SCIENCE CHINA Information Sciences

· Supplementary File ·

Morris-Lecar model of third-order barnacle muscle fiber is made of volatile memristors

Vetriveeran RAJAMANI¹, Hyongsuk KIM^{1,2*} & Leon CHUA³

¹Division of Electronics and Information Engineering, Chonbuk National University, Jeonju, Jeonbuk 54896, South-Korea;

²Division of Electronics Engineering and Intelligent Robots Research Center, Chonbuk National University, Jeonju, Jeonbuk, 54896, South-Korea;

Appendix A List of abbreviations of model parameters, and parameter values, of the third-order Memristive Morris-Lecar (ML) Model [1]

I – applied current ($\mu A/cm^2$)

 I_{C_m} , I_L , I_{Ca} and I_K – current flowing through the axon membrane capacitor C_m , the leakage resistance R_L ($R_L = 1/g_L$), the time-varying calcium resistance R_{Ca} ($R_{Ca} = 1/g_{Ca}$), and the time-varying potassium resistance R_K ($R_K = 1/g_K$), respectively ($\mu A/cm^2$)

 E_L , E_{Ca} and E_K – battery voltages connected in series with the leakage conductance, the calcium ion-channel memristor and the potassium ion-channel memristor, respectively (mV)

M, N – fraction of open Ca⁺⁺and K⁺ ion-channels

 M_{∞} , N_{∞} – fraction of open Ca⁺⁺ and K^+ ion-channels at steady state

 $\lambda_M(V)$, $\lambda_N(V)$ – rate constants for the opening of Ca⁺⁺ and K⁺ ion-channels, (s⁻¹)

 $\overline{\lambda}_{\!_M}$, $\overline{\lambda}_{\!_N}$ – maximum rate constant for Ca⁺⁺ and K⁺ ion-channel openings, (s⁻¹)

 V_1 and V_3 – potential (mV) at which M_∞ and N_∞ are equal to 0.5 mV, and

 V_2 and V_4 – parameters (mV) associated with Eqs. (1d), (1e), (1f), and (1g)

Table 1. Parameter values [1] of the third-order memristive Morris–Lecar model			
C_m	20 μF/cm ²	E_{Ca}	120 mV
E_K^m	-84 mV	g_{Ca}	4.4 mS/cm^2
g_K	8 <i>mS/cm</i> ²	V_1	-1.2 mV
V_3	2 mV	V_2	18 <i>mV</i>
V_4	30 mV	g_L	$2 mS/cm^2$
$\bar{\lambda}_{N}^{4}$	$0.04 \ ms^{-1}$	E_L	$-60 \ mV$
, v _N		$rac{E_L}{ar{\lambda}_{\scriptscriptstyle M}}$	$0.8 \ ms^{-1}$

³Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 9720, USA;

Appendix B Frequency-dependent Pinched Hysteresis Loop of Calcium ion-channel memristor (a), and Potassium ion-channel memristor (b), at different frequencies

Figure B1 (a) Frequency-dependent pinched hysteresis loop of the calcium ion-channel memristor simulated at f = 1 kHz, 5 kHz and 40 kHz, respectively with $v_{Ca}(t) = 250$ sin $(2\pi ft)$; (b) Frequency-dependent pinched hysteresis loop of the potassium ion-channel memristor at f = 50 Hz, 200 Hz, and 2 kHz, respectively with $v_K(t) = 250$ sin $(2\pi ft)$;

Appendix C DRM of calcium ion-channel memristor, over the interval, $-100 \le M \le 200$ at $v_{Ca} = -25$, -15, 0, 15, 25 mV, and the DRM of potassium ion-channel memristor, over the interval, $-100 \le N \le 200$ at $v_K = -25$, -15, -8, 0, 15, 25 mV, respectively.

Figure C1 (a) DRM of calcium ion-channel memristor over the interval, $-100 \le M \le 200$, and (b) its zoomed version, at $v_{Ca} = -25$, -15, 0, 15, 25 mV, respectively; (c) DRM of potassium ion-channel memristor over the interval, $-100 \le N \le 200$, and (d) its zoomed version, at $v_K = -25$, -15, -8, 0, 15, 25 mV, respectively.

References

1 Ermentrout G, Terman D. Mathematical Foundations of Neuroscience. Springer, 2010