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The development of control algorithms to improve
the energy efficiency of hybrid electric vehicles
(HEVs) has attracted extensive attentions due to
the advancement of the powertrain on fuel econ-
omy and emission reduction. The objective of the
energy management control for HEVs is to dis-
tribute the driver demand power between the en-
gine and the motor to maximize the efficiency. De-
terministic dynamic programming (DP) has been
applied to solve the problem, but it just provides
a theoretical optimal solution which cannot guar-
antee the practical requirements. To deal with the
involved time-varying characteristics, significant
efforts have been paid to develop model predic-
tive control (MPC)-based online algorithms [1, 2].
However, the nonlinearity in the system causes
strong limits to present a general framework to
get an exact optimal solution. Moreover, the com-
putational burden is a considerable issue to apply
online optimization solutions. The vehicle system
explicitly involves the driver behavior which gen-
erates stochastic influence to the energy efficiency
performance. Recently, extended predictive-based
algorithms that integrate the theoretical tools of
stochastic system control are investigated [3–5].

In this article, a case study for optimal control of
hybrid electrical vehicle (HEV) is discussed based
on the theoretical framework of stochastic logical
dynamical system. With the mathematical tool of
semi-tensor product denoted by ⋉ and the Markov

chain model, the contributions on synthesis of logi-
cal dynamical system show that simple optimaiza-
tion can be achieved in the logical domain [6, 7].
This work introduces a logical stochastic control
algorithm that generates an approximate optimal
solution for the HEV control problem. A simula-
tion result is presented to indicate the potential
of applying the logical model-based control design
strategy to the HEV.

Problem formulation. Consider a parallel HEV
with a five-speed manual transmission system. In
the energy management problem of HEV, the main
system dynamics is the battery state of charge
(SoC) which can be modeled as

˙SoC =
−Uoc +

√

U2
oc − 4RbηmTmωm

2QbmaxRb

, (1)

where Uoc, Rb, Qbmax denote the open-circuit volt-
age, internal resistance and maximum charge ca-
pacity of the battery, respectively, and Tm, ωm

and ηm denote the torque, speed and efficiency of
the motor, respectively. Using a simple logic for
gear shifting decision, the control variable can be
chosen as the engine torque, i.e., u = Te. For the
powertrain system, the stochastic disturbances in-
clude the driver demand driving torque Td and the
vehicle speed v. Denote the disturbance vector as
w = [Td, v]

T. The objective is to find a control pol-
icy u(t), t ∈ [0, T ] to minimize a given cost func-
tion, where T denotes the driving duration. This
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work focuses on minimizing the equivalent energy
consumption which is defined by

J =

∫ T

0

ΓEQlhvṁf (x, u, w) + ṁe(x, u, w)dt, (2)

where ṁf and ṁe denote the fuel flow rate and the
change rate of the battery internal energy, respec-
tively, ΓE denotes the factor for converging the
fuel consumption into equivalent energy and Qlhv

denotes the fuel lower heating value. Meanwhile,
the minimization of cost function (2) subjects to
the constraints of the system dynamics (1) which is
simply expressed as ẋ = f(x, u, w) (x = SoC), and
the physical limits of the state x and the control
variable u. Furthermore, the probability distribu-
tions P (Td) and P (v) of the stochastic variables
are estimated according to a set of real driving cy-
cles, respectively.

To develop the logical-based control algorithm,
the optimal control problem is discretized as

min
u

J = E
wk

k = 0, . . . , N − 1

{

N−1
∑

k=0

g(xk, uk)

}

s.t.































xk+1 = f̄(xk, uk, wk),

Td ∈ Ω(P (Td)),

v ∈ Ω(P (v)),

x ∈ [xmin, xmax],

u ∈ [umin, umax],

(3)

with g(x, u) = ΓEQlhv∆mf + ∆me, where f̄ de-
notes the forward difference with respect to f .
Note that it is difficult to exactly solve the above
stochastic optimal control problem. The logical
system-based design method proposed in [7] is in-
vestigated to get an approximate solution.

Choose proper quantitative factors σx (σxnx =
xmax − xmin) and σu (σunu = umax − umin), re-
spectively. The effective ranges of the state are
qualified to finite intervals Si = [xi−1, xi] (i =
1, . . . , nx), and obtain finite control variable uj

(j = 1, . . . , nu). δix and δju represent the i-th and
j-th columns of the identify matrixes Inx

and Inu
,

respectively, as the corresponding logical variables.
In this case, δix ∼ x ∈ [xi−1, xi] and δju ∼ uj. More-
over, the cost function is approximately redefined
with the following relation:

ḡ(δix, δ
j
u) ∼ g

(

xi−1 + xi

2
,
uj−1 + uj

2

)

. (4)

Denote ∆x = {δ1x, . . . , δ
nx
x } and ∆u =

{δ1u, . . . , δ
nu
x } as the logical spaces of the state and

control variable, respectively. The cost function in
the logical domain can be represented as

g̃(δx, δu) = δTxGδu, ∀δx ∈ ∆x, δu ∈ ∆u (5)

with G = [Gi,j ]nx×nu
= [ḡ(δix, δ

j
u)]nx×nu

.

Furthermore, the following Markov chain model
is proposed:

P
γ
i,j =

{

xk+1 = δjx | xk = δix, uk = δγu
}

, (6)

which is calculated with

P
γ
i,j =

nv
∑

β=1

nT
∑

α=1

M(f−1(Si, T γ
e , T

α
d , v

β) ∩ Sj)

M(Si)
·

P (Tα
d ) · P (vβ), (7)

where M denotes the Lebesgue measure on real
number field R, and nv and nT denote the sample
numbers of Td and v, respectively. According to
(7), for a δju, the following transition probability
matrix can be obtained:

P
δ
j
u
=









p
j
1,1 · · · p

j
1,nx

...
...

...

p
j
nx,1

· · · pjnx,nx









, j = 1, . . . , nu. (8)

Then, the problem (3) is reformulated in the
logical domain. Find a control policy such that

min
δu

J = E
wk

k = 0, . . . , N − 1

{

N−1
∑

k=0

g̃(δx,k, δu,k)

}

, (9)

which subjects to the Markov model (6).

Optimization algorithm. Define a matrix P =
[

(Pδ1u
)T, (Pδ2u

)T, . . . , (Pδ
nu
u

)T
]T

where

Pδku
=









pk1,1 · · · pk1,nx

...
...

...

pknx,1 · · · pknx,nx









, k = 1, . . . , nu.

The proposed control problem (9) can be solved
according to Algorithm 1.

Note that in the proposed control scheme, more
intervals to discretize the continuous variables can
increase the control precision, while cause heavy
computational burden. Hence, tread-off should be
involved based on the validation testings.
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Figure 1 (Color online) A validation result. (a) Control law; (b) instantaneous vehicle speed, torque commands and SoC.

Algorithm 1

S1: Set k = 0, K = [0 · · · 0]Tnx
;

S2: Find the feedback control law

Φ∗

N−k+1 = Lnu [q1, . . . , qnx ],

which is the solution of the following cost function associ-
ated matrix:

TK=













min
j=1,...,nu

{

G1,j + (δ1x)
T
⋉(δju)

T
PK

}

...

min
j=1,...,nu

{

Gnx,j + (δnx
x )T⋉(δju)

T
PK

}













,

i.e., for all i = 1, . . . , nx, qi = argminj=1,...,nu
{Gi,j +

(δix)
T
⋉ (δju)

T
PK};

S3: Set k = k + 1, K∗

k
= TK, and K = TK;

S4: If k < N , then go to S2; else, J∗ = K∗

N and stop.

Simulation and verification. A group of driving
cycles under city driving condition are analyzed
to get the P (Td) and P (v). According to (7), the
matrix P is calculated. The proposed control al-
gorithm is applied to an HEV simulator composed
by Matlab/Simulink. A PI controller is used to
generate the driver demand torque. Furthermore,
note that for the Algorithm 1, the equivalent factor
ΓE is a key turning parameter that effects the con-
trol performance. A bigger ΓE means that the fuel
consumption will be more than the electricity. In
this case, the HEV runs in the charge-sustaining
mode. Otherwise, it will be a plug-in like HEV
that runs in a charge-depleting mode.

Set nx = 20 with respect to the range that
Te ∈ [0, 170] Nm. The effective state range is set
as x ∈ [0.6, 0.7], and nu = 18. The control period
is 60 s. By conducting series tests, it is found that
the selected quantitative factors guarantee accept-
able control performance and cost few computing
time. Figure 1 shows a result with ΓE = 0.27.
The control law given by Figure 1(a) shows when
the SoC is higher than a value (0.65 in the testing
case), the HEV runs as an electric vehicle, other-

wise, the engine provides assistant driving torque
to recover the battery charge as can be observed
from Figure 1(b). This indicates that the control
law guarantees that the HEV can run in an al-
most charge-sustaining mode under the considered
constraints. Furthermore, note that by applying
the proposed control scheme, the HEV operating
mode depends on the constraint conditions which
affects the solution of the problem (3). Finally, the
validation result demonstrates the performance of
the control system, and shows that the logical-
based design method is potentially applicable to
deal with the considered control problem.
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