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Abstract One of the most important factors affecting fuel efficiency and emissions of automotive engines is

combustion quality that is usually controlled by managing spark advance (SA) in spark ignition (SI) engines.

With increasing sensing capabilities and enhancements in on-board computation capability, online learning

and optimization techniques have been the subject of significant research interest. This article surveys the

literature of learning and optimization algorithms with applications to combustion quality optimization and

control of SI engines. In particular, this paper reviews extremum seeking control algorithms for iterative

solution of online optimization problems, stochastic threshold control algorithms for iterative solution of

probability control of stochastic knock event, as well as feedforward learning algorithms for iterative solu-

tion of operating-point-dependent feedforward adaptation problems. Finally, two experimental case studies

including knock probabilistic constrained optimal combustion control and on-board map learning-based com-

bustion control are carried out on an SI gasoline engine.
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1 Introduction

Today’s growing concern about the fuel crisis and requirement for low emissions drive development of

higher efficiency automotive engines and advanced engine control technologies. As known, one of the most

significant factors influencing fuel efficiency and emissions of engines is combustion quality that includes

combustion phase [1], knock intensity (KI) or probability [2], cyclic variability (CV) [3], etc. Combustion

quality of spark ignition (SI) engine is controlled by managing the spark advance (SA) which is the spark

timing determining the start of combustion.

Current on-board electronic control units (ECUs) usually control the combustion quality in an open-

loop manner based on SA maps that require a pre-calibration process performed on the test bench [4].

However, this system has several disadvantages: the calibration process is labor-consuming thus it is

impossible to be carried out for each individual engine and cannot explore every operating conditions; for

the sake of security, maps are calibrated with enough margins, conservative maps cannot guarantee the

best SA; the optimal value may drift due to many factors, such as the component aging, fuel quality, and

environmental disturbances [1]. These statements imply that the open-loop control system has potential

for performance improvement of each individual engine.
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Fortunately, increased sensing capabilities of modern combustion engines provide large amount of

information, hence, advanced combustion control systems may be available. Recently, in-cylinder pressure

(ICP)-based combustion control has attracted wide research interests in the automotive industry, due to

its potential to get extremely valuable information of in-cylinder engine behavior [5]. With increased

sensing capabilities and enhancements in ECUs computation capability, online learning and optimization

techniques have been the subject of significant research interest in combustion control [4, 6–9].

Online learning and optimization techniques in combustion control have several potential advantages

over the open-loop control system. If included in an calibration process that is usually labor-consuming,

online learning and optimization algorithms would allow speeding up the process [4]. They allow to set

the best (or optimal) SA that is usually referred to as the maximum brake torque (MBT) SA, i.e., the

maximum engine efficiency SA. Moreover, combustion control is usually subject to physical constraints of

abnormal combustion such as knock probability (or knock intensity) and cyclic variability [2,10]. Severe

knock damages the cylinder and decreases engine efficiency, while large cyclic variability decreases engine

efficiency and driving comfort of vehicles. Hence, physical constraints are required to determine a feasible

region of SA and avoid the abnormal combustion. However, at many operating points the maximum brake

torque SA may be out of the feasible region. The optimal SA in the feasible region usually locates on

the boundary of physical constraints [2, 10]. Note that the abnormal combustion has a great deal of

randomness and is affected by many factors, such as ambient pressure and temperature, and fuel quality.

These factors result in the varying boundary of physical constraints. The on-board implementation of

online learning and optimization algorithms would allow a real-time handling of the varying stochastic

boundary for every operation condition [11].

This article surveys the literature of online learning and optimization algorithms with applications to

combustion quality optimization and control of SI engines. Combustion quality optimization and control

problems are generalized in a whole framework that includes online optimization of combustion phase,

probability control on boundary of physical constraints, and operating-point-dependent feedforward on-

line adaptation. This article first considers extremum seeking (ES) control algorithms for iteration solu-

tion of online optimization problems in spark advance optimization applications. Three classes of ES are

successively reviewed: stochastic approximation-based ES [7,12–20], sinusoid-based ES [21–35], and nat-

ural perturbation-based ES [36–39]. This article then focuses on stochastic threshold control algorithms

for iterative solution of probability control problems in knock limit control applications [2,10,11,40–45].

Two state-of-the-art stochastic limit control algorithms are reviewed: likelihood-based algorithm and

statistical learning-based algorithm. This article finally deals with feedforward learning algorithms for

iterative solution of operating-point-dependent feedforward adaptation problems in applications of spark

advance map online adaptation [46–49]. At last, two experimental case studies including knock proba-

bilistic constrained optimal combustion control and on-board map learning-based combustion control are

carried out on an SI gasoline engine.

This article is organized as follows. Section 2 generalizes the problem formulation and framework of

combustion quality optimization and control. In Sections 3–5, related learning and optimization methods

under the general framework are reviewed: extremum seeking control algorithms for online optimization

problem, stochastic threshold control algorithms for probability control problems, and feedforward online

learning algorithm. Section 6 presents application related contents with two experiment case studies.

Section 7 concludes this article.

2 Problem formulation

Statistic and stochastic properties of SA-CA50 (CA50 is crank angle of 50% burnt after top dead center

(ATDC)), CA50-η (η is the thermal efficiency), and CA50-KI, where the distributions are constructed

from 17000 cycle data, are shown in Figure 1. The data is collected on a 3.5-litre V-type SI gasoline

engine, which runs at steady operating points: SA from 14◦ to 30◦ before top dead center (BTDC),

throttle angle at 7◦, engine speed at 1200 rpm. This experimental result in Figure 1(a) motivates the
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(a) (b) (c)

Figure 1 (Color online) Statistical analysis of experiment data. (a) SA-CA50 statistical distribution; (b) CA50-η statis-

tical distribution; (c) CA50-KI statistical distribution and KI threshold.

following statistical representation of the causality SA-CA50.

CA50 = a · SA+ b+ e, e ∼ N(0, δ2), (1)

where a, b are constants and e obeys the Gaussian distribution, i.e., from statistical point of views, for a

given SA, the CA50 exhibits a Gaussian distribution with a mean a·SA+b [50].

The stochasticity can also be observed in the relationship between CA50 and efficiency η, which is

plotted in Figure 1(b). This property is represented statistically as a quadratic regression. The following

statistical model is introduced to represent the causality CA50-η, which is a parabola coupled with

random noise.

η = α0 · CA50
2 + β0 · + γ0 + ω, ω ∼ N(0, σ2). (2)

Combustion phase online optimization problem can be described as follows:

SA∗ = argmin
SA

−E{η[CA50(SA, e), ω]}, (3)

where E{·} denotes the expected value.

For the relationship between CA50 and knock intensity (KI), Figure 1(c) shows a smooth trend of

increasing averaged mean KI and variance of KI as CA50 is advanced. The grey vertical plane denotes

the KI threshold. The knock event is thought to occur, i.e., knock = 1, when cyclic KI goes beyond the

threshold. Otherwise, knock = 0 when cyclic KI is within the threshold.

Knock stochastic threshold control problem can be formulated as finding the spark timing SA∗ such

that

Pr{knock = 1} → p0, as k → ∞, (4)

where Pr{·} denotes the probability of a stochastic event, p0 is the desired target knock probability, and

k represents the number of combustion cycles.

Moreover, in engine combustion control applications, the plant models (1) and (2) have short-term

variations induced by changes in operating point and long-term drift caused by component aging or

changes in the environment. To show the operating-point-dependent variations of the model (1), experi-

ments have been carried out at different intake manifold pressure values (0.6 and 0.8 bar) and different

engine speeds (800, 1200, 1600, 2000, 2400, 2800, and 3200 rpm), as shown in Figure 2. It is obvious

that operating points significantly affect SA-CA50 relationship and hence affect the optimal spark timing

in (3). SA feedforward online adaptation (or learning) is the state-of-the-art real-time combustion control

technique.

Feedforward online adaptation problem can be formulated as learning the feedforward model ΦFF such

that

SAFF → SA∗ as k → ∞, at each steady operating point, (5)

where SAFF is the feedforward provided by the learned feedforward model ΦFF.
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Figure 2 (Color online) Operating-point-dependent effect on SA-CA50. (a) Case 1: pm = 0.6 bar; (b) case 2: pm = 0.8

bar.

Figure 3 (Color online) General framework of online learning and optimization in combustion control applications.

SA online optimization problem, stochastic knock probability control problem, and SA feedforward

adaptation problem are generalized in an online learning and optimization framework, as shown in Fig-

ure 3. A uniform iteration solution form for the online learning and optimization framework is written

as

u(k) = u(k − 1) + ∆u(k). (6)

Extremum seeking control algorithms for online optimization problems, stochastic threshold control

algorithms for probability control of stochastic knock event, as well as feedforward learning algorithms

for operating-point-dependent feedforward adaptation problems share the same iteration solution form.

These online learning and optimization algorithms are then reviewed in the following sections.

3 Extremum seeking methods

Extremum seeking (ES) is a control system which is used to determine and to maintain the extremum

value of a function. The steady-state input-output characteristic is optimized by ES when knowledge of

the input-output is limited. Several variants of ES have been developed and have proven to be robust and

efficient in many different applications. These applications can be mainly classified into two categories:

ES of static map and ES of dynamical system. ES in combustion control application is essentially an
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ES of static map. Hence, this section mainly reviews several ES methods for static map: stochastic

approximation-based ES, sinusoid-based ES, and natural perturbation-based ES.

3.1 Stochastic approximation-based extremum seeking

We introduce some concepts and notations to generalize the problem of maximizing or minimizing a

random objective function. Let U ∈ R
m and u be the set of all potential decisions and a specific decision,

respectively. We would like to seek a decision that minimizes a cost function f . ω denotes randomness

that is obtained only after the decision is made. Let F (u, ω) be the random objective function. Since

we cannot directly optimize F (u, ω), we instead minimize the expected value, E[F (x, ξ)]. The general

problem of ES of a static map becomes

y∗ = min
u∈U

{f(u) = E[F (u, ω)]}. (7)

Let u∗ be the optimum, f(u∗) = y∗. Note that both U and F (u, ω) are assumed to be convex.

Gradient descent is a classic method for the formulated problem. To seek the local minimizer, a decision

uk is updated recursively by moving in the direction opposite the gradient.

uk+1 = uk − akg(uk), (8)

where g(uk) represents the gradient. However since direct measurements of the gradient are usually

unavailable, the recursive form takes the approximated gradient, uk+1 = uk − akĝ(uk), where ĝ(uk) is

the approximated gradient determined by specific algorithms using noisy measurements [12]. Hence, the

main consideration for the gradient descent form is estimating a gradient ĝ(uk).

Stochastic approximation methods for gradient estimation can be classified into three categories [15]:

finite difference stochastic approximation (FDSA) [12, 13], random direction stochastic approximation

(RDSA) [16], and simultaneous perturbation stochastic approximation (SPSA) [14, 18].

FDSA approximates the gradient by symmetrically perturbing the current decision, uk, to collect two

measurements at uk + ckej and uk − ckej . (ck)
∞
k=1 is a sequence of perturbation sizes and ej is a unit

vector in the jth entry, j = 1, 2, . . . ,m. The gradient of the jth entry is approximated by

[ĝ(uk)]j =
F (uk + ck, ω

+
k )− F (uk − ck, ω

−
k )

2ck
. (9)

These full finite difference computations require 2m perturbations for every state update in an m

dimensional system. Thus FDSA may be not well suited to fast implementation when F (u, ω) is compu-

tationally expensive or m is large. Alternatives include RDSA, SPSA, and one-sided differences.

In the RDSA algorithm, all the entries of u experience perturbations simultaneously, ĝ(uk) = ∆k[F (uk+

ck∆k, ω
+
k )−F (uk − ck∆k, ω

−
k )]/(2ck), where the entries of the perturbation vector ∆k = [∆1,k . . .∆m,k]

T

may have separate distributions. Only two measurements are required for each iteration in this case.

Similarly, the SPSA algorithm also only requires two perturbations and measurements per iteration,

however in this approach the gradient estimation in the direction of the perturbation is normalized by

the magnitude of the perturbation, i.e., [ĝ(uk)]j = [F (uk + ck∆k, ω
+
k )− F (uk − ck∆k, ω

−
k )]/(2ck∆j,k).

Whether the stochastic approximation estimator converges to a local optima and the rate at which

it converges are determined by the step size sequences (ak)
∞
k=1 and (ck)

∞
i=k. In general, if the following

conditions are satisfied, convergence for stochastic approximation will be guaranteed.

∞
∑

i=k

ak = ∞,
∞
∑

k=1

a2k < ∞, ak > 0. (10)

(ak)
∞
k=1 is usually chosen such that ak = Ck−α for α ∈ (0.5, 1] and a positive constant C. A balance

between the robustness of the estimator and the rate of convergence is available: in many situations α = 1

guarantees the best asymptotic rate, but is sensitive to non-strong convexity of f or improper design of

C [19].
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(a) (b)

Figure 4 (Color online) Sinusoid-based ES schemes. (a) Classic ES; (b) minimal ES.

The perturbation sequence (ck)
∞
k=1 should be designed in conjunction with (ak)

∞
k=1 for gradient estima-

tion. In addition to constraint 10, (ak)
∞
k=1 and (ck)

∞
k=1 should also satisfy the following constranints [13]:

∞
∑

k=1

a2k
c2k

< ∞,
∞
∑

k=1

akck < ∞, ck > 0. (11)

With several specific assumptions, the output of the FDSA, the RDSA, and the SPSA converges to the

optima with probability one, i.e., uk → u∗ with probability one. More detailed conditions, assumptions

and proofs for convergence of the three algorithms are stated in [16–18], respectively.

Note that bias exists in the gradient approximation, and it can be totally eliminated by setting the

perturbation sequence ck → 0 [18]. This may be suitable for static problems, however, it is restrained

for online optimization when the system involves drift in the optimum, set-point shifting or varying

conditions [15]. Thus stochastic approximation-based ES algorithms in combustion control applications

usually adopt constant step sizes [7].

3.2 Sinusoid-based extremum seeking

Since 1950s, sinusoid-based ES has been a popular research topic. Fruitful achievements in theoretical

developments and applications of ES control can be found in the recent two decades. A continuous-time

classic sinusoid-based ES scheme is shown in Figure 4(a). The design parameters include the gain a and

the pulsation ω of the excitation signal, the cut-off frequency fcHP and fcLP of the high pass filter and the

low pass filer, the gain ǫ of the integrator. The local stability of the classic sinusoid-based ES feedback

scheme was strictly assessed and firstly reported in 2000 by Krstic and Wang [29,32]. Different classes of

sinusoid-based ES schemes and applications were summarized by Ariyur and Krstic [28]. Then a simpler

sinusoid-based ES scheme named minimal ES scheme was developed in [27,30], as shown in Figure 4(b).

The design in the minimal ES is simpler and easier since a, ω and ǫ are the only design parameters. Semi-

global practical stability of sinusoid-based ES schemes with respect to design parameters was researched

in [30]. The same guiding principle of the sinusoid-based ES schemes reported above is that no knowledge

of the plant model is required, thus they often being referred to as black-box schemes. The histories of

theoretical developments and applications were well elucidated in the review [21].

One recent application of sinusoid-based ES scheme in engine combustion control was in [34], where the

architecture in Figure 4 was implemented for direct injection timing optimization on a gasoline engine

which is equipped with both port fuel injection and direct injection. Addressing the multi-variable

combustion optimization problem from the sinusoid-based ES view was reported in [26]. Two sinusoidal

excitations with distinct different pulsation were designed for simultaneous determination of optimal SA

and air/fuel ratio (AFR).

The sinusoid-based ES schemes reported above are black-box and continuous-time optimization algo-

rithms. However, in many applications their plant systems may be inherent discrete, for example, the

combustion of engines. Moreover, the plant system may be not absolutely unknown. When a part of the

knowledge about the plant is available, it may contribute to fast ES. Fortunately, further developments of
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(a) (b)

Figure 5 (Color online) Grey-box and natural excitation-based ES schemes. (a) Sampled-data grey-box ES framework;

(b) natural excitation-based ES scheme.

the sinusoid-based ES schemes include the sampled-data ES that is applied in discrete time optimization

field [31, 33], and the grey-box ES [23] that utilizes knowledge about the plant system.

A sampled-data grey-box ES framework is shown in Figure 5(a). For the sake of explanation, the

relationship between u and yd is assumed to be yp = h(θ, u) = φ(u)Tθ, where φ(·) is known and θ is

a vector of unknown parameters. A parameter estimator is required instead of the gradient estimator

in Figure 4. The estimator θ provides non-local information about the relationship between u and

yd. Gradient algorithm and least-squares algorithm and their variants for parameter estimation were

conducted in [23]. Moreover, an optimizer that drives uk towards u∗ is also required. A class of different

algorithms of optimizer including gradient descent algorithm, Newton method, Jacobian matrix transpose,

etc., were summarized in [23].

In spark timing optimization of SI engines, the effect of SA on torque (or thermal efficiency, Indicated

mean effective pressure (IMEP)) seems a parabola [22, 35]. A quadratic polynomial model can be used

relating y and u: y = θ1u
2 + θ2u + θ3 = φ(u)Tθ, where θ = [θ1 θ2 θ3]

T, φ(u) = [u2 u 1]T. One

of the earliest successful applications of the grey-box ES and the quadratic polynomial model in spark

timing optimization was in [22]. The parameter θ was estimated by a recursive least squares algorithm.

However, since the optimizer used tried to directly locate to the optimum that was calculated from the

parameter estimator, the initial values of the parameter estimator should be close to the true for the

purpose of guaranteeing convergence. More recently, grey-box ES schemes were conducted on alternative

fueled engines for online optimization of spark timing [8]. Although the composition of fuel varying, the

schemes are robust enough to deal with this situation. Ref. [8] also demonstrated that the grey-box ES is

a flexible framework in which different parameter estimation algorithms can be combined with different

optimizers.

3.3 Natural excitation-based extremum seeking

Both the stochastic approximation-based ES and the sinusoid-based ES employ periodic excitations.

However, periodicity may results in predictability which may be undesired or disadvantageous in some

tracking applications [15]. Fortunately, system noise or other signals may naturally exist in some appli-

cations. Thanks to the system noise and natural signals that can preform as the excitation, an external

excitation signal does not necessary [4, 36–39].

In combustion phase optimization applications, random distribution of combustion phase indicator

may performs as the natural excitation [4, 37, 38]. The ES schemes in these applications share the same

structure shown in Figure 5(b). The variables u, x and y correspond to spark timing, combustion

phase and torque (or IMEP, thermal efficiency). d is a Gaussian distributed random excitation on the

combustion phase. A number of recent samples, {x(k) + d(k), y(k)}, form a 2-dimensional distribution.

Then, a linear regression model is applied to obtain a gradient estimator, ĝ. Then the estimated gradient

is used to update the input, i.e., u(k) = u(k − 1) + aĝ(k).

The gradient estimator largely depends on the number of samples, i.e., sample size N . Larger N tends

to provide more reliable gradient estimator and thus avoids severe input oscillations, however, it takes
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more time and results in slower response. On the contrary, smaller N provides faster but noisy gradient

estimation. The acceptable sample size between 50 and 100 was recommended in [4].

Recently, a probabilistic guaranteed gradient estimation method is applied instead of the gradient

estimation using a constant size of samples [37, 38]. A gradient estimator with a desired precision can

be obtained, by adaptively adjusting sample size N . The desired precision of gradient estimator can be

expressed in the following probability constraint inequity.

Pr(ĝ −∆ < g < ĝ +∆) > α, (12)

where g is the unknown real gradient, ∆ and α (0 < α < 1) are pre-set parameters of the desired precision

of the gradient estimator ĝ.

Denote by xdn the shorthand for x(n) + d(n). Assume the noise of measurement obeys Gaussian

distribution, ω ∼ N(0, σ2), where σ is unknown. For N samples, {(xdn, yn), n = 1, 2, . . . , N}, define the

sums:

Sxx =

N
∑

n=1

(xdn − x̄d)
2, (13)

Sxy =

N
∑

n=1

(xdn − x̄d)(yn − ȳ), (14)

Syy =
N
∑

n=1

(yn − ȳ)2, (15)

where x̄d = 1
N
ΣN

n=1xdn, ȳ = 1
N
ΣN

n=1yn. The unbiased estimator of σ2 is

s2 =
1

N − 2

(

Syy −
S2
xy

Sxx

)

. (16)

For N samples, {(xdn, yn), n = 1, 2, . . . , N}, the confidence interval, (ĝ −∆α,N , ĝ +∆α,N ), for g with

confidence level α is given by

∆α,N = t 1+α

2
,N−2 · s

√

ΣN
n=1x

2
dn

NSxx

, (17)

where t 1+α

2
,N−2 is obtained by looking up the table of t-distribution with N − 2 degrees of freedom. The

probability constraint inequity (12) can be meet by adaptation of N that satisfying ∆α,N 6 ∆.

The natural excitation-based ES scheme using probabilistic guaranteed gradient estimation method not

only guarantees the accuracy of gradient estimator but also adaptively adjusts the sample size, achieving

a tradeoff between a rapid response and a stable control input sequence.

4 Stochastic threshold control

4.1 Likelihood-based controller

As shown in Figure 6, the likelihood-based controller determines ∆u(k) by examining the likelihood of

the observed system state sequence relative to the desired rate target. Here, x denotes a binary variable

calculated from the raw data xr which is a random signal without correlationship between xr(i) and x(j),

i 6= j, i, j ∈ {1, . . . , k, . . .}. And the relationship between x and xr can be written as

x(k) =

{

1, if xr(k) > T,

0, if xr(k) < T,
(18)
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Figure 6 (Color online) Structure of likelihood controller.

and the probability that event x(k) = 1 happens, which defined as p = Pr{x(k) = 1}, should be kept as

reference value pr. Thus, the goal of likelihood-based boundary exploration is to find u∗
L which satisfies

u∗
L = argmin

u

{|p− pr|
2}. (19)

p is a constant when the control input u is fixed. Thus, x obeys binomial distribution under fixed control

input u. Although the observation information is l and n not directly p, based on the principle of maximal

likelihood estimation, the estimated probability which maximizes the likelihood can be calculated as

pmax =
l

n
. (20)

Then, the probability of obtaining l times of x(k) = 1 during n times of observation can be therefore

given by

Pn(l) = Cl
np

l
max(1− pmax)

n−l. (21)

However, the absolute values of the probabilities are hard to use for control purposes. For instance, if

the pr is required as 1% and the p is truly 1%, then the probability of exactly one x(k) = 1 arriving in

the first 40 steps is quite low (P40(1) = 0.27). This might suggest that the pmax is not 1% and that a

control input adjustment is required. However, even the occurrence of exactly one x(k) = 1 in the first

100 cycles (which perfectly matches the target rate), has a probability, P100(1) = 0.37, which is not that

dissimilar.

A more useful measure is the likelihood ratio, Ln(l), which compares the probability of obtaining a

given outcome if the underlying rate of x(k) = 1 is truly p, relative to the same probability computed for

the estimated pmax = l
n
. The likelihood ratio may, therefore, be expressed as

Ln(l) =
Cl

np
l(1− p)n−l

Cl
np

l
max(1− pmax)n−l

, (22)

where, in the limiting cases, 00 is to be 1. Figure 7 shows the plot of likelihood ratio as a function of cycle

number for 0, 1, 2, and 3 x(k) = 1 events, respectively. Likelihood ratio is 1 when observations match

the demanded underlying rate, for instance, at n = 100 for one event, n = 200 for two events and so on.

Since likelihood ratios are in the range 0 to 1, using them to evaluate the consistency to the observations

with the desired rate is easier than using probabilities directly. With threshold for likelihood ratio as 0.4,

for example, the controller firstly judges that whether a control input adjustment is necessary or not.

When Ln(l) > 0.4, adjustment is not necessary, while, conversely, adjustment is required as Ln(k) 6 0.4.

This test should be applied to test the likelihood ratio of the last 0, 1, 2, and 3 events through a short

four-element first-in-first-out (FIFO) buffer in order to maintain the sensitivity of the algorithm which is

discussed in details in [2]. Moreover, if control input adjustment is necessary, the controller will determine

whether increase or decrease the control input through a comparison of the target rate and the calculated

rate which is also depend on the relationship between x and u.

∆u(k) = RL[1− Ln(l)], (23)
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Figure 7 (Color online) Likelihood ratio for different x(k) = 1 events.

where RL is the adjustment gain.

4.2 Statistical learning-based controller

In this subsection, an alternative boundary exploration method, statistical learning-based controller, is

presented which is motivated by the likelihood-based method. Likelihood-based strategy is essentially a

proportional controller which decides the output magnitude according to the estimation of probability

for binary distribution. In statistical learning-based strategy, instead of taking binomial signals as feed-

back, the raw data is used as feedback signal whose probability distribution is supposed to be normal

distribution. Exponential moving mean and variance method is implemented to provide the mean and

variance estimation values of the raw data.

As shown in Figure 8, under the same control input, probability distribution function of the raw data

xr is identical step by step. Then, with the same threshold T as the green dash line, the probability

Pr{xr > T } is identical in every step which means p = Pr{xL = 1} is also identical. Besides, xr

is independent step by step. xL is then step-to-step independent and the probability distribution is

binomial and identical which is the same as x in previous discussion about likelihood-based controller.

Here, we use xL to make a distinguish from the raw data signal xr since we essentially regard xr as the

feedback signal for statistical learning-based controller. Based on this, maximum likelihood estimation

of p can be calculated from the binomial feedback signal {xL(k), . . . , xL(k + n)} and the control input

adjustment is given after obtaining the likelihood ratio between estimation pmax and the target pr, which

is the basic idea of likelihood-based control.

Different from likelihood-based control, statistical learning-based control focuses on the continuous

raw data xr as shown in Figure 9. The mean x̄r and deviation σ2
r are estimated from the raw data

measurement xr based on exponential moving average and variance which can be expressed as

x̄r(k + 1) = x̄r(k) + β(xr(k + 1)− x̄r(k)), (24)

σ2
r (k + 1) = (1− β)(σ2

r (k) + β(xr(k + 1)− x̄r(k))
2). (25)

The reference mean value x̄s can be calculated as

x̄s(k) = T − 2.33σr(k). (26)

Then, the closed-loop control strategy can be expressed as

us(k + 1) = us(k) +Rb(x̄r(k)− x̄s(k)). (27)
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5 Feedforward learning control

In engine combustion control applications, the optimal controllable variable values have short-term vari-

ations induced by changes in operating point and long-term drift caused by component aging or changes

in the environment. Feedforward learning control algorithms that succeed in making the engine an in-

telligent system capable of learning the optimal controllable variable values are state-of-the-art real-time

engine control techniques [9].

Existing on-board map learning algorithms mainly include efficient recursive least-squares techniques-

based, extended Kalman filter-based algorithms (see [46–48]). A new stochastic gradient-based online

learning algorithm for map learning and its application to feedforward map learning of combustion control

will be reviewed as follows.

We start the map learning with the well-known bilinear interpolation method for 2-dimensional (2D)

map, as shown in Figure 10(a). x = [x1, x2]T is a 2-dimensional vector. i and j are the normalized

coordinate values of x1 and x2, respectively. Each regular grid point possesses its corresponding value

wm,m = 1, 2, 3, 4. For the point that is not precisely on the regular grid, its value is calculated by bilinear
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(a) (b)

Figure 10 (Color online) 2D map learning. (a) Bilinear interpolation method; (b) 2D map learning process.

interpolation

Φ(i+ u, j + v) = φT(u, v)W

= [(1 − u)(1− v), u(1− v), uv, (1− u)v] · [w1, w2, w3, w4]
T.

(28)

Define the training set

{(xk, ok)}, k = 1, 2, . . . ,K, xk ∈ R
d, ok ∈ R, (29)

and the model to be learned from the training set

Φ(x) = φT(x) ·W, (30)

where W = [w1, w2, . . . , wL]
T.

The learning problem is to find the optimal model parameterW minimizing the following loss function:

J(W ) =
K
∑

k=1

Jk(W ) =
K
∑

k=1

1

2
||ok − Φ(xk)||

2, (31)

where Jk(W ) is the learning objective for the sample (xk, ok).

Jk(W ) = 1
2 ||ok − φT

k ·W ||2 = 1
2o

2
k +

1
2W

Tφkφ
T
k W − okφ

T
kW , (32)

where φk = φ(xk). The partial derivative with respect to W can be deduced.

∂Jk
∂W

= φkφ
T
kW − φkok = −φk(ok − φT

kW ) = −φkek, (33)

where ek is the error between the observation ok and the model output φT
kW .

Let {(xk, ok)}, k = 1, 2, . . . ,K be the streaming data. Then the sample will be considered one-by-one

andW will be updated based on the gradient calculated from {(xk, ok)} in (33), as shown in Figure 10(b).

This is the so called stochastic gradient descent algorithm:

Wk+1 = Wk − γφkek, (34)

where γ represents the update gain or step size for the gradient descent algorithm. Note that the

convergence is guaranteed if γ is chosen such that γ < 2 [49].
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6 Experimental case studies

6.1 Knock probabilistic constrained optimal combustion control

6.1.1 Iterative learning-based solution

In this section, we describe a model-free methodology for solving the probabilistic constrained opti-

mization problem described in Section 2, which we call the iterative learning-based solution. The key

observation behind the model-free methodology is that, by extracting and analyzing the measurement

sequences of the control input and plant output, the optimal solution can be approaching iteratively in

real-time.

Essentially, this is a data driven-based methodology. As shown in Figure 11, the iteration learning-

based solver aims at obtaining the solution which satisfies

u∗ = argmin
u

{J(x, u)|Pr{g(x, u) < 0} > 1− α}. (35)

The system dynamics of the addressed plant is discrete and can be written as

x(k + 1) = s(x(k), u(k), ω(k)), (36)

where the system state at k-th step is a function of the system state at k-th step x(k), the control input

u(k) and the system noise ω(k) whose probability distribution can be arbitrary. The iteration process

can be expressed as (6).

To approach the optimal solution under probabilistic constraint, the iteration learning-based method

consists of two independent parts. One is the extremum seeking block and the other one is the boundary

exploration block. Extremum seeking method drives control input to the unconstrained optimal solution.

Although the unconstrained optimal solution may satisfy the probabilistic constraint in some cases, there

exists the risk that the probabilistic constraint is violated. Thus, the boundary exploration block is to

explore the control input boundary for the probabilistic constraint and operate the control input along

the boundary. Obviously, the goals of extremum seeking block and boundary exploration block are

inconsistent. Thus, these two methods can be combined by defining a judgement process that decides

which adjustment should be adopted. h(x) is a function defined as an indicator: h(x) ∈ A means that
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Table 1 Specifications of the engine

Specification Description Specification Description

Type 2GR-FSE Engine, TOYOTA Inc. Valve mechanism 24-Valve DOHC

Cylinder arrangement 6-Cylinder, V Type Fuel system SFI D-4S

Displacement 3456 ml Cylinder diameter 94 mm

Compression ratio 11.8:1 Max. torque 375 Nm @ 4800 rpm

the control input is operated in the safe area and the adjustment from extremum seeking method ∆ue(k)

is used while the adjustment from boundary exploration method ∆ub(k) is adopted if h(x) ∈ Ā. In this

way, extremum seeking method drives the control input to the optimal solution iteratively. While, if the

optimal solution cannot be approached because of the probabilistic constraint, the controller switches to

the boundary exploration mode to keep the control input along the boundary where we can obtain the

best performance under the probabilistic constraint.

In Section 3, we briefly introduce the extremum seeking method which searches the optimal solution

by estimating the stochastic gradient on-line based on the obtained measurements. Subsection 4.1 gives

the brief introduction of likelihood-based controller which is for probability threshold control. Moreover,

statistical learning-based controller is presented in Subsection 4.2. Both likelihood-based controller and

statistical learning-based controller can be used for boundary exploration.

6.1.2 Experimental conditions

The experimental validations were carried out on the six-cylinder SI gasoline engine test bench. The

specifications are tabulated in Table 1.

The engine was operated at steady state with engine speed as 1200 rpm and throttle valve as 12◦ during

experiments. The cooling water control system maintained the cooling water temperature at 80± 1.5◦C.

Besides, AFR control is based on simple adaptive control (SAC) and feedforward map [45]. Experimental

validation concerned both steady and transient AFR cases. In the steady case, the AFR was fixed at

17.52, i.e., λ = 1.2 where λ represents the air/fuel equivalence ratio. While, λ was controlled from 1.1 to

1.3 in the transient case.

6.1.3 Comparison with standard control algorithm

Standard extremum seeking method suits for the unconstrained optimization problem. The cost function

considers only about thermal efficiency and is written as

fs(SA) = η(SA). (37)

The comparison of more than 900 cycles control performance between standard extremum seeking method

and proposed method is plotted in Figures 12 and 13. As shown in Figure 12(a), the red line is the SA

operated by standard extremum seeking method which is driven to much higher value than operated by the

proposed method. As shown in Figure 12(b), the standard extremum seeking method estimated gradients

were around zero while the proposed method estimated gradients by the extremum seeking part deviated

from zero. This is because, the standard extremum seeking method generated control input around

optimal value where the gradient should be zero. Consequently, the standard extremum seeking method

achieved better thermal efficiency than the proposed method as shown in Figure 13(b) and Table 2.

However, the resulted knock probability by standard extremum seeking method is much higher than the

proposed method as shown in Figure 13(a), which is 42.18% to 0.85% given in Table 2. This is because

that the standard extremum seeking method does not consider the constraint of knock probability while

the proposed method can make a tradeoff between thermal efficiency and knock probability constraint

and the loss in the thermal efficiency is less than 0.4% while the knock probability drops around 41.3%,

which is worthy.
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Figure 12 (Color online) Comparison between standard control algorithm and the proposed method. (a) Spark advance

inputs; (b) gradient variation (λ = 1.2).
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Figure 13 (Color online) Comparison between standard control algorithm and the proposed method. (a) Logarithm of

knock intensity; (b) thermal efficiency (λ = 1.2).

Table 2 Comparison of results from different control methods

Item Standard β = −1 β = −5 Proposed

Average thermal efficiency (%) 37.41 37.27 37.16 37.02

Knock probability (%) 42.18 23.21 17.63 0.85

Number of knock cycles 380 209 159 8

6.1.4 Comparison with other control algorithm

The method proposed in [34] deals with the physical constraints in SA optimization though converting

the constraints in the performance function by introducing a penalty factor, as written in the following

equation:

f(SA) = η(SA) + βKI(SA), (38)

where f(SA) is the new constructed performance function including both thermal efficiency and knock

intensity, β is the penalty factor. But litter knowledge about β determination at various operation

conditions is exist. In this experimental validation, two different β values, −1 and −5 were concerned.

As shown in Figures 14 and 15 together with the results listed in Table 2, although SA was relatively

retarded with smaller β and resulted in reduced knock probability, the precise value of β for borderline of

one percent knock probability is unknown and difficult to be determined. While, proposed method kept

operating SA near the borderline of one percent knock probability.
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Figure 15 (Color online) Comparison between other control algorithm and the proposed method. (a) Logarithm of knock

intensity; (b) thermal efficiency (λ = 1.2).

6.1.5 Transient case

In the transient case, the air/fuel equivalence ratio λ was adjusted from 1.1 to 1.3 as in Figure 16(a).

The proposed self-optimization method with knock probability threshold adjusted SA to new borderline

and the fuel thermal efficiency was improved as plotted in Figure 16(b) and (c). Figure 16(d) shows that

the knock rate was limited and the accurate value is 0.78%.

6.2 On-board map learning-based combustion control

It is known that the optimal spark timing and combustion phase are operating point dependent. Thus,

the combustion control in this case study combines the probabilistic guaranteed gradient learning-based

ES scheme and the 2D feedforward map learning algorithm, as shown in Figure 17. When engine running

at steady operating point or mild transient operating condition, the ES loop searches the optimal SA that

maximizes the thermal efficiency, η, in real-time. When engine running at transient operating condition,

SA should be adjusted to compensate the drift of optimal value caused by varying speed and/or load.

This operating-point-dependent drift could be learned in the map and thus provides a proper feedforward,

SAFF.

To implement on-board map learning-based combustion control scheme in Figure 17, the map (pm, n) →
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Figure 16 (Color online) Transient result from λ = 1.1 to λ = 1.3. (a) Air/fuel ratio from 16.06 to 19.98; (b) spark

advance; (c) fuel efficiency; (d) logarithm of knock intensity.

Figure 17 (Color online) A framework of map learning and extremum seeking-based combustion control scheme.

SA should be firstly cerated. The manifold pressure pm and engine speed n are discretized and then form

the grid: pm = [0.3, 0.4, 0.5, 0.6] bar, n = [800, 1200, 1600, 2000] rpm. The map includes 16 operating grid

points.

Experiments at the 16 steady operating points are then carried out respectively. Take one operat-

ing point, (pm, n) = (0.5, 1200), as example. The parameters of the probabilistic guaranteed gradient

estimation algorithm are initialized as follows: ∆ = 0.04, α = 0.68. The extremum seeking process is

shown in Figure 18(a)–(f). Figure 18(a) shows the enable signal of SA ES controller and the iteration

number k. From the enable signal, it is easy to know that the experiment is repeatedly performed. SA
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Figure 19 (Color online) Learned SA map (pm, n) → SA. (a) The 5th cylinder; (b) the 6th cylinder.

decision sequence and CA50 trace are shown in Figure 18(b). In Figure 18(c), the raw trace of thermal

efficiency η, is shown together with the low-pass filtered trace. Figure 18(d) shows the sample number

N for gradient estimation in the kth iteration. The confidence interval parameter ∆α,N for gradient

estimator is shown in Figure 18(e). The probabilistic guaranteed gradient estimator, ĝ, in each iteration

is shown in Figure 18(f). Comparing the repeated two runs (0–600 cycle is the first run and 600–1200

cycle is the second run), extremum seeking controller maintains SA around the optimal value where the

maximal η is obtained; however, two SA decision sequences are different due to its randomized samples

for gradient estimation. It is apparent that the sample number N for gradient estimation in Figure 18(d)

can be adjusted adaptively along the iterative process, such that ∆α,N in Figure 18(e) is within the

pre-set boundary ∆. Repeat the experiments at other 15 steady operating points, and then the initial

map can be created, as shown in Figure 19. Figures 19(a) and (b) show the resulting map of the 5th and

6th cylinder, respectively.

With the learned initial map, transient experiment at constant torque mode is then carried out, as

shown in Figure 20. Figure 20(a) shows the step throttle angle command. Figures 20(b)–(d) show the

traces of IMEP, pm, and n. The map-based feedforward SAFF and spark advance command are plotted
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Figure 20 (Color online) Transient experiment result of map learning and ES-based combustion control scheme.

in Figure 20(e). The resulting CA50 is plotted in Figure 20(f).

7 Conclusion

This article has surveyed the literatures on real-time iterative learning and optimization algorithms for

the application in combustion control, especially the spark advance control. The related contributions

and conclusion can be summarized as follows:

• The general framework for combustion quality optimization and control problems has been formu-

lated based on the exist related references for the first time, including online optimization of combustion

phase, stochastic threshold control, and operating-point-dependent feedforward online adaptation.

• The iterative solution-based algorithms under the general framework has been summarized.

• Stochastic approximation-based ES, natural perturbation-based ES are reviewed for online optimiza-

tion problems.

• Likelihood-based algorithm and statistical learning-based algorithm are reviewed for stochastic

threshold control problems.

• On-board map learning algorithm is presented for operating-point-dependent feedforward adaptation

problems as example.

• Two application case studies: knock probabilistic constrained optimal combustion control and on-

board map learning-based combustion control, are presented with experimental results as examples for

showing how to implement these algorithms in practical applications under the summarized general

framework.
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47 Höckerdal E, Frisk E, Eriksson L. EKF-based adaptation of look-up tables with an air mass-flow sensor application.

Control Eng Practice, 2011, 19: 442–453

48 Guardiola C, Pla B, Blanco-Rodriguez D, et al. A learning algorithm concept for updating look-up tables for automotive

applications. Math Comput Model, 2013, 57: 1979–1989

49 Gao J W, Zhang Y H, Shen T L. An on-board calibration scheme for map-based combustion phase control of spark-

ignition engines. IEEE/ASME Trans Mechatron, 2017, 22: 1485–1496

50 Pipitone E. A comparison between combustion phase indicators for optimal spark timing. J Eng Gas Turbines Power,

2008, 130: 052808

https://doi.org/10.1016/j.fusengdes.2008.12.032
https://doi.org/10.1016/j.applthermaleng.2016.10.183
https://doi.org/10.1007/s11768-017-6175-1
https://doi.org/10.1016/S0022-2496(02)00028-7
https://doi.org/10.1137/100788604
https://doi.org/10.1137/130929230
https://doi.org/10.1016/j.applthermaleng.2017.08.150
https://doi.org/10.1007/s11768-015-4149-8
https://doi.org/10.1016/j.isatra.2009.04.007
https://doi.org/10.1016/j.conengprac.2011.01.006
https://doi.org/10.1016/j.mcm.2012.02.001
https://doi.org/10.1109/TMECH.2017.2696788
https://doi.org/10.1115/1.2939012

	Introduction
	Problem formulation
	Extremum seeking methods
	Stochastic approximation-based extremum seeking
	Sinusoid-based extremum seeking
	Natural excitation-based extremum seeking

	Stochastic threshold control
	Likelihood-based controller
	Statistical learning-based controller

	Feedforward learning control
	Experimental case studies
	Knock probabilistic constrained optimal combustion control
	Iterative learning-based solution
	Experimental conditions
	Comparison with standard control algorithm
	Comparison with other control algorithm
	Transient case

	On-board map learning-based combustion control

	Conclusion

