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Abstract Computation and sampling time requirements for real-time implementation of observers is stud-

ied. A common procedure for state estimation and observer design is to have a system model in continuous

time that is converted to sampled time with Euler forward method and then the observer is designed and

implemented in sampled time in the real time system. When considering state estimation in real time control

systems for production there are often limited computational resources. This becomes especially apparent

when designing observers for stiff systems since the discretized implementation requires small step lengths to

ensure stability. One way to reduce the computational burden, is to reduce the model stiffness by approximat-

ing the fast dynamics with instantaneous relations, transforming an ordinary differential equations (ODE)

model into a differential algebraic equation (DAE) model. Performance and sampling frequency limitations

for extended Kalman filter (EKF)’s based on both the original ODE model and the reduced DAE model are

here analyzed and compared for an industrial system. Furthermore, the effect of using backward Euler in-

stead of forward Euler when discretizing the continuous time model is also analyzed. The ideas are evaluated

using measurement data from a diesel engine. The engine is equipped with throttle, exhaust gas recirculation

(EGR), and variable geometry turbines (VGT) and the stiff model dynamics arise as a consequence of the

throttle between two control volumes in the air intake system. The process of simplifying and modifying

the stiff ODE model to a DAE model is also discussed. The analysis of the computational effort shows that

even though the ODE, for each time-update, is less computationally demanding than the resulting DAE, an

EKF based on the DAE model achieves better estimation performance than one based on the ODE with

less computational effort. The main gain with the DAE based EKF is that it allows increased step lengths

without degrading the estimation performance compared to the ODE based EKF.
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1 Introduction

Model based estimation and learning for systems with both fast and slow dynamics is a wide and active

research area, with different application areas such as combustion engines [1,2], and electrochemical and

reactive distillation processes [3]. In the automotive industry, there is a constant pursuit of designs for

cost effective systems that are able to meet stricter emission legislations and consumer demands on cheap

and reliable platforms. In particular this is true for the competitive market of heavy duty diesel engines

where concepts like intake throttle, exhaust gas recirculation (EGR) and variable geometry turbines
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(VGT) are introduced to cope with the increased demands on lower emissions [4]. To make accurate and

robust control and diagnosis of these systems, reliable measurements or estimates of the internal states

are required.

Due to installation limitations and sensor costs, the use of model based estimation and learning has

increased [1, 2, 5, 6]. Often there exist models that have been developed for some purpose, e.g., system

analysis, control, or diagnosis, which are ordinary differential equations (ODE) based on first principle

physics [7, 8]. Much time is invested in these models, with large efforts on model parameterization,

calibration and validation. It is therefore desirable to use the developed models in as many applications

as possible. However, models like these can have properties, e.g., bias [9] and/or fast dynamics [4,10], that

limit their applicability in other areas, in this case estimation. Methods that can be used to attenuate

such model deficiencies are desired. Biased models and their use in estimation and learning are treated

in for example [11, 12] while the use of models that experience fast and slow dynamics, i.e., stiff models,

is the topic of this work.

The problem of stiff models in engine control is closely connected to the embedded system in which the

estimator is implemented and the computational limitations of the embedded system. In an engine control

unit (ECU), a main difficulty with stiff models is that the model execution is scheduled in loops with fixed

frequencies, which can limit the possibility to satisfactorily solve the differential equations numerically. A

possible solution is to replace the fast dynamics in the ODE, with instantaneous dynamics, i.e., algebraic

conditions, resulting in a differential algebraic equation (DAE), keeping the overall model structure [13].

Observers for DAE models have been studied before [14–16] and typically low-index problems are stud-

ied and the resulting observer is an ODE. However, in [17] also the observer is a DAE, see discussion in [18]

for motivation. The work [19] treats high-index problems together with feedback-linearization control

structures. However, the results are not wide spread and not implemented in commercial applications.

The contributions in this paper are analysis of the potential and properties in using, the popular and

widely applied, Kalman filter [20] and especially the extended Kalman filter (EKF) [21] based on a DAE

compared to using an EKF based on a stiff ODE. Focus is on different approaches and their step length

and stability requirements for different discretization methods, and thereby their computational demands,

when running the corresponding ODE and DAE based EKF’s.

2 Background and problem motivation

Differential-algebraic models appear naturally in different applications; see for example [22] for a process

industry example, [23] for a power electronics example, and [3] for a chemical process example. Here, an

automotive application is considered and a main reason to consider DAE’s is stiffness properties of the

model. Numerically efficient and stable observer solutions for embedded systems are desirable and an

often limiting fact is the base frequencies in which the control system is scheduled, such as 20 or 100 Hz.

This can cause problems when implementing EKF’s for models with fast dynamics, e.g., stiff models, due

to their need for a small step length to ensure solver stability [13].

If the step length in the numerical method is increased from a stable condition the numerical solution

often starts to oscillate when the step length comes close to the stability limit and if it is increased

further the solution becomes unstable. This illustrates that the combination of system dynamics and the

integration method can result in numerical solutions that are unstable when the step length is too long;

this situation will be referred to as unstable estimates.

Stiffness in engine models. In the automotive industry, and especially in the field of engine control

a typical example, where stiff models is a problem, is when a throttle is used [10]. A throttle in the air

intake system, between the compressor and engine cylinders, connects the intake manifold and intercooler

volumes with a variable restriction; see Figure 1. A common model for filling and emptying dynamics of

volumes, is to consider mass conservation of ideal gases in fixed control volumes [24]

ṗCV =
dpCV

dt
=

RCVTCV

VCV
(WCV,in(·)−WCV,out(·)),
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Figure 1 Schematic of the diesel engine model [10] with throttle, EGR and VGT, showing model states (pim, pem, pic,

ωt, and Tem), inputs (uegr, uvgt, uδ, uth, and ne), and flows between the different components (Wc, Wth, Wegr, Wei, Weo,

and Wt). Rectangles with rounded corners represent control volumes.

where pCV and TCV denote the control volume pressure and temperature, RCV the ideal gas constant for

the gas in the control volume, VCV the volume, and WCV,in/WCV,out are the mass-flows in/out of the

control volume. The flows depend on pressures and temperatures in the surrounding systems [8], but

here these dependencies are omitted for the sake of clarity. An ODE model for the intake manifold and

intercooler pressures, presented in Figure 1, is

ṗim =
RaTim

Vim
(Wth(·) +Wegr(·)−Wei(·)), (1a)

ṗic =
RaTc

Vic
(Wc(·)−Wth(·)). (1b)

In operating points with fully open, or nearly open throttle, the filling and emptying dynamics become

fast, resulting in oscillating estimates if the discretization method and/or step length is inadequate, i.e.,

too long. For heavy duty diesel engines, these stiff operating conditions are common and need to be

addressed.

The fast dynamics around the throttle and pic results in that the flows Wc(·) and Wth(·) follow each

other closely. Therefore, one way to handle this is to remove the intercooler control volume and consider

the flows in and out of that volume as an algebraic constraint. By doing this, the original ODE (1) is

transformed into the following DAE:

ṗim =
RaTim

V DAE
im

(Wth(pic, pim, uth) +Wegr(·)−Wei(·)), (2a)

0 = Wc(pic, ωt)−Wth(pic, pim, uth), (2b)

with pic now becoming an algebraic variable. When a control volume is removed, the dynamics of the

total system is affected, especially operating conditions with wide open throttle, where the dynamics

becomes faster than that of the original model. Since most operation of diesel engines is with wide open

throttle, it is desirable to have a model, and an EKF, for these operating conditions. Figure 2 shows a

simulation of the default ODE model, defined by
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Figure 2 (Color online) DAE simulations with and without control volume adjustment for a step length of 50ms using

backward Euler, compared to high end simulation of the default ODE using the Matlab variable step length solver, ode23t,

with absolute and relative tolerances of 10−6. The better dynamic behavior of the model with increased volume is seen in

the areas highlighted with solid ellipses, representing open throttle operation. Also, there is only minor loss in simulation

accuracy for the larger volume during closed throttle operation, indicated by dotted ellipses. (a) ṗim = RaTim

Vim

(Wth(·) +

Wegr(·) −Wei(·)); (b) ṗim = RaTim

Vim+Vic

(Wth(·) +Wegr(·)−Wei(·)).

Ṫem = fTem
(pim, pem, ωt, Tem, uδ, uegr, uvgt, ne), (3a)

ω̇t = fωt
( pem, pic, ωt, Tem, uvgt, ), (3b)

ṗem = fpem
(pim, pem, ωt, Tem, uδ, uegr, uvgt, ne), (3c)

ṗim = fpim
(pim, pem, pic, Tem, uδ, uegr, uth, ne), (3d)

ṗic = fpic
(pim, pic, ωt, uth, ), (3e)

and

yfeedb = (pim pem ωt Wc(pic, ωt))
T, (4a)

yeval = pic, (4b)

together with simulations of the DAE model, with modifications of (3d) and (3e) according to (2).

The measurement equation (4) is split in two, where (4a) is used for feedback in the EKF and (4b)

is used as an evaluation output in Section 4 only. Two different control volume sizes, V DAE
im = Vim and

V DAE
im = Vim +Vic, are evaluated. Especially it shows that the smaller volume gives undesired overshoots

in the simulations of the pressures, turbine speed, and mass-flow for open throttle operation (see solid

ellipses in Figure 2(a)), while the closed throttle operation is not significantly degraded (see dotted ellipses

in Figure 2(b)). Therefore, the volume remaining in the DAE is increased to the sum of the original ODE’s

control volumes, i.e., V DAE
im = Vim + Vic in (2a).
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3 DAE observer

Before presenting the EKF algorithm used for the DAE observer in Subsection 3.2, a review of previous

results and algorithms is conducted and presented in Subsection 3.1, while observability of the DAE

model is the subject of Subsection 3.3.

3.1 Observer design — EKF for DAE’s

For continuous time ODE’s, such as

ẋ = f(x, u) + w, (5a)

y = h(x) + v, (5b)

where w and v are zero mean white noise processes with covariance intensities Q and R, EKF implemen-

tations are well known [25]. For general DAE’s

ẋ = f(x, z, u) + w, (6a)

0 = g(x, z, u), (6b)

y = h(x, z, u) + v, (6c)

where x and z denote differential and algebraic variables/states, respectively this is not the case. EKF’s

for DAE’s are treated in for example [3, 22, 23], and all consider semi-explicit DAE’s of index 1, i.e., ∂g
∂z

has full column rank. The difference between the EKF in [22] and [3] is that the latter includes the

algebraic subsystem (6b) in the standard EKF algorithm. This is done by linearizing (6) with respect to

x, z, and w and differentiating the algebraic part with respect to time,

ẋ = Atx+Btz + w,

0 = Ctx+Dtz,
⇒

ẋ = Atx+Btz + w,

ż = −D−1

t Ctẋ.
(7)

In the method [3], the partial derivatives

(

At Bt

Ct Dt

)

=







∂f

∂x

∂f

∂z
∂g

∂x

∂g

∂z






,

evaluated in (xt, zt, ut), are assumed constant, and therefore there are no inner derivatives in the right-

hand side of (7).

Another issue with EKF’s for DAE’s is that system noise must be introduced with care for the problem

to be well posed [26]. In the approach that follows system noise is introduced only in the differential part

of the DAE (6a), which may be more restrictive than necessary but guarantees well posedness.

3.2 EKF algorithm

The algorithm used is presented here although any estimation approach could be used. The used approach

has a lot in common with the one presented in [3]. Among the differences are that the state prediction

is performed with the explicit forward Euler, or implicit backward Euler, and that the covariance matrix

is predicted using the corresponding discrete-time linearization (8) instead of using the transition matrix

φ = eĀt|tTs . Note that the solution using forward Euler is supplemented with an equation solver to ensure

consistency of the algebraic states after prediction.

The algorithm used is summarized in Algorithm 1. For the diesel engine f is composed by (3a)–(3d), g

by (3e), and h by (4a), where modifications of (3d) and (3e) are made according to (2). In Algorithm 1,

Ḡt|t is a result of the differentiation in (7) and implies that system noise is present in the differential

variables of the DAE only.
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Algorithm 1 Extended Kalman filter for DAE’s

1. Initialization:
(

x̂0|0

ẑ0|0

)

=

(

x0

z0

)

and P0|0 = Π0,

where
(

x0
z0

)

is the initial state estimate and Π0 = cov
(

x0
z0

)

. Let t = 0.

2. Prediction:

x̂t+1|t = f̃(x̂t|t, ẑt|t, ut),

0 = g(x̂t+1|t, ẑt+1|t),
⇒

(

x̂t+1|t

ẑt+1|t

)

,

P̄t+1|t = Āt|tP̄t|tĀ
T
t|t + Ḡt|tQḠT

t|t,

where the implication indicates solving x̂t+1|t and ẑt+1|t from the system of equations,

Āt|t = I + Ts

(

At|t Bt|t

−D−1
t|t

Ct|tAt|t −D−1
t|t

Ct|tBt|t

)

, (8)

Ts the sampling time, and

Ḡt|t =

(

I

−D−1
t|t

Ct|t

)

,

from (7).

3. Measurement update:

St+1 = H̄t+1|tP̄t+1|tH̄
T
t+1|t + R,

K̄t+1 = P̄t+1|tH̄
T
t+1|tS

−1
t+1,

x̂t+1|t+1 = x̂t+1|t + K̄t+1
(

yt+1 − h(x̂t+1|t, ẑt+1|t, ut+1)
)

,

0 = g(x̂t+1|t+1, ẑt+1|t+1) ⇒ ẑt+1|t+1,

P̄t+1|t+1 = P̄t+1|t − P̄t+1|tH̄
T
t+1|tS

−1
t+1H̄t+1|tP̄t+1|t,

where

H̄t+1|t =
(

∂h

∂x

∂h

∂z

)
∣

∣

∣

(

x

z

)

=
(

x̂

ẑ

)

t+1|t

.

4. Let t = t+ 1 and repeat from 2.

3.3 Observability of DAE models

To ensure that the observer estimates converge to the true states, observability of the underlying model

along the studied trajectory is central. In contrast to standard state space descriptions, for DAE’s there

exist several concepts of observability [27–30]. The concepts are C-, R- and I-observability, denoting

complete observability, observability within the reachable set and impulse observability, respectively.

Generally, descriptor systems, or DAE’s, are not C-observable since they contain algebraic constraints

that force the solution, and output, onto a specific manifold. For this reason, the observability within the

reachable set — R-observability has been defined (see e.g., [27]), which is the concept used here. This

concept needs an appropriate projection of the dynamical part of the system, sometimes referred to as

the slow sub-system, onto a manifold defined by the algebraic equations, or fast sub-system. For linear

time-invariant systems

Ē ˙̄x = Āx̄,

y = H̄x̄,
(9)

that are regular, i.e., that det
(

αĒ − βĀ
)

6= 0 for some (α, β) ∈ C2; this can be described in terms of Ē,

Ā, and H̄ .

Definition 1 (R-observable). The system (9) is called observable within the reachable set if the zero

output of the descriptor system with u = 0 implies that all solutions of this system satisfy Prx̄ = 0, where

Pr denotes the projection onto the right deflating sub-space corresponding to the finite eigenvalues of

λĒ − Ā.
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Table 1 Normalized execution times for ODE and DAE based EKF’s with forward and backward Euler and different step

lengths for the WHTCa)

Model Disc. 3 ms 10 ms 15 ms 50 ms 125 ms

ODE
FE 1 0.30b) 0.20b) – –

BE 2.50 0.95 0.78 – –

DAE
FE 6.23 1.99 1.35 0.45 0.19

BE 4.93 1.63 1.11 0.39 0.16

a) Table entries “–” indicate that the step length was too large for stable simulation with the current discretization

method. “Bold face” entries denote the largest step length with non-oscillating and stable simulation results for each model

and discretization method.

b) Oscillating estimates, see Figure 3(b).

The concept of R-observability can, in the linear time-invariant case (9), be characterized algebraically

according to Theorem 1 [28].

Theorem 1. The system (9) is R-observable if and only if

(

λĒ − Ā

H̄

)

has full column rank for all λ ∈ C.

3.4 Observability for the engine model

R-observability can be established in 3 steps. First, using Theorem 1 on linearizations in stationary

operating points along the evaluation trajectory, local weak R-observability of the linearized continuous

time model is established. Second, observability of a linearization in a stationary operating point is a

sufficient condition for weak local observability of the non-linear system [31, Theorem 6.4]. Third, observ-

ability does not depend on the choice of discretization method as long as Ts is chosen small enough [32].

This procedure is performed on the model defined by (3) and (4a) and weak local observability is estab-

lished for all operating points in the world harmonized transient cycle (WHTC) [33].

4 Evaluation with respect to step length

The evaluation is performed by running the two EKF’s based on the default ODE model and the modified

DAE model. Forward and backward Euler are used for the discretization of both observers, and the

evaluation uses measurement data from an engine in a test cell; see Appendix A for more detailed

information. The EKF is tuned to the system and measurement noise with the covariances Q and R. For

low dimension systems, there exist methods for off-line computation of these tuning variables. However,

normally at least Q is found by manual tuning while R could be found using sensor characteristics provided

by the sensor manufacturer. Here, the measurement noise is affected by both sensor characteristics as

well as sensor installation, and is therefore treated in the same manner as Q, i.e., through manual tuning.

The observers are tuned equally with respect to model and measurement uncertainty with

Q = diag(10−4, 0.1, 1, 1, 1), R = diag(100, 100, 1, 10−8),

corresponding to (3a)–(3d) and (4a), respectively. Stability limits for these settings are ∼15 ms for the

ODE observers and ∼125 ms for the DAE observers which shows that a significant increase in step length

can be achieved for the DAE based EKF compared to the ODE EKF; see Table 1.

The performance measure used in the evaluations is the root mean square error,

RMSE =

√

∑

t (ŷt − yt)
2

N
, (10)
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Figure 3 (Color online) Estimates of EKF observers based on ODE and DAE models with (a) 3 ms and (b) 10 ms step

lengths and using forward Euler for the prediction. Using the ODE based EKF and a step size of 10 ms, results in a high

frequency estimation error, especially prominent for high pressures corresponding to open throttle operation. It can also be

noted that also the ODE based EKF with 10 ms step length would predict the states well if a low pass filter was applied.

where ŷt is the estimate and yt the measurement. Since several of the model outputs are used for

feedback (4a) in the EKF’s, an extra model output (4b) not used in the observer, is used for the evaluation,

i.e., pic.

The evaluation highlights three aspects of the real-time performance of DAE and ODE based

EKF’s. It starts by analyzing the effects of stiff models in estimation, then the forward and backward

Euler for the discretization are analyzed, and it finishes up by studying the possibility of increased step

lengths in the ODE and DAE based EKF’s with maintained estimation accuracy.

4.1 Effects of stiff ODE dynamics

Figure 3 presents the state estimates of both the ODE and DAE based EKF’s, using forward Euler for

the prediction, for a 100 s segment of the WHTC where two different step lengths, 3 and 10 ms, have been

used. The main difference between Figure 3(a), representing simulations with 3 ms step length which is

the largest step size for which the ODE based EKF estimates are stable and without oscillations, and

Figure 3(b), representing a step length of 10 ms, is the oscillating estimates of the ODE observer during

high mass-flow operation. These oscillating properties, observed as a band of noise in Figure 3(b) of the

ODE observer, can be explained by the stiffness of the ODE in operating points with wide open throttle,

i.e., high compressor air mass-flow.

The estimated probability density functions (PDF) of the estimation errors for the two observers with

two different step lengths are presented in Figure 4. In Figure 4(a), presenting the estimation error PDF’s

for a step length of 3 ms, the appearance of the two observers are rather similar indicating that for a step

length of 3 ms an EKF based on an ODE would be preferable due to its less demanding computational

complexity. This benefit of the ODE based observer is due to the fact that the EKF update needs to

evaluate the system model only once while the DAE needs to iterate over the algebraic equation. However,

for a step length of 10 ms the degradation of the ODE estimation error PDF’s for the outputs closely

connected to the throttle, i.e., pim, pic and Wc, is apparent in Figure 4(b).

4.2 Influence of discretization method

A comparison of selected discretization step lengths for forward and backward Euler as discretization

methods is presented in Table 1. It shows that, even though there is a gain in stability using backward

Euler, e.g., non-oscillating estimates for the ODE model, the upper limit of possible step lengths for

stable estimation is not affected for either the ODE or DAE based EKF’s. That is, the ODE and DAE

based EKF’s lose stability for the same step length, independent of the discretization method, the ODE
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Figure 4 (Color online) Estimated PDF’s of the estimation errors for pim, pic, and Wc from observers based on ODE

and DAE models with different step lengths. The PDF’s of the estimation errors for simulation step lengths of (a) 3 ms

are similar for both the DAE and the ODE based EKF’s. For step lengths of (b) 10 ms the ODE based EKF estimation

error PDF’s are wider than those of the DAE based EKF which agrees with the noisy estimates of the ODE based EKF

observed in Figure 3(b).

based EKF for 15 ms and the DAE based EKF for 125 ms. A key result here is that, while some gain

in stability can be achieved by using a discretization method with better stability properties, the main

gain is achieved by transforming the stiff ODE model into a DAE which results in a significant increase

in step length without loss of stability or estimation accuracy.

It can be noted that the implementation of backward Euler utilizes a limited number of Newton

iterations for finding the solution to the differential equation. The limited number of iterations ensures

an upper execution time limit for each time step which is tuned for a 3 ms step length. From Table 1,

studying the ODE columns for 3, 10, and 15 ms, it can be seen that the relative execution times between

backward and forward Euler are 2.5, 3.2, and 3.9, respectively. The increasing trend comes from the

fact that more Newton iterations are needed in backward Euler when the step length is increased. The

limiting factor for the accuracy and performance is the stability limit of the integration method. The

stability region for Euler backward is much larger so it can take longer and fewer steps which in total

gives a lower computation burden even though each individual step is more computationally demanding.

Another interesting remark is that, considering the total system with EKF and backward Euler, a benefit

not utilized in the implementation is the fact that the EKF could provide the Jacobian for the Newton

iterations, which would reduce the computational complexity further for backward Euler. This is out of

the scope of this paper so it is left as a future direction.

4.3 Step length analysis

Figure 5 presents the normalized RMSE of the two observers as a function of step length for both forward

and backward Euler. The normalization is with respect to the RMSE of the estimates of the ODE observer

with 3 ms step length. The trend of the performance as a function of the step length is clear for all signals,

i.e., the RMSE for the ODE observer increases more than the RMSE for the DAE observer as the step
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Figure 5 (Color online) Normalized RMSE as function of step length for DAE and ODE EKF’s. Both (a) forward and

(b) backward Euler results are presented. The RMSE is normalized by the ODE RMSE with 3 ms step length for each

variable. Presented discretization step lengths are Ts = 3, 10, 15, 20, 30, 50, 100, and 125 ms, where the last five only

applies to the DAE observers due to stability issues of the ODE observers. Note that the scale is logarithmic.

Table 2 RMSE of DAE and ODE observers with forward Euler for different discretization step lengths

Ts (ms)
pim pem pic ωt Wc

DAE ODE DAE ODE DAE ODE DAE ODE DAE ODE

3 1.012E+3 9.143E+2 1.876E+3 1.873E+3 3.394E+3 3.389E+3 8.852E+1 1.094E+2 1.060E−2 5.778E−3

10 2.135E+3 7.070E+3 3.534E+3 3.546E+3 2.870E+3 4.880E+3 9.612E+1 1.280E+2 1.086E−2 1.252E−2

15 2.619E+3 9.774E+3 3.991E+3 4.080E+3 2.731E+3 7.800E+3 1.035E+2 1.845E+2 1.023E−2 1.740E−2

20 2.921E+3 – 4.209E+3 – 2.759E+3 – 1.120E+2 – 1.144E−2 –

30 3.380E+3 – 4.425E+3 – 2.701E+3 – 1.241E+2 – 1.123E−2 –

50 3.734E+3 – 4.531E+3 – 2.846E+3 – 1.498E+2 – 1.281E−2 –

100 4.041E+3 – 3.063E+3 – 3.817E+3 – 2.018E+2 – 1.599E−2 –

125 4.223E+3 – 2.336E+3 – 3.902E+3 – 2.258E+2 – 1.623E−2 –

length increases. Even though the DAE observer estimates are not the best for all step lengths, for

example Wc at 3 ms step length, the RMSE is equal or better than for the ODE for all step lengths

from 10 ms and up, which represents a common timing loop in modern truck ECU’s. The reason for the

better performance of the ODE observer for Wc and 3 ms step length originates from the change of model

dynamics that was introduced when the intercooler pressure dynamics was removed, which also affected

the throttle dependent dynamics, discussed in the last paragraph of Subsection 2.1.

The performance of the DAE observer with a step length of 125 ms is comparable to the performance

of the ODE observer with a step length of ∼10 ms. So even if the DAE observer is computationally more

demanding than the ODE observer in each time step the gain in step length results in a gain in total

computational effort.

It can be noted that the solver used to compute the state prediction in the DAE based EKF is not

optimized with respect to efficient evaluation and there exist several improvements that would reduce

the computation time, see for example [13, Subsection 5.2]. Table 2 contains the data of Figure 5(a)

and shows the absolute values of the RMSE for the estimates. In particular it shows the relation of the

RMSE between the estimated variables that is not shown in Figure 5. For example, it shows, for the

DAE observer, that no particular variable estimate distinguishes itself as better, or worse, than any other
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including pic. The data of Figure 5(b) is consistent with the observations made in Table 2 for Figure 5(a)

and is omitted.

5 Conclusion

The benefit of using DAE’s instead of ODE’s for EKF design in real-time applications with fixed discretiza-

tion step lengths has been analyzed. The analysis is performed using an ODE model of a heavy-duty

Scania diesel engine with throttle, EGR and VGT, and a reduced DAE model obtained through removal

of one of the volumes surrounding the throttle causing stiff model dynamics at wide open throttle oper-

ation. In this simplification, it is also shown how the volumes can be modified to describe the original

system’s dynamics. Criteria for observability for DAE’s are given and an analysis established that both

the DAE and ODE are observable.

The step length required to get equal performance of the two observers is investigated using experi-

mental data from an engine that has been operated to follow the WHTC. It is shown that, even though

the computational complexity for each time step of the DAE based EKF is higher than for the ODE

based EKF, the possibility to use more than 10 times larger step lengths for the DAE, compared to the

ODE, results in a more computational efficient implementation with maintained estimation performance.

The effect of discretization method for solving the differential equations is also studied. By comparing

forward and backward Euler, representing an explicit and an implicit differential equation solver, it is

shown that, even if there is a significant gain in increased discretization step length for backward Euler,

the main gain is obtained by using a DAE based EKF.
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Appendix A Engine model and data

The default model, on which the method is applied, is a 5th order non-linear state space model of a six cylinder Scania diesel

engine with EGR, VGT, and intake throttle. The model states and inputs are presented in Tables A1 and A2, respectively.

It is based on a model originally developed in [34] and extended with intake throttle in [10]. The modifications are that the

states for the intake and exhaust manifold oxygen concentrations and actuator dynamics are removed.

Table A1 Model states

State Description Unit

Tem Exhaust manifold temperature K

ωt Turbo speed rad/s

pem Exhaust manifold pressure Pa

pim Intake manifold pressure Pa

pic Intercooler pressure Pa

Table A2 Model inputs

Input Description Unit

ne Engine speeda) rpm

uδ Injected amount fuel mg/cycle

uegr EGR valve positionb) %

uvgt VGT positionb) %

uth Intake throttle positionb) %

Tamb Ambient temperaturea) K

a) Parametrization inputs.

b) 0 – closed, 100 – open.
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The data is collected in an engine test cell at Scania CV AB in Södertälje, Sweden. The data is from a six cylinder

Scania diesel engine with EGR, VGT, and throttle and was collected during a WHTC [33]. The sensor signals used are

presented in Table A3. All signals are collected with a sampling rate of 100 Hz. It can be noted that the turbo speed sensor

is unable to measure rotational speeds below 20000 rpm (∼2094 rad/s) and those measurements are therefore excluded in

the turbo speed measurements.

Table A3 Test cell measurements and model outputs

Output Description Unit

pim Intake manifold pressure Pa

pem Exhaust manifold pressure Pa

ωt Turbo speed rad/s

pic Intercooler pressurea) Pa

Wc Compressor air mass-flow kg/s

a) Extra evaluation sensor not used for observer feedback.
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