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Abstract Technology advances in the last a few decades have resulted in profound changes in our so-

ciety, from workplaces to living rooms to how we socialize with each other. These changes in turn drive

further technology developments, as the exponential growth of data demands ever increasing computing

power. However, improvements in computing capacity from device scaling alone is no longer sufficient, and

new materials, devices, and architectures likely need to be developed collaboratively to meet present and

future computing needs. Specifically, devices that offer co-located memory and computing characteristics,

as represented by memristor devices and memristor-based computing systems, have attracted broad interest

in the last decade. Besides tremendous appeal in data storage applications, memristors offer the potential

for efficient hardware realization of neuromorphic computing architectures that can effectively address the

memory and energy walls faced by conventional von Neumann computing architectures. In this review, we

evaluate the state-of-the-art in memristor devices and systems, and highlight the potential and challenges of

applying such devices and architectures in neuromorphic computing applications. New directions that can

lead to general, efficient in-memory computing systems will also be discussed.
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1 Introduction

Memristors (memristive devices) have gained broad interest recently as a promising candidate for future

data storage and efficient computing systems [1–5]. At the device level, memristor-based memory offers

high-density and fast on-chip storage and can help extend the lifetime of classical computing architectures

based on Boolean logic [2,6]. At the system level, a new class of analog/digital neuromorphic architectures

have been developed [5,7–9], which can exploit the native physical properties of these resistive switching

(RS) devices to directly and naturally implement brain-inspired computing paradigms [1,10–12], making

memristor-based devices and systems highly attractive for efficiently processing data-intensive tasks at

very low power in both the near term and the long term.

Memristors are by definition two-terminal systems that show RS effects. From a material and device

point of view, the RS effect can be attributed to different switching mechanisms [13], as summarized in

Figure 1. In particular, redox-based memristors are extensively studied, and are often called resistive

random-access-memory (RRAM) for memory applications [14, 15]. These devices are generally simple

in structure and nanoscale in dimensions (scaling < 10 nm has been demonstrated [16]), while at the

same time offering excellent performance in terms of switching speed [17], retention, and write/erase
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Figure 1 (Color online) Categories of memristive devices based on the RS mechanism [13] @ Copyright 2017 Springer

Nature.

cycling [18]. In a typical device, the resistance state can be reversely switched from a high-resistance

state (HRS) to a low-resistance state (LRS) during the SET process, when the bias voltage is above the

SET threshold voltage. The device will maintain the new resistance value, thus can store the data in a

non-volatile fashion, until it goes through a RESET process where the resistance can be switched back

to the HRS, and vice versa (Figure 2). In general, RRAM devices are fabricated in a metal-insulator-

metal (MIM) structure, with two metal electrodes sandwiching a thin film dielectric layer. Due to its

nanoscale thickness, the dielectric layer can act as a solid electrolyte that accommodates cation or anion

re-distribution within it [19], since at these dimensions even moderate voltage drops can create significant

electric fields that exponentially speed up the ionic oxidation, migration and reduction processes. These

processes in turn lead to the creation or annihilation of a conductive filament in the switching layer, and

consequently the RS effects.

Other non-redox based RS systems can be driven by electronic effects such as electron trapping in an

insulator [20] and insulator-metal transition effects in a Mott material [21]. Phase change memory (PCM)

devices can also be included in the broad category of memristive systems, and are based on switching

between the amorphous (high resistance) phase or crystalline (low resistance) phase of the material [22].

Spin transfer torque (STT) memory devices rely on the switching of the relative magnetic orientation of in

spin valve structure, with parallel orientation of the two magnetic layers leading to LRS and antiparallel

orientation leading to HRS [23]. In this review paper we will focus on the redox-based memristor devices

as these devices have now been extensively studied in memory and neuromorphic computing applications.

Besides their potential in high-density, high-performance non-volatile memory applications, perhaps

the most intriguing aspect of memristive devices is their application in emerging computing architectures.

These architectures offer the potential to process large amounts of data efficiently, to satisfy the challenges

presented by current and future computing needs. While some of the neural network and computational

concepts are not necessarily new, recent advances in hardware, including memristor-based devices and

circuits, made it possible to implement efficient hardware for edge processing and even server-like ap-

plications. The new device properties also enabled the development of new architectures that can take

advantage of the high parallelism and co-located memory and compute properties offered by the devices,
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Figure 2 (Color online) Bipolar switching behavior of an RRAM device. (Inset) Crosspoint structure that is typically

used to implement the two-terminal RRAM devices and arrays [13] @ Copyright 2017 Springer Nature.

and helped drive new architecture and algorithm developments.

We will evaluate the architecture and hardware developments, such as neuromorphic computing and

biologically inspired computing approaches, driven by recent device discoveries. These neuromorphic

computing systems, and in-memory computing systems in general, can overcome the von-Neumann bot-

tleneck and are of particular relevance to tasks that are of high interest today. We will start from

device-level developments and requirements and move on to system-level implementations and possible

new research directions enabled by these fascinating devices.

2 Memristor as synapse

The quasi-continuous tuning of the device conductance with a memory effect, as shown in Figure 3, is a

key enabling factor of memristor-based neuromorphic circuits and architectures. Generally speaking, the

conductance in memristors plays the role analogous to synaptic weight in biological systems. Similar to

a biological synapse, a memristor device can be used to connect a pair of computing elements (artificial

neurons) and the (tunable) memristor conductance directly controls the connectivity strength between the

neurons [24]. These connectivity patterns among neurons provide both memory (as values represented by

the weights) and compute (since the connectivity strength directly regulates signal propagation) functions

of the system. Additionally, the connectivity can be adjusted (trained) on-line by directly modifying the

memristor conductance values with voltage pulses (analogous to spikes). These properties make it very

attractive to use memristors to build neuromorphic systems, e.g., artificial neural networks with input

and output elements (artificial neurons) connected by memristors serving as artificial synapses, as shown

in Figure 4.

Desirable analog RS characteristics have been observed in a broad range of systems, including TiOx,

Ag/α-Si, WOx, Ag2S, and TaOx based memristive devices [25–29]. Similarly, different types of biomim-

icking learning rules that are necessary for neuromorphic computing implementations have been demon-

strated in memristor-based systems, depending on the internal dynamics of the cations or anions that

drive the memristor’s conductance change [1].

A typical implementation of the memristor-based neural network is the crossbar structure, shown in

Figure 4, where every neuron on the left (layer 1) can be connected to every neuron at the bottom (layer 2)

through plastic connections offered by the memristors in the columns associated with the output neurons.
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Figure 3 (Color online) Analog RS in a Ag/α-Si based

memristive device, showing measured (blue) and calculated

(orange) I-V characteristics of the device [27] @ Copyright

2010 American Chemical Society.

Figure 4 (Color online) Schematic of a memristor-based

network structure. A memristor is formed at each cross-

point and can simultaneously store data and process in-

formation, in ways similar to a biological synapse [27]

@ Copyright 2010 American Chemical Society.

This approach offers high density and large connectivity (leading to high levels of parallelism) that are

needed in neuromorphic hardware, and has been widely used by different research groups.

Biologically inspired learning rules such as spike-timing-dependent plasticity (STDP) and activity-

dependent plasticity rules have already been demonstrated at the device levels [27, 30–32]. Figure 5(a)

and (b) shows an example of a single memristor device acting as a synapse and reproducing the STDP

behavior of biological synapses. Initial demonstrations of these rules were commonly aided by carefully

engineered programming pulses applied to the devices [27], while recent studies have shown that the

internal ionic dynamics (at both short-term and long-term time scales) in so-called second-order memristor

devices [30, 31] and diffusive memristor devices [33] can naturally lead to different timing- and rate-

based synaptic plasticity behaviors. Specifically in a second order memristor, the rise and decay of

one state variable (e.g., local temperature) encodes the relative timing information of the voltage pulse

inputs (spikes) and can subsequently modulate the change of a 2nd state variable that represents the

synaptic weight (e.g., filament size). These internal dynamic ionic effects allow the device to biofaithfully

emulate both timing- and rate-dependent plasticity effects using simple, non-overlapping pulses found

in biology [34, 35], and could further improve the system’s computing efficiency beyond what’s offered

through the network topology. Other synaptic behaviors, including paired pulse facilitation, experience-

dependent plasticity, frequency-dependent plasticity, heterosynaptic plasticity, and metaplasticity, have

also been directly and naturally emulated with these dynamic memristive devices [31,36,37], and suggest

memristor-based hardware systems can be extremely attractive in realizing bioinspired networks.

3 Memristor based neuromorphic computing systems

Neuromorphic hardware architectures typically comprise hybrid analog/digital circuits that implement

physical models of neural computing systems, following computational principles analogous to the ones

used by real nervous systems [7]. Prior efforts on neuromorphic computing systems implementation were

based on mixed-signal CMOS technologies [38–42], acting as hardware accelerators for neuroscience model

testing. These systems, however, are still based on separate memory and logic components and are to

a large extent affected by the von Neumann memory bottleneck problem [43]. The ability to directly

and physically map the network structure in memristor-based neural network approaches thus provides

a welcome alternative. Below we discuss the operation principle and several recent demonstrations of

memristor-based neuromorphic systems.

Mathematically, the operations of neuromorphic systems and many data-intensive tasks in general are

based on vector-matrix multiplication processes, where the input vector is simultaneously compared with
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Figure 5 (Color online) (a) Mimicking the biological synapse using a single memristor device; (b) measured STDP

behavior from a memristor [27] @ Copyright 2010 American Chemical Society.

(a) (b)

Figure 6 (Color online) (a) Schematic of a memristor crossbar-based computing system. The input neurons (green) and

the leaky integrating output neurons (pink) are connected to the rows and columns of the crossbar, respectively. An output

neuron collects currents flown from all memristor devices in the column associated with the neuron. The memristor devices

can be programmed to different conductance states (represented in greyscale), through internal ion redistribution (inset).

(b) Scanning electron micrograph (SEM) image of a fabricated memristor array and the memristor chip (lower left) [24]

@ Copyright 2017 Springer Nature.

the stored vectors in the network through the vector-vector dot-product operation, and the neurons with

better matches with the input will produce larger output values. The vector-matrix multiplication can

be directly mapped on the memristor crossbar, as shown in Figure 6(a). Each memristor device at a

cross-point represents a synapse linking an input neuron (at a given row) with an output neuron (at a

given column), with the synaptic weight represented by the memristor conductance. If the input signal

is coded by the amplitude (or width) of the applied input voltage pulse, the current (or charge) through

the corresponding memristor device is then determined by the product of the input and the memristive

synaptic weight [24]. As a result, the dot-product equation can now be naturally computed directly

using Ohm’s law (providing the multiplication function) and Kirchhoff’s law (providing the summation

function) in the device in physics. With this approach, the dot-product and vector-matrix multiplication

operations are reduced to a single read operation in the memristor crossbar, represented by the output

currents at the neurons that can be measured in parallel for all neurons in the network.

Several examples of memristor crossbar-based neuromorphic hardware have already been demonstrated

in the last couple of years. They have been shown capable of performing different computing tasks includ-

ing pattern classification, feature extraction, sparse coding, and recognition [11,44–48]. For example, the

first memristor hardware performing pattern classification was demonstrated by a team at the University

of California, Santa Barbara (UCSB), initially using a 2×10 crossbar [44] and later expanded to a 12×

12 crossbar [11]. A generic dot-product engine using memristor arrays for neuromorphic applications was
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Figure 7 (Color online) Natural image processing using the memristor crossbar network. (a) The original 120×120 image

to be processed is divided into non-overlapping 4×4 patches; (b) an example of a 4×4 patch from the original image;

(c) the experimentally reconstructed patch from the 16×32 memristor crossbar; (d) membrane potentials of the neurons

during sparse coding The red horizontal line marks the threshold parameter. Neurons having membrane potential above

the threshold are active, while the other neurons will have exactly zero activity; (e) reconstructed image [24] @ Copyright

2017 Springer Nature.

introduced by Hewlett Packard Labs in 2016 [49]. In 2017, principal component analysis through online

learning in a 2×8 crossbar [50] was demonstrated, along with a sparse coding chip that allows lateral

neuron inhibition was developed at the University of Michigan using a 32×32 crossbar [24], shown in

Figure 7. In the sparse-coding work, the memristor array is first used to learn features (receptive fields)

from natural images. The learned features are then used to analyze the input image using a locally-

competitive algorithm (LCA) to identify hidden features from the input and reconstruct the input with

few active neurons based on the identified features.

4 Challenges and new directions

Several device-level challenges still need to be fully addressed before large-scale memristor-based neuro-

morphic hardware systems can be built. Fortunately, write/erase cycles, encountered during the network

training phase, are typically infrequent during the lifetime of the network as most operations (e.g.,

vector-matrix multiplications) can be mapped into the read operation. On the other hand, most learning

algorithms rely on the use of analog devices whose conductance needs to be updated in an incremental, in-

stead of binary fashion [27]. The linearity and symmetry of the incremental conductance (synaptic weight)

update have been shown to strongly impact the network performance and need to be optimized [45, 51].

One option to address this problem is through system level innovations, e.g., by using devices with fewer

levels and assigning multiple devices to represent each weight. In this regard, binary memristive devices

can possibly be adopted in neural network implementations, but at the expense of the effective weight

density.

An attractive property of artificial neural network applications is their ability to tolerate device level

imperfections. For instance, device variability may not be a significant problem for a memristor based

neural network, since the adaptive evolution nature of the network allows the device variations to be

factored in during learning [52,53]. In a recent study focusing on image analysis based on the sparse coding

algorithm, it was found that moderate device-to-device variations may even help the image reconstruction

performance by introducing high spatial frequency features in the dictionary, particularly at small network

sizes [53].

Besides acting as synaptic elements, recent studies have also shown that memristors can provide neu-

ronal functions that can collect (integrate) input signals and generate stochastic spikes based on the

integrated inputs [54, 55]. Networks of dynamic memristors can also exhibit emergent behaviors that

are not expected from individual devices, due to the highly non-linear interactions of the devices. As
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Figure 8 (Color online) Block diagram showing the different layers that can be reconfigured in a possible reconfigurable

in-memory computing architecture [5] @ Copyright 2017 IEEE.

the internal dynamics of the devices can be accurately modeled [30, 31] while the interactions may be

measured and reliably simulated through circuit parameters, emergence of functionality in these dynamic

networks may be systematically predicted and analyzed. This type of analysis can thus lead to new

algorithm developments that can efficiently take advantage of the network dynamics.

Memristor devices have also been used to efficiently perform functions such as arithmetic/analog pro-

cessing [56]. Combined, these three functions, memory/storage, arithmetic and neuromorphic/artificial

networks, cover a broad range of tasks that are encountered today from small systems such as sensor

nodes to large ones such as server farms. We note that these three functions can in fact be realized using

a common physical fabric based on memristor crossbar arrays [5], allowing the development of a general

computing system whose functions and resources can be dynamically reconfigured based on the task and

data patterns.

One such approach is to build around the concept of reconfigurable memristor crossbar-based cores [5],

as shown in Figure 8. Each core is identical and can be further freely divided into smaller modules

down to the finest grain – device level. Both the cores and the modules can be (re)configured through

software to perform one of the three system tasks discussed above, as shown in Figure 8. Such an in-

memory computing system can offer three desirable properties: first, the ability to process an arbitrary

workload in its optimal computing domain (arithmetic, analog or neural networks); second, a high degree

of scalability and reconfigurability (both coarse-grain and fine-grain) enabled by the common physical

fabric and the modular design; and finally, true in-memory computing at the lowest physical level with

minimal data migration.

The challenges in physically implementing such a general in-memory computing architecture include

identifying and fabricating memristor devices and arrays that support the different modes of operations.

For instance, binary devices are more suitable for storage and digital vector operations, while multilevel

devices are preferred in neuromorphic operations and can provide higher effective storage density. In any

case, devices with high ON/OFF and low programming current will be preferred to improve the system’s

performance and power efficiency.

It may be argued that such a memristor-based in-memory computing system follows the natural eval-

uation of computing systems from central processing units (CPUs) to graphics processing units (GPUs).

Typically, CPUs rely on large (coarse-grain) processing cores to provide the computational power but

suffer significantly from the memory bottleneck. On the other hand, GPUs rely on finer-grain cores to

improve parallelism with faster local memory access. By merging memory and processing units together

at the finest grain level – device level, the memristor-based system can fundamentally eliminate the mem-

ory bottleneck and offer high parallelism and dynamic reconfigurability, making it a viable solution for

future computing needs.
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5 Conclusion

The last a few years have witnessed great process in the development of memristive devices and computing

systems that can efficiently exploit the properties of such devices. Memristive-based hardware systems

have shown excellent potential to meet the computing needs past the von Neumann/Moores-Law era.

Carefully designed memristor devices can natively mimic the dynamics of their biological counterpart -

synapses, and allow the network to develop emergent behaviors not expected from single device proper-

ties. Memristor crossbars provide a natural platform to implement massively-parallel and power efficient

vector-matrix operations that form the basis of neuromorphic operations and other data-intensive tasks.

It is expected that advances in device technology and architecture developments can eventually lead to

large-scale hardware implementation of neuromorphic computing systems. However, to turn these ideas

into reality will require dedicated, multidisciplinary research branching materials, devices, architecture

and algorithm developments.
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