Appendix A Security Results and Analysis

Appendix A.1 Security Result of 2ORKE

Theorem 1. Assume that the bit-size of K_{Epk} is ν and the output length of CRHF is μ. Suppose that DPRF is a secure double pseudo-random function family, SIG is deterministic and SEUF-WCMA secure, and the hash function CRHF is collision-resistant, and the DDH assumption holds in G with prime order p. Then the proposed 2ORKE protocol is session-key-secure with $\text{Adv}_{2\text{ORKE},A}(\lambda) \leq \frac{(dl)^2}{2^\nu} + \text{Adv}_{\text{CRHF},A}(\lambda) + \epsilon \text{Adv}_{\text{SIG},F}(\lambda, d) + 4(d^2f^2) - (2 - \text{Adv}_{\text{SEUF-WCMA},G}^+ \text{Adv}_{\text{CRHF},E}(\lambda, d) + 2\mu - \text{Adv}_{\text{DPRF},G,p}^+ (\lambda))$.

Proof. In this proof, we are going to reduce the security of our proposed protocol to that of underlying building blocks and the DDH problem. Let π_{id} denote the test oracle; and π_{id}^* be the origin oracle of π_{id}. Note that the partner oracle of the test oracle is its origin oracle. Since each protocol message of our scheme includes the identity of sender, the origin oracle must come from the intended partner (i.e. id_j) of π_{id}. Let Adv_q denote the advantage of A in the following Game ξ. Note that the adversary cannot query RevealKey to the test oracle or its partner oracle (if it exists). However, the adversary can ask different combinations of RevealEphKey and Corrupt queries to the test oracle and its origin oracle. We further list all freshness cases regarding RevealEphKey and Corrupt queries that A may ask. Then the following events and cases are obtained:

- **E1**: If π_{id}^* exists: (i) C1: A did not query $\text{RevealEphKey}(\text{id}_i, s^*)$ nor $\text{RevealEphKey}(\text{id}_j, z^*)$; (ii) C2: A did not query $\text{Corrupt}(\text{id}_i, pk^*)$ nor $\text{RevealEphKey}(\text{id}_j, z^*)$; (iii) C3: A did not query $\text{Corrupt}(\text{id}_i, pk^*)$ nor $\text{Corrupt}(\text{id}_j, pk^*)$; (iv) C4: A did not query $\text{RevealEphKey}(\text{id}_i, s^*)$ nor $\text{Corrupt}(\text{id}_j, pk^*)$.

- **E2**: If π_{id}^* does not exist: (v) C5: A did not query $\text{Corrupt}(\text{id}_i, pk^*)$ nor $\text{Corrupt}(\text{id}_j, pk^*)$ prior to the acceptance of π_{id}^*; (vi) C6: A did not query $\text{RevealEphKey}(\text{id}_i, s^*)$ nor $\text{Corrupt}(\text{id}_j, pk^*)$ prior to the acceptance of π_{id}^*.

In the following, we are going to show that our protocol is secure under all above freshness cases.

Game 0. The first game is the real security experiment, i.e. all questions in this game are simulated honestly in terms of protocol specification. Thus we have that $\text{Adv}_{2\text{ORKE},A}(\lambda) = \text{Adv}_0$.

Game 1. In this game, the challenger proceeds exactly like the previous game, except that it adds an additional abort rule. Namely the challenger aborts, if during the simulation an oracle generates an ephemeral public key which has appeared before. Note that if there are any two oracles (e.g., π_{id}^* and π_{id}^*) of a party which have collisions on ephemeral secret keys with non-negligible probability, then the adversary can ask $\text{Corrupt}(\text{id}_i)$ and ask $\text{RevealEphKey}(\text{id}_i, t)$ to learn the long-term key ss_{id} and esk_{id}. This implies that the adversary learns all secrets of oracle π_{id}^* but without breaking the freshness of it. In this case, the adversary can select oracle π_{id}^* as test oracle and win the game. The above abort event is used to get rid of this situation. The randomness of ephemeral public key then is relative to that of ephemeral secret key which has length ν as assumed. Hence such abort event occurs with probability at least $\frac{(dl)^2}{2^\nu}$ in terms of birthday paradox. We have that $\text{Adv}_1 \leq \text{Adv}_2 + \frac{(dl)^2}{2^\nu}$.

This game proceeds as the previous game, except that the simulator aborts if: two oracles π_{id}^* and π_{id}^* accepted such that $\text{CRHF}(\text{sid}_{id}) = \text{CRHF}(\text{sid}_{id}^*)$ but without matching sessions. When the event occurs, we can easily construct algorithm that breaks the collision-resistant hash function CRHF by outputting messages (sid_{id}, sid_{id}^*). Hence we have that $\text{Adv}_1 \leq \text{Adv}_2 + \text{Adv}_{\text{CRHF},A}(\lambda)$.

This implies that each hashed session identifier is also uniquely shared by two partner oracles each.

Game 3. This game proceeds exactly as the previous game, but the challenger aborts if: there is an oracle π_{id}^* received a message $(\text{id}_i, epk_{id}, \sigma_{id})$ which is not sent by any oracle of id_i before id_j is corrupted, but $\text{SIG}(\text{Vfy}(\text{vk}_{id}, \sigma_{id}), \text{id}_i) = 1$. If the challenger aborts with overwhelming probability, then we could construct a signature forgery F. Meanwhile, F needs to guess the party that the adversary can forge. This would lose a factor of ϵ. We refer a reader to our previous work [?] for the detail of the security proof of this game (due to lacking of space). Therefore we have that $\text{Adv}_2 \leq \text{Adv}_3 + \epsilon \text{Adv}_{\text{SIG},F}(\lambda, d)$.

As a result, the test oracle π_{id}^* in this game always has an origin oracle π_{id}^* before id_j is corrupted. This implies the freshness cases C5 and C6 never occur in this game.

Game 4. This game proceeds as before, but the challenger C tries to guess the test oracle and its origin oracle and one of the freshness cases. Technically, the challenger aborts if it fails in this guess. Since there are 4 fresh cases (i.e., from C1 to C4) and ℓ parties at all, and at most d oracles for each party, then the probability of a correct guess is at least $1/(4d^2\ell^2)$. Thus we have that $\text{Adv}_4 \leq 4(d^2\ell^2) + \text{Adv}_3$.

Game 5. We change this game from the previous game by replacing the DPRF for the test oracle and its origin-oracle with two truly random functions respectively. If there exists an adversary A which can distinguish this game from the previous game, then there must exist another adversary D which can break the security of DPRF. Specifically, D could simulate the game for A as the challenger. In order to keep the freshness of the test oracle, A would only query either $\text{RevealEphKey}(\text{id}_i, s^*)$ or $\text{Corrupt}(\text{id}_i)$, then at least one key of DPRF is unexposed to A. Note that D could choose one of the keys of DPRF (as specified in the security experiment of DPRF) that enables her to answer the RevealEphKey or Corrupt query correctly from A.

For instance, D runs init() following its guess on freshness cases (as in the previous game), and generates the Diffie-Hellman exponents of the test oracle using its $\text{RF}_{\text{DPRF}}(\text{id}_i, m_{id}^*)$ oracle query, where m_{id}^* is chosen at random by D and ϕ_{id}^* is equivalent to the exposed key in the set $\{ss_{id}, es_{id}^*, \ldots\}$. Similar simulation steps could be done to the origin-oracle. Meanwhile, D may play two hybrid sub-games to change the DPRF progressively for the test oracle and its origin-oracle.
If RF_{DPRF} is assigned with a truly random function, then the simulated game equals to this game, otherwise it is equivalent to the previous game. Due to the security of DPRF, we therefore have that $\text{Adv}_4 \leq \text{Adv}_5 + 2 \cdot \text{Adv}_{\text{ind-comp}^{\text{CRHF}}}(\lambda, d)$. In this game, both the esk_{id}^s and esk_{id}^b (of the test oracle and its origin oracle respectively) are hidden from the adversary.

Game 6. In this game, we replace the session key of the test oracle and its partner oracle (if it exists) with a random value. If the A is able to distinguish from the previous game, then we can make use of A to build a DDH solver D as follows. On input a DDH challenge (g, p, g^a, g^b), the goal of D is to distinguish whether $g^c = g^{ab}$. D then simulates the AKE challenger for A. Recall that only two partner oracles and the same hashed session identifier $h = \text{CRHF}(\text{sid})$ due to the results of previous games. The ephemeral secret key and public key (used to compute the session key) are programmed by the 'bits' $(h(1), \ldots, h(\mu))$ of such hashed session identifier. If the test oracle has no partner oracle but only origin oracle, then the hashed session identifier h_{id}^s of the test oracle π_{id}^s must be distinct to that h_{id}^b of its origin oracle π_{id}^b, i.e., $h_{id}^s \neq h_{id}^b$. Since $h_{id}^s \neq h_{id}^b$, there must exist one bit, with coordinate τ^* in h_{id}^s, is distinct to the τ^*-th bit of h_{id}^b. Hence D should guess the coordinate τ^* and the value of $h_{id}^s(\tau^*)$, which has a successful probability at least $\frac{1}{2^\mu}$. If D guessed incorrectly, then it aborts. Otherwise D sets ephemeral keys $X_{id_j}^* = g^a$ and $X_{id_j}^* = g^b$, respectively. All other Diffie-Hellman keys are generated in terms of protocol specification using the ephemeral secret keys chosen by D. This particularly implies that D knows almost all ephemeral secret keys except for $X_{id_j}^* = g^a$ and $X_{id_j}^* = g^b$.

We change the session key generation (in the view of the test oracle) for the test oracle and its partner oracle as the equation (A1).

$$
k^* = \left(\prod_{\eta = 1}^{\mu} X_{id_j, \eta, h_{id}^s(\eta)}^* \right) \sum_{i = 1, i \neq \tau^*}^{\mu} x_{id_j, i, h_{id}^s(\eta)}^* \cdot \left(\prod_{\eta = 1}^{\mu} X_{id_j, \eta, h_{id}^b(\eta)}^* \right) \cdot x_{id_j, \tau^*, h_{id}^b(\eta)}^* \quad (A1)
$$

$$
= \left(\prod_{\eta = 1}^{\mu} X_{id_j, \eta, h_{id}^s(\eta)}^* \right) \sum_{i = 1, i \neq \tau^*}^{\mu} x_{id_j, i, h_{id}^s(\eta)}^* \cdot \left(\prod_{\eta = 1}^{\mu} X_{id_j, \eta, h_{id}^b(\eta)}^* \right) \cdot x_{id_j, \tau^*, h_{id}^s(\eta)}^* \cdot \left(\prod_{\eta = 1, \eta \neq \tau^*}^{\mu} X_{id_j, \eta, h_{id}^s(\eta)}^* \right) \cdot x_{id_j, \tau^*, h_{id}^s(\eta)}^* \cdot x_{id_j, \tau^*, h_{id}^b(\eta)}^* \quad .
$$

We need to do the above modification because we want to split the session key generation of the test oracle into two parts. The first part is the value that the adversary wins in this game is Adv_5. The second part is the one, i.e. $(X_{id_j, \tau^*, h_{id}^s(\eta)}^* \cdot x_{id_j, \tau^*, h_{id}^s(\eta)}^*)$, which cannot be computed by D, but will be replaced by the challenge value. Specifically, the session key of the test oracle and its partner oracle is further changed as the equation (A2):

$$
k^* := g^c \cdot \left(\prod_{\eta = 1}^{\mu} X_{id_j, \eta, h_{id}^s(\eta)}^* \right) \sum_{i = 1, i \neq \tau^*}^{\mu} x_{id_j, i, h(\eta)}^* \cdot \left(\prod_{\eta = 1}^{\mu} X_{id_j, \eta, h_{id}^b(\eta)}^* \right) \cdot x_{id_j, \tau^*, h_{id}^b(\eta)}^* \cdot \left(\prod_{\eta = 1, \eta \neq \tau^*}^{\mu} X_{id_j, \eta, h_{id}^s(\eta)}^* \right) \cdot x_{id_j, \tau^*, h_{id}^s(\eta)}^* \cdot x_{id_j, \tau^*, h_{id}^b(\eta)}^* \quad .
$$

As for the origin oracle which is not the partner oracle of the test oracle, D can compute it using the ephemeral secrets chosen by herself, i.e. $x_{id_j, 1, h_{id}^s(1)}, \ldots, x_{id_j, \mu, h_{id}^s(\mu)}$.

The simulation of D is perfect so far. If $g^c = g^{ab}$ then the game is equivalent to the previous game, otherwise the game is identical to this game. Due to the hardness of DDH problem, we therefore obtain that $\text{Adv}_5 \leq \text{Adv}_6 + 2\mu \cdot \text{Adv}_{\text{DDH}}(\lambda)$.

Note that in this game the session key returned by the Test query is totally a truly random value which is independent of the bit b chosen by the Test query and any messages. Thus, the advantage that the adversary wins in this game is $\text{Adv}_6 = 0$. Put altogether the probabilities from Game 0 to Game 6, we obtained the overall result of this theorem.

Appendix A.2 Security Result of MORKE

Theorem 2. Assume that the bit-size of K_{Ephem} is ν the output length of CRHF is μ. Suppose that DPRF is a secure double pseudo-random function family, SIG is deterministic and SEUF-WCMA secure, and CRHF is collision-resistant, and
the n-multilinear Diffie-Hellman assumption relative to MGen holds. Then the proposed MORKE protocol is session-key-secure with
\[
\text{Adv}^\text{MORKE}_{\mathcal{A}}(\lambda) \leq \frac{(d\ell)^2}{\lambda} + \text{Adv}^\text{r}\text{ORF}_{\mathcal{X}}(\lambda) + \ell \cdot \text{Adv}^\text{CRHF}_{\mathcal{X}}(\lambda, d) + (2d)^{n+1} \cdot ((n + 1)\text{Adv}^\text{CMAC}\mathcal{H}_{\mathcal{X}}(\lambda, d) + (4\mu)^n \cdot \text{Adv}^\text{MGen}_{\mathcal{D}}(\lambda, n - 1)).
\]

Proof. The proof of this theorem is quite similar to the proof of Theorem 1. During the reduction, the challenger may need to guess the test oracle and its origin oracle and one of freshness cases related to \text{RevealEphKey} and \text{RevealEphKey} queries. Since there are \(2^{n+1}\) such freshness cases and \(\ell\) parties at all, and at most \(d\) oracles for each party, then the guess would lead to lose a factor at least \((2d)^{n+1}\). We refer the reader to [? ?] for further details about the number of freshness cases. In the following, we put emphasize on the reduction to the MDDH problem. One could refer to the other proofs to that of theorem 1.

In the security games, we modify the game by replacing the session key of the test oracle \(\pi_{\text{id}}^*\) and its partner oracle (if it exists) with a random value. If the \(\mathcal{A}\) is able to distinguish this change, then we can construct a MDDH distinguisher by using \(\mathcal{A}\) as follows. On input a MDDH challenge instance \((\mathcal{P}, \mathcal{G}, g^a, \ldots, g^{a_n}, \Gamma)\), the goal of \(\mathcal{D}\) is to distinguish whether or not \(\Gamma = \text{me}(g^{a_1 \ldots a_n}, \ldots, g)\). Then the test oracle \(\mathcal{D}\) simulates the AKE challenger for \(\mathcal{A}\). Again only two partnered oracles would have the same hashed session identifier \(h = \text{CRHF}(\text{id})\) due to the security of corresponding cryptographic primitives.

We focus on the situation that the test oracle has no partner oracle but only origin oracles. Note that there are at most \(n\) origin oracles. In this case, \(\mathcal{D}\) needs to do the following guesses before ephemeral key generation: (i) the \(r_{\text{id}}^i\)-th bit of \(h_{\text{id}}^i\) (of an origin oracle \(\pi_{\text{id}}^i\)) which is distinct to the \(\tau^i\)-th bit of \(h_{\text{id}}^i\) (of the test oracle); (ii) the values \(h_{\text{id}}^i(\tau^i)\) and \(h_{\text{id}}^i(\tau^*)\). The \(\mathcal{D}\) has to guess the above issues for all \(n\) origin oracles respectively. The success probability of above guessing is at least \(1/(2^{n\ell})\). We assume that \(\mathcal{D}\) guessed correctly otherwise it aborts. Next, \(\mathcal{D}\) sets ephemeral keys \(X_{\text{id}}, r_{\text{id}}^i, h_{\text{id}}^i(\tau^*) := g^{a_i}\) and \(n\) challenge values to the \(n\) ephemeral keys \((X_{\text{id}}, r_{\text{id}}^i, h_{\text{id}}^i(\tau^*))\) of \(n\) origin oracles respectively where \(\pi_{\text{id}}^i\) is the coordinate guessed before for specific origin oracle. \(\mathcal{D}\) simulates all other Diffie-Hellman keys using the ephemeral secret keys chosen by herself.

Let the \((\text{epk}_1, \text{esk}_1), \ldots, (\text{epk}_n, \text{esk}_n)\) denote the ephemeral key pairs which are used to compute the session key of the test oracle, where \(\text{epk}_i = (X_{i, \text{id}}, \text{id}_i) \in \mathcal{G} \times \{0, 1\}\). Let the hashed session identifier of the test oracle is \(h = (h(1), \ldots, h(m))\). Note that, in each \(\text{epk}_i\), there is at least one Diffie-Hellman key set as challenge value. We let \(\tau_i\) denote the coordinate such that \(X_{i, \text{id}}(\tau_i)\) is set to be challenge value. Let \(Y_i = X_{i, \text{id}}(\tau_i)\) and \(Z_i = \prod_{j=1, j \neq i}^{n} X_{i, \text{id}}(h(j))\). This implies the ephemeral secret key of \(Y_i\) is \(y_i = x_{i, \text{id}}(\tau_i)\) and the ephemeral secret key of \(Z_i\) is \(z_i = \sum_{j=1, j \neq i}^{n} x_{i, \text{id}}(h(j))\). Now we can rewrite the equation of the session key generation of the test oracle and its partner oracle as: \(k^* = \text{me}(Y_1 Z_2, Y_3 Z_3, \ldots, Y_{n+1} Z_{n+1})^{y_1 + z_1}\).

Let \(\alpha = \text{me}(Y_2 Z_2, Y_3 Z_3, \ldots, Y_{n+1} Z_{n+1})^{y_1}\) and \(\Delta = \text{me}(Y_1 Z_2, Y_2 Z_3, \ldots, Y_{n+1} Z_{n+1})^{y_1}\). Then we have \(k^* = \alpha - \Delta\). It is not hard to see that \(\alpha\) is computable by \(\mathcal{D}\). Now we rewrite the equation for computing \(\Delta\) as the equation (A3):

\[
\Delta := \text{me}(Y_1 Z_2, Y_3 Z_3, \ldots, Y_{n+1} Z_{n+1}) \cdot \text{me}(Y_2, Y_2 Z_3, \ldots, Y_{n+1} Z_{n+1})^{y_1} = \text{me}(Y_1 Z_2, Y_3 Z_3, \ldots, Y_{n+1} Z_{n+1}) \cdot \text{me}(W_2, W_3, Y_1 Z_3, \ldots, Y_{n+1} Z_{n+1}) = \ldots = \text{me}(Y_2, Y_3, Y_4, \ldots, Y_{n-1}, Y_1 Z_{n+1}) \cdot \text{me}(Y_2, Y_3, \ldots, Y_{n+1})^{y_1}.
\]

\(\mathcal{D}\) replaces the value \(\text{me}(Y_2, Y_3, \ldots, Y_{n+1})^{y_1}\) in the above equation with \(\Gamma\) to obtain a new \(\Delta'\). Then the session key of the test oracle and its partner oracle is computed \(k^* = \alpha - \Delta'\). As for the origin oracle which is not the partner oracle of the test oracle, \(\mathcal{D}\) can compute it using the ephemeral secrets chosen by herself. The simulation of \(\mathcal{D}\) is sound so far. If \(\Gamma = \text{me}(g, g)^{a_1 \ldots a_n}\) then the game is equivalent to unchanged game, otherwise the game is identical to this one. The \(\mathcal{D}\) could return what \(\mathcal{A}\) outputs.