SCIENCE CHINA Information Sciences #### · Supplementary File · # Morris-Lecar model of third-order barnacle muscle fiber is made of volatile memristors Vetriveeran RAJAMANI¹, Hyongsuk KIM^{1,2*} & Leon CHUA³ ¹Division of Electronics and Information Engineering, Chonbuk National University, Jeonju, Jeonbuk 54896, South-Korea; ²Division of Electronics Engineering and Intelligent Robots Research Center, Chonbuk National University, Jeonju, Jeonbuk, 54896, South-Korea; ### Appendix A List of abbreviations of model parameters, and parameter values, of the third-order Memristive Morris-Lecar (ML) Model [1] I – applied current ($\mu A/cm^2$) I_{C_m} , I_L , I_{Ca} and I_K – current flowing through the axon membrane capacitor C_m , the leakage resistance R_L ($R_L = 1/g_L$), the time-varying calcium resistance R_{Ca} ($R_{Ca} = 1/g_{Ca}$), and the time-varying potassium resistance R_K ($R_K = 1/g_K$), respectively ($\mu A/cm^2$) E_L , E_{Ca} and E_K – battery voltages connected in series with the leakage conductance, the calcium ion-channel memristor and the potassium ion-channel memristor, respectively (mV) M, N – fraction of open Ca⁺⁺and K⁺ ion-channels M_{∞} , N_{∞} – fraction of open Ca⁺⁺ and K^+ ion-channels at steady state $\lambda_M(V)$, $\lambda_N(V)$ – rate constants for the opening of Ca⁺⁺ and K⁺ ion-channels, (s⁻¹) $\overline{\lambda}_{\!_M}$, $\overline{\lambda}_{\!_N}$ – maximum rate constant for Ca⁺⁺ and K⁺ ion-channel openings, (s⁻¹) V_1 and V_3 – potential (mV) at which M_∞ and N_∞ are equal to 0.5 mV, and V_2 and V_4 – parameters (mV) associated with Eqs. (1d), (1e), (1f), and (1g) | Table 1. Parameter values [1] of the third-order memristive Morris–Lecar model | | | | |--|-----------------------------|---|-----------------------| | C_m | 20 μF/cm ² | E_{Ca} | 120 mV | | E_K^m | -84 mV | g_{Ca} | 4.4 mS/cm^2 | | g_K | 8 <i>mS/cm</i> ² | V_1 | -1.2 mV | | V_3 | 2 mV | V_2 | 18 <i>mV</i> | | V_4 | 30 mV | g_L | $2 mS/cm^2$ | | $\bar{\lambda}_{N}^{4}$ | $0.04 \ ms^{-1}$ | E_L | $-60 \ mV$ | | , v _N | | $ rac{E_L}{ar{\lambda}_{\scriptscriptstyle M}}$ | $0.8 \ ms^{-1}$ | ³Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 9720, USA; Appendix B Frequency-dependent Pinched Hysteresis Loop of Calcium ion-channel memristor (a), and Potassium ion-channel memristor (b), at different frequencies **Figure B1** (a) Frequency-dependent pinched hysteresis loop of the calcium ion-channel memristor simulated at f = 1 kHz, 5 kHz and 40 kHz, respectively with $v_{Ca}(t) = 250$ sin $(2\pi ft)$; (b) Frequency-dependent pinched hysteresis loop of the potassium ion-channel memristor at f = 50 Hz, 200 Hz, and 2 kHz, respectively with $v_K(t) = 250$ sin $(2\pi ft)$; Appendix C DRM of calcium ion-channel memristor, over the interval, $-100 \le M \le 200$ at $v_{Ca} = -25$, -15, 0, 15, 25 mV, and the DRM of potassium ion-channel memristor, over the interval, $-100 \le N \le 200$ at $v_K = -25$, -15, -8, 0, 15, 25 mV, respectively. Figure C1 (a) DRM of calcium ion-channel memristor over the interval, $-100 \le M \le 200$, and (b) its zoomed version, at $v_{Ca} = -25$, -15, 0, 15, 25 mV, respectively; (c) DRM of potassium ion-channel memristor over the interval, $-100 \le N \le 200$, and (d) its zoomed version, at $v_K = -25$, -15, -8, 0, 15, 25 mV, respectively. #### References 1 Ermentrout G, Terman D. Mathematical Foundations of Neuroscience. Springer, 2010