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Appendix A Determinant Analysis

In order to estimate the length of the shortest vector in LI , the determinant of LI has to be calculated in advance. This

subsection will analyse the determinant of the IN-Lattice in different cases and give a general lattice determinant formula.

Definition 1. Let L be a lattice in ZN . The dual lattice of L is

L∗ = {x ∈ RN : ∀y ∈ L, x · y ∈ Z}.

Lemma 1. [20,p10]Let L be a lattice, and f1,f2, . . . ,fr be a finite set of vectors in L. Let mi be integers, and let

M ⊂ L be the intersection of the kernels of the homomorphisms x → fi · x mod mi(thus M is a sublattice of L). Then

M∗ is the lattice generated in RN by L∗ and the vectors 1
mi

fi.

In fact, the determinant of a lattice L and its dual lattice L∗ are mutually inverse. Lemma 1 suggests that the determinant

of a lattice can be calculated through its dual lattice, especially when the structure of the original lattice is complex. With

those notion, we can decide the determinant of LI by the following proposition.
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Figure A1 Probability with Different t (N = 107)

Proposition 1. [21]Let I be a subset of [N ], and LI be the IN-Lattice obtained from Definition 4. Then, its dual lattice

L∗
I is generated by vectors e1, e2, . . . , eN and vectors 1

q
hi (i ∈ I), where {ei}Ni=1 is a basis of ZN and hi is given in Eq. (2).

Let M be the matrix whose row vectors are e1, e2, . . . , eN and 1
q
hi (i ∈ I). Thus, L∗

I is the lattice of degree N generated

by row vectors of M . Through the definition of determinant, we have det
(
L∗
I

)
=

√
det (Gram(M)) where Gram (M) is the

Gram matrix of M . Since the determinant of LI and its dual lattice L∗
I are mutually inverse, det (LI) can be calculated by

det (LI) =
1

det
(
L∗
I

) =
1√

det (Gram(M))
.
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Appendix B Experiments

In this section we first figured out the relation between t and Prob
(
f ls(k) ∈ LI

)
, where t = #I, and then the new attack

was fully implemented on different scale to confirm its feasibility. Since the parament t is a key point in IN-Lattice attack,

a principle was given to determine it in advance. Finally, target root Hermite factor and runtime in different attack are

presented which verify the efficiency of our new attack.

Appendix B.1 Experiments on Different Scale

To test Eq. (3), we conducted one million experiments to simulate the probability Prob
(
f ls(k) ∈ LI

)
with different t when

N = 107. Those results are illustrated in Figure B1 together with the data calculated from Eq. (3).

Figure B1 shows that Eq. (3) predicts the probability very well. The vector f ls(k) will belong to LI with very high

probability when t is small, and as t increases, the probability drops dramatically.

To determine the practicality of our new lattice attack, we implied Algorithm 1 into NTRU cryptosystem with different

security levels. The parameters sets in different scales are listed in Table B1.

Table B1 The Parameters Used in Our Experiments.

N df dg dr q

19 3 2 1 16

37 6 4 2 16

57 8 6 2 32

73 8 6 2 32

83 10 8 3 32

97 11 9 3 64

107 15 14 5 64

In our experiments, the value of t was recorded when a valid private key f ′ was found, and the probability

Prob
(
f ls(k) ∈ LI

)
were calculated through Eq. (3). Those results are listed in Table B2.

Table B2 The Results of New Attack in Different NTRU Security Levels.

N 19 37 57 73 83 97 107

t 3 7 11 12 14 13 16

Prob 1 0.999 0.975 0.999 0.967 0.998 0.723

In fact, Algorithm 1 outputted a short vector which can be used to decrypt if and only if it is a shift of the private key.

In Table B1, the parameter t is small enough when the new attack succeed, it means that a target vector f ls(k) will belong

to LI with high probability. Thus our new attack is feasible.

Appendix B.2 Experiments Analysis

An implementation of a lattice reduction algorithm will have the best chance of locating f ls(k), or another vector whose

length is closed to f ls(k), when the ratio γ is sufficiently small [3].

γ = ||f ls(k)||/σ (LI) ,

where σ (LI) is the expected smallest length in LI given by Gaussian heuristic. In fact, the value of γ only relies on t, since

||f ls(k)|| is fixed. Figure B2 presents the ratio in different cases when t takes the value in Table B2.

It seems that a target vector can most likely be found by the IN-Lattice attack when γ ≈ 1.1. So t can be determined

in advance such that γ approximates to 1.1.

On the other hand, the runtime of the lattice reduction algorithm is also exponential with blocksize β. In order to obtain

a more reduced basis, one needs more powerful reduction algorithm. Hence, we considered the target root Hermite factor

δtar that one has to reach to find a target vector vtar in different attacks. Here

δtar =
(
||vtar||/ det (L)1/ dim(L)

)1/ dim(L)
.

With the value of t given in Table B1, we calculated the target root Hermite factor in CS attack, Zero-Force attack

and the IN-Lattice attack. Specifically, in Zero-Force attack, we let the number of columns that multiply a large constant

equal to t. Thus in both the Zero-Force and the IN-Lattice attacks the target vectors will belong to lattice with the same

probability. As for CS attack the target vectors are always belonging to NTRU lattice.

As we can see in Table B3, among three attacks, the root Hermite factor in our new attack is the largest, which means

that the IN-Lattice attack is the most efficient and requires less on the strength of lattice reduction algorithm. Moreover,

the dimension of the lattice in Zero-Force attack is 2N − t, and t is roughly [N/5] according to Table 2 in [6]. Since the

dimension of the IN-Lattice is always N , our method has much low time complexity comparing with other two attack.
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Figure B1 Ratio in IN-Lattice Attack

Table B3 Target Root Hermite Factor in Different Attacks

N 19 37 57 73 83 97 107

Prob
(
f ls(k) ∈ L

)
1 0.999 0.975 0.999 0.967 0.998 0.723

IN-Lattice Attack 1.0436 1.0227 1.0148 1.0116 1.0102 1.0087 1.0079

Zero-Force Attack 1.0258 1.0134 1.0087 1.0067 1.0059 1.0049 1.0045

CS Attack 1.0215 1.0110 1.0071 1.0055 1.0049 1.0042 1.0038

Appendix B.3 Runtime of the IN-Lattice Attack

As described in Algorithm 1, we can recovered the private key f as long as the lattice reduction algorithm outputted a

target vector f ls(k). Then we made experiments to estimate the breaking time in larger scale.
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Figure B2 Runtime of IN-Lattice Attack

Extensive experimental evidence [3] suggests that the logarithm of the time needed to find a target vector grows (at

least) linearly in the dimension. In other words, for families of NTRU-type lattice we have

log10 (T ) > A ·N +B,

for certain constants A and B. Specific example is given in [5], that is, log10 (T ) > 0.1339N − 2.9983 for lattice of type

NTRU-107(Time in that formula is MIPS-years).

To determine the practicality of our new attack, we used the BKZ-NTL algorithm [22] of NTL package [18] to reduce

those lattices and recorded the runtime only when we found a target vector f ls(k) successfully. Figure B3 gives the results

of the experiments. Times in this figure are given in seconds. Since those experiments were run on 3.2 GHz Core machines,

the time in seconds is converted to the time in MIPS-years by first multipying by 3.2 · 1024(to account for the 3.2GHz
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machines) and then dividing by 31557600 which is the number of seconds in a year. In this case, the extrapolation line for

IN-Lattice attack is

log10 (T ) ≈ 0.065N − 7.3.

It is obvious that the coefficient A in IN-Lattice attack is much smaller than that in [5]. Moreover, we broken the

NTRU cryptosystem when N = 107 within two hours. Though it is similar to the results presented in [19], the lattice

reduction algorithm used in [19] is BKZ2.0 which is much more powerful than BKZ-NTL. In Table B4, we gave the

expected time(MIPS-years) to break NTRU cryptosystem in different attacks. Those data verified the efficiency of our new

attack.

Table B4 Breaking Time in Different Attacks.

New Attack Zero-Force Attack [5] CS Attack [5]

NTRU-167 103.55 9.63 · 104 1019.4

NTRU-263 109.80 3.3 · 1012 1032.2

NTRU-503 1025.4 1.43 · 1034 1064.4
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