
SCIENCE CHINA
Information Sciences

June 2018, Vol. 61 069101:1–069101:3

https://doi.org/10.1007/s11432-016-9220-5

c© Science China Press and Springer-Verlag GmbH Germany 2018 info.scichina.com link.springer.com

. LETTER .

Evaluation of redundancy-based system: a model

checking approach

Ling FANG1, Chunyan MU2, Zhuo CHENG3 & Guoqiang LI4*

1Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences,

Hefei 230088, China;
2School of Computing, Teesside University, Middlesbrough TS1 3BX, United Kingdom;

3State International S&T Cooperation Base of Networked Supporting Software, Jiangxi Normal University,

Nanchang 330022, China;
4School of Software, Shanghai Jiao Tong University, Shanghai 200240, China

Received 14 December 2016/Revised 10 June 2017/Accepted 24 July 2017/Published online 28 March 2018

Citation Fang L, Mu C Y, Cheng Z, et al. Evaluation of redundancy-based system: a model checking approach.

Sci China Inf Sci, 2018, 61(6): 069101, https://doi.org/10.1007/s11432-016-9220-5

Dear editor,
Functional redundancy is a key and well-known
fault tolerance scheme for which there are func-
tionally equivalent versions that can rescue a sys-
tem from execution failure and improve its relia-
bility with standby. It is fundamental in the es-
tablishment of effective and formal evaluations of
system reliability [1–3].

Probabilistic model checking is a method for
the modeling and analysis of systems that exhibit
random or probabilistic behaviors [4]. In classi-
cal model checking, a model of the probabilistic
system is built and then subjected to algorithmic
analysis to establish whether it satisfies a given
specification.

In this article, we propose a method in which we
model redundancy-based systems as discrete-time
Markov chains and specify the properties of inter-
est for analysis using probabilistic computational
tree logic (PCTL). To satisfy reliability require-
ments, this method can guarantee the correctness
of the redundancy strategies and provide accurate
evaluations based on scientific evidence regarding
the redundant system. In this article, we use the
PRISM model checker [5] as a framework for mod-
eling and analyzing systems. We introduce an
evaluation method for redundancy-based systems

via a running example, as shown in Figure 1.

Redundancy-based system.

• Conventional schemes. There are two com-
mon functional redundancy schemes: the recovery
block (RB) and N-version programming (NVP),
and their corresponding evaluation methods are
relatively mature [1, 2].

Traditionally, users adopt approximate existing
models and apply their evaluation based on several
hypotheses, e.g., the multiple versions are indepen-
dent, which may cause deviation in accuracy [6].

• Running example. Here, we consider a run-
ning example of a redundancy-based system that
uses a reset signal (RST) and non-mask interrupt
(NMI) [7] to periodically trigger the “save” and
“reset” processes [8], respectively, and backup data
is restored to the system if the current module re-
turns false, as shown in Figure 1(a). This system
is designed to resist electromagnetical interference,
which can cause timing or transient faults such as
the stop, freeze, and lockup of a device or piece of
equipment. These failures are annoying, they oc-
cur frequently, and they are rarely diagnosed [9].

As shown in Figure 1(b), the redundant versions
are a number of copies of data D1, D2, . . . , Dn

that can be used to recover the application.
AT1, . . . ,ATn are responsible for checking the cor-

*Corresponding author (email: li.g@sjtu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-016-9220-5&domain=pdf&date_stamp=2018-3-28
https://doi.org/10.1007/s11432-016-9220-5
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-016-9220-5


Fang L, et al. Sci China Inf Sci June 2018 Vol. 61 069101:2

Dn−1 Dn

D1 D2 Di

saven saven−1 save2 save1

Dn−1 Dn
D1 D2 Di

reseti
Base

a cycle
RST trigger

NMI trigger

User application

Save

Reset 

1 2 3 4 5 6 7 8 9 Time

noise1

AT AT AT

(a) (c)

(b)

Figure 1 (Color online) Redundancy strategy and evaluation of a running example. (a) The typical process of recovery;
(b) the copy process on D1–Dn; (c) the values of formula (3) for RB, NVP, and PFMV

rectness of the data and creating backup and re-
covery copies. If AT1 returns true, D1 is stored,
and a set of copies of data are backed up in the or-
der Di−1 → Di (1 < i 6 n). If AT1 returns false,
D2, Di, . . . , Dn are checked in order until the valid
data Di is found, and D1 is recovered from Di.
These processes are repeated periodically on the
time-line. As such, Di always holds the copy of
D1 when the system executes before i cycles.

• Evaluation issues. This running example is
unique and not as easily approximated as RB or
NVP. Its approximations and hypotheses deviate
from typical modeling and analysis approaches. In
addition, there are many properties that are de-
sired by industry but impossible to verify, e.g., the
probability that an endless freezing will be lower
than a desired value.

Over approximation misleads users into devis-
ing too little redundancy for the same reliability
requirements. In contrast, insufficient assessment
misleads users into wasting resources by devising
too much redundancy for the same reliability re-
quirements.

Evaluation of redundancy-based software sys-

tems. Our method PFMV (probabilistic formal
modelling and verification) evaluates redundancy-
based software systems using probabilistic model
checking.

Using the modeling language of PRISM [5], we
can accurately describe the relations of multiple
versions even when the strategy is unique, with no
limits with respect to the type of existing models.
Moreover, it does not require the assumption of
the independent multiple versions.

When an accurate model is achieved, we eval-
uate the formal specifications to gain insight into
the redundant strategy. Eqs. (1)–(6) present sev-
eral typical analyses that are frequently used in

industry [1], which we explain below.

A[G RST ⇒ (P>1[X(APP ∧ ¬NMI ∧ ¬RST)])],
(1)

A[G RST ∧ (¬D1 ∧ ¬D2 ∧ ¬D3)

⇒ (P>1[X(D1 ∧D2 ∧D3)])], (2)

PFD

= filter(avg, (S=?[“reboot”]/S=?[APP])), (3)

ADT

= T × (1 −R[“weightapp”]=?[S ]

/R[“weighttotal”]=?[S ]), (4)

WCRT

= filter(avg, (R{“weightfail”}max=?[F “reboot”]

+ reboot time),NMI ∧ ¬D1), (5)

MTTF

= filter(avg, (R{“weighttotal”}[F “reboot”])).
(6)

For details regarding the PRISM specification
“filter” “max” “S”, please refer to [5]. Here we
use three real-world applications (AProg, BProg,
and CProg) to illustrate our method.

Eqs. (1) and (2) are qualitative analyses and
Eqs. (3)–(6) are quantitative analyses. Figure 1(c)
shows a typical probability of failure on demand
(PFD) result comparing the PFMV, RB, and NVP
models with non-redundancy. The horizontal axis
represents the reliability of a single version ξ (e.g.,
95 means ξ = 95%).

• Verifying model correctness. The model
checker can find errors such as deadlock, contradic-
tion, and unreachability and can assert the prop-
erties specified in the PCTL formulas that relate
to the model conformance.

Eq. (1) guarantees that all the states transit to
APP (user application) when RST is on. Eq. (2)



Fang L, et al. Sci China Inf Sci June 2018 Vol. 61 069101:3

ensures that when all the data are bad, the model
reboots and returns to the beginning of the model
at the time RST.

Although the formulas appear to be relatively
simple, they guarantee the essential correctness of
the model. We have used these formulas as rep-
resentative examples and other formulas can be
similarly verified.

• Probability of failure on demand (PFD). PFD
measures the probability of system failure when
requesting a system service. We propose the use
of (3) to specify the PFD metric that is the ratio of
the long-run probability of operation failure over
that of the APP being on.

In Figure 1(c), we compare the results of (3)
with respect to NVP, RB, PFMV, and non-
redundancy. The baseline (blue) indicates the re-
sults when there is no redundancy provided. We
can accurately determine the PFD value through
the analysis and the results indicate that PFMV
achieves dramatic enhancement of the PFD. More-
over, it is also obvious that the evaluation with
NVP or RB brings about deviation.

•Average down time (ADT). ADT, as described
in (4), is a criterion by which the systems work
within an assigned time duration T , e.g., one year
(8760 h), and is typically used for evaluating a
continuously running system.

After comparing the ADT values obtained via
the PFMV, RB, and NVP method, we can deduce
that if we use RB for an approximation, the value
will be overly assessed from the crossing point
ξ = 82%, but insufficiently assessed prior to the
crossing point. The NVP approximation, however,
always results in over assessment.

• Worse-case response time (WCRT). In real-
time systems, computation must guarantee a re-
sponse within specified time constraints, which are
often used to indicate, e.g., a deadline for execu-
tion [2]. We employ (5) to calculate the perfor-
mance of the system in response to a failure in
WCRT.

Next, we apply WCRT to AProg, BProg, and
CProg with different reboot overheads. We found
AProg and CProg to achieve almost the same re-
sults, whereas the value of BProg is much larger,
indicating that the performance of BProg is worse.
These results demonstrate that the WCRT for
PFMV is based on the probability of failure and
the period time of execution. The CProg results
from the NVP and RB models are very close to
the horizontal axis.

We obtain a value 112.48 for (5) for AProg.

When a train is traveling at velocity of 100 km/h,
112.48 s implies that the train cannot be controlled
within a distance of 3124.44 m. Similarly, the ap-
proximations using RB or NVP are very dangerous
since great deviation leads to the underestimation
of reliability.

• Mean time to failure (MTTF). In reliability
engineering, the MTTF is an essential index. In
our work, we consider the MTTF to be the average
time between two reboot events, as given in (6).

Considering that both the reliability of a sin-
gle version and detection are 0.95, Eq. (6) results
for PFMV (AProg) are 0.30, 5.99, and 4499.98 s
when the redundancy ranges from 1 to 3, respec-
tively (with similar results for BProg and CProg).
As such, we can conclude that the reboot occur-
rence is tremendously reduced when backup is per-
formed twice. When using RB or NVP to generate
estimates, these results also deviate.

Conclusion. In this article, we proposed an eval-
uation method for a redundancy-based system us-
ing probabilistic model checking. This redundant
strategy model can be specified accurately using
formal language without approximation or simpli-
fication, and the verification is supported theoret-
ically. The qualitative and quantitative evalua-
tions can verify numerous temporal computational
properties to address the interests of both system
designers and users.

Acknowledgements This work was supported by

National Natural Science Foundation of China (Grant

Nos. 61472240, 61672340, 61472238).

References

1 Pham H. Handbook of Reliability Engineering. Berlin:
Springer, 2003

2 Birolini A. Reliability Engineering: Theory and Prac-
tice. Berlin: Springer, 2010

3 Carzaniga A, Mattevelli A, Pezze M. Measuring soft-
ware redundancy. In: Proceedings of International
Conference on Software Engineering (ICSE15), Flo-
rence, 2015. 156–166

4 Baier C, Katoen J. Principles of Model Checking.
Cambridge: MIT Press, 2008

5 PRISM website. www.prismmodelchecker.org
6 Wolter K, Avritzer A, Vieira M, et al. Resilience

Assessment and Evaluation of Computing Systems.
Berlin: Springer, 2012

7 Yiu J. The Definitive Guide to the ARM Cortex-M3.
Amsterdam: Elsevier, 2009

8 FUJIMI website. www.letech.jp
9 Kanekawa N, Ibe H, Suga T, et al. Dependability

in Electronic Systems: Mitigation of Hardware Fail-
ures, Soft Errors, and Electromagnetic Disturbances.
Berlin: Springer, 2010

www.prismmodelchecker.org
www.letech.jp

