jλj

]
dt− r(t)dB(t) − r̄(t)dY (t)

−

∫

E

θ(t−, ζ)Ñ(dζ, dt) −

D∑

j=1

sj(t)dΦ̃j(t),

p(0) = ψy(y(0)), q(T ) = φx(x(T ))p(T ) + ϕx(x(T )).

Theorem 2. Assume that Hypothesis 2 holds. Let v(·) be an optimal control and (x, y, z, z̄, ξ, V, v) be

the corresponding solutions of the FBSDEs. Then, the maximum principle

Ē
[
Hv(t, x, y, z, z̄, V, v, p, q, r, r̄, θ, s)

∣∣∣Gt

]
= 0 (19)

is true.

4 Example

In this section, we solve the problem proposed in Section 1. First, x(t) can be rewritten as the following

form:

dx(t) = (c+ r0(t)(x(t) − v(t)))dt− dC(t) + µ(t)v(t)dt + δ(t)v(t)dW (t)

+1 · dΦ̃(t)

= (c+ r0(t)(x(t) − v(t)))dt−

∫ ∞

0

ζ(t)N(dζ, dt) + µ(t)v(t)dt

+δ(t)v(t)dW (t) + 1 · dΦ̃(t)

= (r0(t) (x(t)− v(t)) + c̄) dt+ δ(t)v(t)dW (t) + µ(t)v(t)dt

−

∫ ∞

0

ζ(t)Ñ (dζ, dt) + 1 · dΦ̃(t),

where c̄ = c− λ̄Ēζ. Similar to Theorem 3.1 in [5], using the separation principle,




dx(t) = (r0(t)(x(t) − v(t)) + c̄)dt−

∫ ∞

0

ζ(t)Ñ(dζ, dt) + µ̂(t)v(t)dt

+ δ(t)v(t)dν(t) + 1 · dΦ̃(t),

x(0) = x0,
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where µ̂(t) = E[µ(t)|Gt], and the innovation process is as follows:

dν(t) =
1

δ(t)
d logS(t)−

1

δ(t)

(
µ̂(t)−

1

2
δ2(t)

)
dt,

and 



dY (t) =
1

δ(t)

(
µ(t)−

1

2
δ2(t)

)
dt+ dW (t),

Y (0) = 0,

where Y (t) = 1
δ(t) logS(t).

Let 



− dy(t) = (g1(t)y(t) + g2(t)v(t)) dt− z̄(t)dY (t)

−

∫ ∞

0

ξ(t)Ñ(dζ, dt) − 1 · dΦ̃(t),

y(T ) = xv(T ),

i.e., 




− dy(t) =

(
g1(t)y(t) + g2(t)v(t) −

1

δ

(
µ̂−

1

2
δ2(t)

)
z̄(t)

)
dt− z̄(t)dν(t)

−

∫ ∞

0

ξ(t)Ñ(dζ, dt) − 1 · dΦ̃(t),

y(T ) = xv(T ),

where g1(t) and g2(t) are bounded. The objective is to minimize

J(v(·)) =
1

2
E

[∫ T

0

(v(t)− a(t))2dt+ x2(T )− 2yv(0)

]
.

Proposition 1. The optimal control is given by

v(t) = (r0(t)− µ̂(t)) q̂(t)− δ(t)ˆ̄r − g2(t)p̂(t) + a(t).

Proof. In this setting, from (16) and (17), the Hamiltonian is

H(t, x, y, z, z̄, V, v, p, q, r, r̄, θ, s)

= (r0(t) (x(t)− v(t)) + µ̂(t)v(t) + c̄) q(t) + δ(t)v(t)r̄

+

(
g1(t)y(t) + g2(t)v(t) −

1

δ

(
µ̂−

1

2
δ2(t)

)
z̄(t)

)
p(t) +

1

2
(v(t)− a(t))

2

+

∫

E

ζ(t)θ(ζ)ν(dζ) +

2∑

j=1

sjλj .

and the adjoint equations are given by





dp(t) = g1(t)p(t)dt −
1

δ

(
µ̂(t)−

1

2
δ2(t)

)
p(t)dν,

− dq(t) = r0(t)q(t)dt − r̄(t)dν(t)

−

∫

E

θ(t−, ζ)Ñ(dζ, dt) −

D∑

j=1

sj(t)dΦ̃j(t),

p(0) = −1, q(T ) = p(T ) + x(T ).

Applying the stochastic maximum principle (19), we have

v(t) = (r0(t)− µ̂(t)) q̂(t)− δ(t)ˆ̄r − g2(t)p̂(t) + a(t),
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where p̂(t), q̂(t), and ˆ̄r are the unique solutions of





dp̂(t) = g1(t)p̂(t)dt−
1

δ

(
µ̂(t)−

1

2
δ2(t)

)
p̂(t)dν,

− dq̂(t) = r0(t)q̂(t)dt− ˆ̄r(t)dν(t),

p̂(0) = −1, q̂(T ) = p̂(T ) + x̂(T ).






dx̂(t) = (r0(t)(x̂(t)− (r0(t)− µ̂(t)) q̂(t)− δ(t)ˆ̄r − g2(t)p̂(t) + a(t)) + c̄)dt

−

∫ ∞

0

ζ(t)Ñ (dζ, dt) + µ̂(t)v(t)dt+ δ(t)v(t)dν(t) + 1 · dΦ̃(t),

x̂(0) = x0,

The existence of a solution to the above system of equations is a kind of conditional mean field problem.

The result in [19] can be extended to the conditional case. Under the condition that all the coefficients

are Lipschitz continuous, a solution exists.
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