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Abstract This paper presents a new yaw stability controller for a rear double-driven electric vehicle. A

linear parameter varying (LPV) model of the vehicle is formulated using longitudinal speed measurement and

tire cornering stiffness estimation. The LPV model is then utilized to design a gain-scheduled H∞ controller

with guaranteed stability. Results from simulations, performed with CarSim, show that the new controller

improves the vehicle performance and handling even in extreme maneuvers and that it is robust to model

parameter uncertainties.
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1 Introduction

In recent years, due to growing awareness of environmental issues and the global aspiration to reduce the

emission of pollutants, the development of electric powered passenger vehicles has accelerated. Beyond

the environmental benefits of electric vehicles, which do not emit pollutants at all, this type of vehicles

allows separate propulsion of each driving wheel by an electric motor connected to it directly. This type of

direct propulsion of each driving wheel is not only space economic and allows good energy management,

but also constitutes an advantage in the field of stability control. It enables driving torque based stability

control instead of the traditional one, based on brake-torque. Electric motors are highly responsive and

their torque output can be controlled accurately. These qualities can have a great impact on the transient

and steady state handling response of the vehicle. In addition, torque vectoring (TV)1) applied through

individual wheel propulsion does not suffer from the mechanical limitations of active differentials, and

therefore is more efficient [2].

Yaw stability control (YSC) systems are active safety systems designed to reduce accidents occurrence

due to directional instability. As of 2012, all manufacturers in the USA are obligated to incorporate such

systems in their vehicles [3]. It is therefore not surprising that the field of YSC systems has received much

academic interest in the last years. The majority of YSC systems share a hierarchical structure, comprised

of an upper controller and a lower controller. The upper controller receives data from vehicle sensors,

such as steering wheel angle, speed and yaw rate, then calculates the required yaw moment in order to

*Corresponding author (email: arogeti@bgu.ac.il)
1) Torque vectoring is defined as applying different torque magnitudes on the driving wheels, thus generating yaw

moment [1].
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track desired values of yaw rate and sideslip angle. The lower controller operates the actuators; these

can be the vehicle brakes, active differential torque transfer or electric motors [4]. Many control methods

have been suggested for the design of the upper controller. The simplest controllers were those based

on a linearized model, with control methods that include mostly linear quadratic regulator (LQR) [5–9]

and H∞ control [10]. More advanced approach used for dealing with the nonlinearities, inherent in

the vehicle dynamics, is the sliding mode control (SMC), either by using linearized model and treat

nonlinearities as model uncertainty, as done in [11–13], or by incorporating the nonlinear model directly

in the design [14,15]. Fuzzy logic control (FLC) was used in [16,17], introducing a set of logic rules that

formulate the control law and thus avoiding the complexity of dealing with nonlinear model. Successive

linearization was used by [18] to linearize the model around current state and by [19] to linearize the

model around current equilibrium point, both applying model predictive control (MPC) methods. A very

popular approach for dealing with nonlinearity is gain-scheduling. The term gain-scheduling generally

describes the control of a nonlinear system using several linear controllers, which are interpolated or

switched online according to the state of the system [20]. Since the description of vehicle dynamics via

linear model is inadequate and designing a controller for nonlinear model is complex, this method is quite

popular in the filed of vehicle stability control. Several control methods were used with gains scheduling,

including proportional-integral-derivative (PID) [2], LQR [21, 22], H∞ control [23, 24], energy-to-peak

control [25, 26], mixed sensitivity loop shaping [27] and even MPC [28]. The scheduling parameters for

the controllers were also diverse and varied between several combinations; longitudinal speed [24–26],

longitudinal speed and yaw rate [27], longitudinal speed and steering input [22], longitudinal speed and

cornering stiffness [21], tire slip angles and slip ratio [23], longitudinal acceleration along with steering

input and friction coefficient [2].

In this study, a new controller is designed based on a linear parameter varying (LPV) model of the

vehicle, which depends on the longitudinal speed and cornering stiffness of the tires. External changes,

such as steering, excite the system and induce errors in the reference tracking of the system. Our goal is

to minimize the induced errors in the lateral velocity and the yaw rate. Since steering is hard to model,

we aim to guarantee performance for any steering signal. Mathematically this means that we minimize

the induced L2 norm from the external signals to the objective vector. This design method is referred

to as H∞ control [29]. The novelty of this study is in the successful integration of a cornering stiffness

estimator which rely solely on measurements of the vehicle velocities and accelerations. The use of this

estimation method allows the controller to be independent of any prior knowledge regarding the tire-

road friction coefficient while still being effective in a wide range of driving conditions. The controller

itself is unique thanks to the chosen time-varying parameters in the LPV model used in its design.

The H∞ method was also used before to design gain-scheduled controllers. However, the gain-scheduled

controllers relied only on varying speed and the cornering stiffness was treated mostly with norm-bounded

uncertainty approach (i.e., a robust approach), thus keeping the design very conservative. In contrast with

other methods proposed in previous studies, such as LQR and MPC, this gain-scheduled H∞ controller

guarantees closed-loop stability in a wide range of operating conditions, using LPV framework. Such a

controller can provide excellent performance while being relatively simple to design and implement.

2 LPV vehicle model

A well-known vehicle model, used for control design and dynamics analysis, is the so-called bicycle

model [4,30–32]. This two degrees-of-freedom (2DOF) linear model describes the lateral and yaw motions

of the vehicle (see Figure 1), as follows:

ẋp = Apxp +Bp1wp +Bp2up, (1)

where

xp =
[

Vy ψ̇
]T

, wp = δ, up =Mz,
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Figure 1 (Color online) 2DOF vehicle model.
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The two states, Vy and ψ̇, are the lateral velocity of the vehicle and its yaw rate, respectively. The

longitudinal velocity, Vx, is considered a constant (in this model) and therefore is not taken as a state.

The mass of the vehicle and its yaw moment of inertia are denoted, respectively, by m and Izz. The

distances between the vehicle’s center of gravity and the axles are lr, for the rear axle, and lf , for the

front axle. The cornering stiffness of the rear and front tires are Cαr and Cαf , respectively. The steering

angle, denoted by δ, is considered as a disturbance input as it is not determined by the control system.

The control input of the system is the stabilizing yaw moment, Mz.

2.1 Cornering stiffness estimation

Cornering stiffness of a tire is defined as the slope of the lateral force curve at zero slip angle [33]. When

the slip angle of a tire is small, it is proportional to the lateral force

Fy = Cαα. (2)

Here, α is the slip angle and Cα denotes the cornering stiffness of a tire at nominal conditions, namely,

nominal normal load, tire-road friction coefficient, air pressure and others. When the slip angle increases

significantly or when there are large deviations from the nominal conditions, the above relation between

the lateral force and the slip angle becomes inaccurate. The purpose of cornering stiffness estimation, as

presented here, is to update the value of the Cα continuously, such that at each instant the relation in (2)

remains accurate regardless of condition and slip angle variations.

In this study, an estimated method presented in [34] and referred to as the direct method, is used. The

main idea behind this method is simply taking the differential equations for the lateral velocity and the

yaw rate from (1) and rearrange them such that, given the values Vy, V̇y, ψ̇, ψ̈ and δ, algebraic solutions

for the estimation of Cαr and Cαf are obtained

Cαr(t) =
(mlf V̇y −mlf ψ̇Vx − Izzψ̈)/L

(lrψ̇ − Vy)/Vx
, (3)

Cαf (t) =
(mlrV̇y +mlrψ̇Vx + Izzψ̈)/L

(−Vy − lf ψ̇ + Vxδ)/Vx
, (4)

where L = lr + lf is the wheel base of the vehicle.

One can easily verify that the expressions in the denominators of (3) and (4) are the same as the ones

used to describe the rear and front slip angles, receptively, in the 2DOF linear model [4]. This means that

when the slip angles approach zero, due to either, straight driving or transient conditions, the cornering

stiffness values will approach infinity. This calls for limitation of the estimation process such that its
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values will be used only within certain bounds and discarded outside. Here, the values of the cornering

stiffness were bounded as follows:

1 · 104 N/rad 6 Cαr 6 5 · 105 N/rad,

1 · 104N/rad 6 Cαf 6 5 · 105 N/rad.
(5)

Simulations using a full vehicle model showed that the ratio of lateral force to slip angle stays be-

tween these values in most scenarios. In addition, relaxations of these constraints showed no significant

improvement in the LPV model accuracy.

2.2 Polytopic LPV model

A polytopic LPV vehicle model is now formulated using the stiffness estimates and the measurement of

the longitudinal velocity. In general, an LPV system has a state space representation which depends on

an exogenous time-varying parameter vector θ ∈ Rl, as follows [35]:

ẋ = A(θ)x +B1(θ)w +B2(θ)u,

z = C1(θ)x +D12(θ)u.
(6)

The LPV system in (6) is referred to as a polytopic LPV system if it can be represented by a convex

combination of LTI systems, namely,

(

A(θ) B1(θ) B2(θ)

C1(θ) D12(θ) ∗

)

=
N
∑

i=1

ρi(θ)

(

A(i) B
(i)
1 B

(i)
2

C
(i)
1 D

(i)
12 ∗

)

,

N
∑

i=1

ρi (θ) = 1, ρi (θ) > 0, N = 2l,

(7)

where A(i), B
(i)
1 , B

(i)
2 , C

(i)
1 , and D

(i)
12 denote the state-space representation of the system dynamics at

the vertices of the polytope. The scheduling parameters ρi are functions of the system parameters, which

are represented by the vector θ. The vector z is the objective vector (or the controlled output) of the

controlled system, it will take part in the representation of the yaw stability control goal.

In order to formulate a polytopic LPV model of the vehicle, the time-varying parameters should appear

linearly in the model [36]. Since this is not the case here, four new parameters are defined, which may

vary within some known bounds:

θ1(t) = Vx(t) ∈ [Vx min, Vx max],

θ2(t) = Cαf (t) ∈ [Cαf min, Cαf max],

θ3(t) =
Cαf (t)

Vx(t)
∈

[(

Cαf
Vx

)

min

,

(

Cαf
Vx

)

max

]

,

θ4(t) =
Cαr(t)

Vx(t)
∈

[(

Cαr
Vx

)

min

,

(

Cαr
Vx

)

max

]

.

(8)

For this design, the cornering stiffnesses were allowed to vary between the bounds defined in (5) and the

longitudinal velocity was limited to vary between 70 and 140 km/h. The longitudinal velocity limitation

takes into account the velocity range in which a driver is likely to drive and the velocities at which the YSC

system is needed. Using the new parameters defined above, the 2DOF LPV model can be reformulated

as follows:

ẋp = Ap (θ)xp +Bp1 (θ)wp +Bp2up, (9)

where

xp =
[

Vy ψ̇
]T

, wp = δ, up =Mz,
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3 Control objectives

The control objectives, namely, the desired values for the yaw rate and the lateral velocity are calculated

based on the driver’s inputs, steering wheel angle and throttle position. As mentioned in the NHTSA’s

official regulations regarding ESC systems [3], the average driver is used to operate the vehicle in its

linear region, therefore his driving skills are adjusted to this kind of vehicle behavior. In order to meet

driver’s expectations from the vehicle, especially in severe maneuvers, the desired values for the control

system are derived based on the 2DOF linear model (bicycle model) analysis. For steady state circular

motion the angular velocity equals V/R, therefore the desired yaw rate can be approximated as

ψ̇ss =
Vx
R
, (10)

where 1/R is the desired path curvature for a given steering angle, given by

1

R
=

δ

L+KusV 2
x

, (11)

and Kus, known as the understeer gradient, is ([30])

Kus =
m

L

(

lr
Cαf

−
lf
Cαr

)

. (12)

The desired value of the lateral velocity can be obtained by solving (1) for its steady state condition

Vy ss =
1

R

(

lr −
mlfV

2
x

LCαr

)

Vx. (13)

Since tracking the values presented in (10) and (13) is not always feasible, or it is not safe due to

driving conditions, limitations on these values are introduced. Using lateral force balance, [4] suggests

the next upper bound for the yaw rate

ψ̇max = 0.85
µg

Vx
, (14)

and regarding the upper bound of the lateral velocity, the following empirical expression is suggested

Vy max = Vx · arctan(0.02µg). (15)

Overall, the desired values for the yaw rate and the lateral velocity can be formulated as

ψ̇d =

{

ψ̇ss, |ψ̇ss| 6 ψ̇max,

ψ̇max· sgn(ψ̇ss), |ψ̇ss| > ψ̇max,
(16)

Vyd =

{

Vy ss, |Vy ss| 6 Vy max,

Vy max· sgn(Vy ss), |Vy ss| > Vy max.
(17)

4 Control design

The control system presented here is a hierarchical one (see Figure 2); an upper controller receives

data from the vehicle’s sensors and driver’s commands (throttle and steering input) and calculates the

corrective yaw moment required, a lower level controller then determines the torques required from the

motors in order to generate the desired yaw moment.
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g

Figure 2 Control system architecture.

4.1 Upper controller

Since the task of the controller is trajectory tracking, a reference model is used. The chosen reference

model is a first order filter of the desired state values and its purpose is to generate smooth and differen-

tiable reference signals for the system to follow. Its states follow the first order differential equation

τẋ + x = r. (18)

Thus, the reference model has the following state space representation:

ẋr = Arxr +B1rwr , (19)

where

xr =
[

Vyr ψ̇r

]T

, wr =
[

Vyd ψ̇d

]

,

Ar =







−
1

τ1
0

0 −
1

τ2






, B1r =







1

τ1
0

0
1

τ2






.

One should note that a clear distinction is made here between the desired values and the reference

values. The desired values, marked with subscript d, are calculated as shown in Section 3 and may be

noisy, not differentiable or even not continuous. The reference values, marked with subscript r, which are

filtered versions of the desired values (with time constants of τ1 and τ2), are continuous, differentiable,

smoother and slower and therefore are easier to track and reduce the risk of aggressive control actions.

The tracking problem is formulated by augmenting the vehicle model to include the reference model

states and by defining the output such that it represents a weighted sum of the tracking errors and the

control effort. The augmented model is therefore given by

ẋ = A (θ)x+B1 (θ)w +B2u,

z = C1x+D12u,
(20)

where

x =
[

Vy ψ̇ Vyr ψ̇r

]T

, w =
[

δ Vyd ψ̇d

]T

, u =Mz,

A(θ) =

[

Ap (θ) 02×2

02×2 Ar

]

, B1(θ) =

[

Bp1 (θ) 02×2

02×2 B1r

]

, B2 =

[

Bp2

02×1

]

,

C1 =









WVy
0 −WVy

0

0 Wψ̇ 0 −Wψ̇

0 0 0 0









, D12 =









0

0

Wu









.

Here, WVy
and Wψ̇ are the weighting factors for the tracking error of the lateral velocity and the yaw

rate, respectively, and Wu is the weighting factor of the control effort magnitude. Writing the output

vector z explicitly, we have

z =
[

WVy
(Vy − Vyr) Wψ̇(ψ̇ − ψ̇r) WuMz

]T

. (21)
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We obtained a model whose uncontrolled inputs are the steering angle and the desired state values, its

control input is the corrective yaw moment and its output is a weighted sum of the tracking errors of the

states and the control effort magnitude. Considering a polytopic state feedback controller of the form

u =
N
∑

i=1

ρi(θ)K
(i)x, (22)

the closed loop of the system in (20) is quadratically stable and its H∞ norm from w to z is less than a

prescribed γ > 0, if and only if the following LMIs:









A(i)X +XA(i)T +B2Y
(i) + Y (i)TBT

2 ∗ ∗

B
(i)T
1 −γ2I ∗

C1X +D12Y
(i) 0 −I









6 0,

X > 0

(23)

hold for all system vertices, i = 1, . . . , N . Here, the gain matrices, K(i) = Y (i)X−1, are the stabilizing

controller gains corresponding to each vertex of the system. The stability of the proposed controller can

be shown by substituting the closed loop of the LPV system into the bounded-real lemma; the use of

a single X matrix implies quadratic stability [37]. As shown in (22), the gain matrices are interpolated

in accordance with the values of the parameter vector θ (i.e., scheduled according to the location of

the system inside the polytope). This type of controller is known as gain-scheduled state feedback H∞

controller.

In the current design, the above LMIs were solved using YALMIP toolbox for MATLAB. The optimal

solution was obtained by an iterative process of solving the LMIs with reducing γ until infeasibility is

encountered (with this process the minimal value of γ is obtained).

Polytope vertices and scheduling parameters. The vector θ contains four time-varying param-

eters, each of them is lower and upper bounded (Section 2). Hence, the vehicle augmented LPV model

in (20) can be represented by a convex combination of 24 = 16 LTI systems. In accordance with the

number of system vertices, the solution to the relevant LMIs yields 16 gain matrices. These matrices are

continuously interpolated, using the scheduling variables as shown in (22), to form a single gain matrix to

be used in the control law. In this study, the scheduling variables were obtained analytically, as follows:

αj =
θj − θjmin

θjmax
− θjmin

, βij =

{

αj , if θ
(i)
j = θmax,

1− aj , if θ
(i)
j = θmin,

ρi =

4
∏

j=1

βij . (24)

4.2 Lower controller

The lower controller’s task is to activate the two rear motors such that the additional yaw moment

is applied without loss of total longitudinal force. A torque distribution has to be made such that a

difference in longitudinal forces is achieved and, at the same time, the total longitudinal force applied to

the vehicle is not reduced, preventing speed reduction. A simple method to achieve this is by increasing

torque on one side and reducing torque on the other side, by the same amount, ∆T .

As the additional yaw moment is generated by difference in longitudinal forces at the rear tires, the

control moment can be expressed in terms of rear longitudinal forces

Mz =
tr
2
(Fxrr − Fxrl), (25)

where tr is the rear track width. Rearranging the equation above, the longitudinal force difference needed

to produce the desired yaw moment is obtained

(Fxrr − Fxrl) =
2Mz

tr
. (26)
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The rear wheels rotational dynamics is given by the following differential equations:

Jwω̇rr = Tmrr − rwrFxrr, (27)

Jwω̇rl = Tmrl − rwrFxrr, (28)

where Jw is the wheels moment of inertia, ωrr and ωrl are the angular velocity of the rear-right and

rear-left wheels, respectively, rwr is the effective rolling radius of the rear wheels and Tmrr and Tmrl are

the driving/breaking torques applied by the rear-right and the rear-left motors, respectively. Defining

the torque at each motor as a sum of some baseline driving torque (Td, which is equal for both motors)

and an additional torque supplement term

Tmrr = Td +∆T, (29)

Tmrl = Td −∆T. (30)

Substituting the expressions for the motor torques ((29) and (30)) back into the wheels’ dynamics in

(27) and (28), we have

Jwω̇rr = Td +∆T − rwrFxrr, (31)

Jwω̇rl = Td −∆T − rwrFxrr. (32)

Subtracting (32) from (31)

Jw(ω̇rr − ω̇rl) = 2∆T − rwr(Fxrr − Fxrl). (33)

Substituting from (26) and rearranging, the expression for the desired torque supplement is obtained

∆T =
rwr

tr
Mz +

Jw
2
(ω̇rr − ω̇rl). (34)

Now, the desired torque at each motor can be expressed in terms of the control yaw moment Mz

Tmrr = Td +
rwr

tr
Mz +

Jw
2
(ω̇rr − ω̇rl), (35)

Tmrl = Td −
rwr

tr
Mz −

Jw
2
(ω̇rr − ω̇rl). (36)

In the following numerical results, the electric motors’ dynamics were simulated as the first order

dynamics (see [38]),
Lm
km

d

dt
(Tm) +

Rm
km

Tm = um, (37)

where Lm, Rm and km are the inductance, resistance and torque constant of the motor, respectively. The

input voltage to the motor, um, is determined using a proportional integral (PI) controller that regulates

the desired torque. Overall the dynamics of the motor torques, from the requested torque to the actual

torque, was modeled as a second order linear system. The output torque of each motor was limited, in

this study, to 400 Nm, this corresponds to a 80 Nm motor, with a reduction ratio of 1:5.

5 Simulation results

In order to evaluate the performance of the vehicle with the designed gain-scheduled H∞ (GS-H∞)

controller, simulations were carried out using the CarSim software package. In Subsection 5.1, the

proposed controller was tested and compared to a stationary H∞ controller, namely, a controller, which

is based on a linear 2DOF vehicle model with nominal values of cornering stiffness and longitudinal

velocity (the nominal velocity was taken as 80 km/h). A robustness test for the gain-scheduled controller

is also presented, showing its ability to tolerate model parameter inaccuracies. The model parameters

used for the simulations, and for the design of the controller, are presented in Table 1. The vehicle model

for validation is generated by the CarSim software package. It is considered a reliable car model, which

takes into account the tire-road nonlinear interaction; it was tuned according Table 1. The weights used

in the design of the controllers are presented in Table 2.
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Table 1 Vehicle model parameters

Parameter Unit Value Parameter Unit Value

m kg 1140 Cαr N/rad 135000

Izz kg·m2 996 Cαf N/rad 150000

lr m 1.165 Rm Ω 0.532

lf m 1.165 km Nm/A 21

tr m 1.486 Lm H 0.007

rwr m 0.299 τ1 s 0.3

Jw kg·m2 0.6 τ1 s 0.3

Table 2 H∞ controllers’ weights

Weight Stationary Gain-Scheduled

WVy 0.5 0.5

W
ψ̇

1 1

Wu 6.2 · 10−7 0.135
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Figure 3 (Color online) Simulation results of step steering test for gain scheduled H∞ controlled, stationary H∞ controlled

and uncontrolled vehicle. (a) Steering wheel angle; (b) yaw rate; (c) sideslip angle; (d) motor torques.

5.1 Step steering test

In this maneuver, the initial velocity of the vehicle is 75 km/h, and it drives on a dry road (µ = 0.85).

After 1 s, in which the motor torques converge to their steady state values (using a speed controller), a

steering wheel step input of 90 degrees is applied. In the uncontrolled vehicle the motor torques stay at

their steady state value for the entire maneuver, whereas for the controlled vehicle these values are used

as baseline torques (from which torque is added or subtracted as needed). The simulation results are

presented in Figure 3. It is seen in the results that the proposed GS-H∞ controller eliminates yaw rate

and sideslip angle oscillations, seen in the uncontrolled vehicle, reduces overshoots and presents excellent

yaw rate tracking. The yaw rate response of the stationary H∞ controller is not as good but its sideslip
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Figure 4 (Color online) Simulation results of fishhook maneuver for gain scheduled H∞ controlled, stationary H∞

controlled and uncontrolled vehicle. (a) Steering wheel angle; (b) yaw rate; (c) sideslip angle; (d) motor torques.

angle response is slightly better. It should be mentioned that precise tracking of the sideslip angle is less

significant, as long as its values remain small (in fact, in many other yaw controllers suggested in the

literature, the desired sideslip angle was taken as zero).

5.2 Fishhook maneuver

In this maneuver, the steering input approximates a driver’s panic reaction when trying to regain lane

position [39]. The vehicle is driving on a dry road (µ = 0.85) at an initial speed of 82 km/h with no

throttle input; the steering input initiates when the speed drops to 80 km/h. The steering input (see

Figure 4(a)) begins with a ramp steer of 720 deg/s until it reaches a magnitude of 150 deg, a first dwell

then occurs, for 250 ms, before a counter-steer with a negative slope of 720 deg/s begins, until it reaches

−150 deg. Then, a second dwell occurs for 3 s, before the steering wheel is returned to its starting position

(0 deg) within 2 s. Although typically used for rollover prevention tests, this severe maneuver may also

cause spin-out of passenger cars, and is therefore suitable for YSC system testing [40]. The results of

this simulation, presented in Figure 4, shows that both controllers manage to stabilize the vehicle. The

sideslip angle of the stationary H∞ is again closer to the desired one, however, the yaw rate response of

the GS-H∞ controller is much better, presenting great tracking and only a minor overshoot.

5.3 Double lane change on low friction road

Using the CarSim’s closed-loop driver utility, this test simulates an emergency overtaking maneuver

on a slippery road (with µ = 0.4). The driver is driving the vehicle at 120 km/h and tries to follow

a predefined path that simulates an emergency overtaking (see Figure 5(d)). This severe maneuver

provides an excellent test for the vehicle transient behavior, forces the vehicle and its tire to operate

well beyond their linear range. The results of this simulation, presented in Figure 5, show that in this

maneuver the stationary H∞ controller is no longer able to prevent the vehicle spin-out. The inaccurate

model underlying its design, caused the motors to saturate and the vehicle to develop large yaw rate and

sideslip angle, which as a result departed from its designated path. The GS-H∞ controller, however, has
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Figure 5 (Color online) Simulation results of double lane change test for gain-scheduled H∞ controlled, stationary H∞

controlled and uncontrolled vehicle. (a) Yaw rate; (b) sideslip angle; (c) motor torques; (d) trajectory.
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Figure 6 (Color online) Trajectory of a vehicle during double lane change maneuver, controlled by GS-H∞ controller

with parameter errors.

managed to keep the sideslip angle small and accurately tracks the desired yaw rate, despite this extreme

maneuver.

5.4 Robustness to model errors

In order to evaluate the robustness of the proposed GS-H∞ controller to model inaccuracy, deliberate

errors were inserted to the vehicle parameters. In this case, errors of 25% in the mass, yaw moment of

inertia and center of gravity location, were tested. These errors can simulate a situation of exceptional

or uneven loading of the vehicle. The robustness test was performed using the double lane change

maneuver, since it is the most severe and challenging maneuver being simulated in this study. The

results are presented in Figure 6. It is clearly seen that the model errors’ effect on the performance of

the controller is negligible. That is to say, the controller is robust to model errors. This robustness can
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be attributed to the gain-scheduling approach used here, as well as to the chosen estimation method of

the cornering stiffness. We notice that the stiffnesses are calculated such that they satisfy the relations

dictated by the 2DOF vehicle model equations of motion at each instant. For this reason, any deviation

of model parameters is corrected by an appropriate deviation of the cornering stiffnesses, thus softens the

influence of the error.

6 Conclusion

A novel nonlinear yaw stability controller was proposed, using the gain-scheduling and H∞ techniques.

The controller is based on an 2DOF LPV model of the vehicle, which accounts for the variation of the

longitudinal velocity as well as variation of the tires’ cornering stiffness. Simulations carried out using

the CarSim software showed the effectiveness of the controller in various scenarios, providing excellent

yaw rate tracking, reduced oscillations and small sideslip angle values. When compared to a stationary

H∞ controller, the GS-H∞ controller proved to be superior; that was especially noticeable in the double

lane change maneuver. The relatively high accuracy of the LPV model allowed the GS-H∞ to present

great performance and prevent actuators saturation even in extreme conditions. Robustness test also

showed that the proposed GS-H∞ controller is robust to model errors. The use of LPV framework allows

a stability proved controller, which is not dependent on a priori knowledge of the driving conditions and

provides excellent performance, as was seen in all test scenarios.
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