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Appendix A Preliminaries

In this section, we introduce some basic knowledge of semi-honest model, fully homomorphic encryption and learning with

error. Then, we will review the GSW13 fully homomorphic encryption scheme. Firstly, we simply introduce the definition

of the semi-honest model.

Appendix A.1 Semi-honest Model

In the semi-honest model, we assume each party is honest but curious. That is, all parties abide by the protocol and cannot

abort its execution. Nevertheless, each party is curious to learn others’ data and they can perform computations on data

received from others. Suppose a protocol is secure under this model, if each party cannot obtain extra knowledge about

others’ private data in the process of executing the protocol’s execution.

Definition 1. The protocol M is said to be perfect privacy-preserving computation of the minimum value against party

Pi if it reveals nothing more than the final result to Pi in the execution ofM. That is, given all inputs {x0, . . . , xn}, there

exists a polynomial time simulator Si that can simulate the party Pi. We denote {Si(xi,M(x0, . . . , xn),Ki)}{x0,...,xn} to

Si’s view and {V IEWi(x0, . . . , xn)}{x0,...,xn} represents the party Pi’s view inM’s execution. SupposeM is secure in the

semi-honest model, if Si’s view is computationally indistinguishable with Pi’s view and Ki = ∅, where Ki represents the

party Pi’s extra information about others’ data. Namely,

{Si(xi,M(x0, . . . , xn))}{x0,...,xn}
c
≡ {V IEWi(x0, . . . , xn)}{x0,...,xn}

If Ki 6= ∅, thenM is weakly privacy-preserving against Pi, in the sense that Pi learns no more information than Ki about

others’ private data in the execution of M.

Appendix A.2 Learning with Errors, SIVP and GapSVP

Regev firstly introduced the learning with errors (LWE) problem in 2005 and presented that the hardness of LWE can be

reduced quantum to the lattice hard problems. Then, Peikert introduced an efficient classical reduction between LWE and

the lattice intractable problems. The details as follows.

Definition 2 (Learning with Errors). Let λ be the security parameter, n = n(λ) be an integer dimension of a lattice,

q = q(λ) > 2 be an integer and χ = χ(λ) be an error distribution over Z.

—(Searchable LWE) Sample s ← Znq uniformly and then draw ai ← Znq uniformly, ei ← χ. Set bi = 〈ai, s〉 + ei. The

searchable LWE is to find s, given m = m(λ) samples {(ai, bi)}mi=1, called LWEn,m,q,χ.

—(Decision LWE) The decision LWE, denoted LWEn,q,χ, is to distinguish two distributions: The first one is a uniform

distribution over Zn+1
q . The second is that one first samples s← Znq and then draws (ai, bi) ∈ Zn+1

q by sampling ai ← Znq
uniformly, ei ← χ and setting bi = 〈ai, si〉+ ei.

The learning with errors (LWE) assumption is that the LWEn,m,q,χ(LWEn,q,χ) is intractable.

Definition 3 (SIV Pγ(n)). Let Λ be a n−dimension lattice. The SIV Pγ(n) problem is to output n linearly independent

vectors v1, . . . ,vn such that max
i
{vi} 6 γ(n) · λn, where λn = min

r
{r : dim(span(B(0, r) ∩ Λ)) > n}.
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Definition 4 (GapSV Pγ(n)). Let Λ be a n−diemension lattice and d be a real number. The GapSV Pγ(n) is to distinguish

whether λ1 < d or λ1 > γ(n) · d, where λ1 is the length of the shortest vector in Λ.

Definition 5 (B-bounded distributions). A distribution ensemble {χn}n∈N over the integers is called B-bounded distri-

bution if

Pr
e←χn

[|e| > B] = negl(n)

.

Theorem 1. Let q = q(n) be either a prime power or a product of small (size poly(n)) distinct primes, B > ω(logn) ·
√
n,

and χ is an efficiently sampleable B-bounded distribution. If there exists an efficient algorithm solving the LWEn,q,χ
problem, then:

• There is an efficient quantum algorithm for GapSV P
Õ(nq/B)

on any n-dimension lattice.

• There is an efficient classical algorithm that solves GapSV P
Õ(nq/B)

on any n-dimension lattice.

In both cases, if one also considers solving LWEn,q,χ with sub-polynomial advantage, then request B > Õ(n) and γ(n) >
Õ(n1.5q/B).

Appendix A.3 Fully Homomorphic Encryption

A homomorphic encryption scheme consists of four probabilistic polynomial time algorithms (Gen,Enc,DEC,Eval), where

Eval is an algorithm that supports homomorphic computations on ciphertexts.

Gen(1λ): (pk, evk, sk) ← Gen(1λ). Choose the security parameter λ. Generate a public encryption key pk, a public

evaluation key evk and a private key sk.

Enc(pk, µ): c← Enc(pk, µ). Encrypt a message µ ∈ {0, 1} and output the ciphertext c.

Dec(sk, c): µ∗ ← Dec(sk, c). Decrypt a ciphertext c and obtain a corresponding plaintext µ∗ ∈ {0, 1}.
Eval(evk, f, c1, . . . , cl): cf ← Eval(evk, f, c1, . . . , cl). Homomorphically evaluate the function f and the inputs

c1, . . . , cl, and output cf that is a valid ciphertext of f(µ1, . . . , µl), where ci is a valid ciphertext of µi, i = 1, . . . , l.

Definition 6 (C-homomorphic). Denote a class of functions C = {Cλ}λ∈N. Suppose a scheme Π = (Gen,Enc,Dec,Eval)

is C-homomorphic, if for any arbitrary function fλ ∈ Cλ, and inputs c1, . . . , cl such that ci ← Enc(pk, µi), i = 1, . . . , l, it

satisfies that the probability of incorrectly decrypting the homomorphically evaluated result is negligible, that is

Pr[Dec(sk,Eval(evk, fλ, c1, . . . , cl)) 6= fλ(µ1, . . . , µl)]

= neg(λ)

where (pk, evk, sk)← Gen(1λ).

Definition 7 (compactness). Let λ be the security parameter. If there exists a polynomial p = p(λ) holding that the

output length of Eval is at most p(λ) bits long without relation to the function f or the numbers of inputs, we say the

homomorphic encryption scheme Π = (Gen,Enc,Dec,Eval) is compact.

Definition 8 (fully homomorphic encryption). A scheme Π = (Gen,Enc,Dec,Eval) is fully homomorphic, if Π is compact

and it can homomorphically evaluate the arbitrary circuit taken from the class of all arithmetic circuits over GF (2).

Appendix A.4 Review of the GSW13 Scheme

In this section, we formally describe the basic GSW fully homomorphic encryption scheme. At the beginning, we introduce

three operations used in the encryption algorithm for slow noise-growth. Assume three vectors a = (a0, . . . , an−1) ∈ Znq ,

α = (α0, . . . , αN−1) ∈ {0, 1}N , β = (β0, . . . , βN−1) ∈ ZNq .

BitDecomp(a)=(a0,0, a0,1, . . . , a0,l−1, a1,0, . . . , a1,l−1, . . . , an−1,l−1), where ai,j is the j-th element of the binary repre-

sentation of ai.

BitDecomp−1(α)=(Σl−1
i=02iαi,Σ

2l−1
i=l 2i−lαi, . . . ,Σ

N−1
i=(n−1)l

2i−(n−1)lαi), where α ∈ {0, 1}N .

Flatten(β)=BitDecomp(BitDecomp−1(β)).

We can see that BitDecomp(·) expands each element of a vector to its binary representation, BitDecomp−1(·) can be seen

as an inverse operation of BitDecomp(·) and it makes each l elements of a vector to a number in Zq . These three operations

on a matrix are performed on each column vector of the matrix. That is, BitDecomp(A) =


BitDecomp(A0)

...

BitDecomp(An−1)

.

BitDecomp−1(·) and Flatten(·) on a matrix are similar to BitDecomp(·) on a matrix.

We now describe the GSW fully homomorphic encryption scheme. It consists of six probabilistic polynomial time

algorithms (Setup,Gen,Enc,Dec,Add,Multi).

Setup(1λ, 1L): Let λ be the security parameter and L the max circuit depth. Choose appropriate LWE parameters:

modulus q = q(λ,L), lattice dimension n = n(λ,L), and error distribution χ = χ(λ,L). Choose parameter m =

O(n log q). Set params = (q, n, χ,m). Let l = blog qc+ 1 and N = n× l.

Gen(params): Choose randomly t ← Zn−1
q . Choose a random matrix B ← Zm×(n−1)

q and a vector e ← χm. Set

b = B · t + e. Output the secret key sk = s = (1,−t1, . . . ,−tn−1) ∈ Znq , and the public key pk = A = [b|B]. Let

v = Powerof2(s). (Note that A · s = e.)
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Enc(params, pk, µ): Choose randomly a matrix R← {0, 1}N×m. Then encrypt the message µ as follows:

C = Flatten(µ · IN +BitDecomp(R ·A)) ∈ ZN×Nq

Output the ciphertext C.

Dec(params, sk,C): Let vi ∈ (q/4, q/2]. Output µ = b〈Ci,v〉/vie.

Add(params, pk,C1,C2): To add two ciphertexts C1,C2 ∈ ZN×Nq . Output Flatten(C1 + C2).

Multi(params, pk,C1,C2): To multiply two ciphertexts C1,C2 ∈ ZN×Nq . Output Flatten(C1 ·C2).

Appendix B Analysis

We present the privacy-preserving minimum or k-th minimum computing protocols in the above section. Sequentially, we

here provide a rigorous analysis on the protocols’ complexity of round and communication, correctness and security. First,

in two privacy-preserving min computing protocols, each user only does the following operations: encrypting and sending

the data, and finally assisting the server to decrypt the ciphertext of the minimum value. So, our privacy-preserving min

computing protocol only has two rounds. However, in the complex k-th minimum computation protocol, each user also

helps the server to count count, and the number of the plaintext of minj equal to the plaintext of Ci,j . The k-th minimum

computation protocol has O(l) rounds where l is the bit length of the data. Second, our first protocol only needs O(N0 ·l·N2)

where N0 is the number of users and N × N is the size of a varGSW ciphertext: Each user sends an encryption of the

input Ci,j = varGSW.Encpk(xi,j), ci = (ci,1, . . . , ci,l) and this is N0 · l · N2 bits; the server sends the final ciphertext to

all users for decryption and this needs l ·N2 bits; and each user sends the partial decryption of the received ciphertext to

the server and it is l ·N bits. Compared to previous schemes based on additionally homomorphic encryption or the secure

bitwise XOR computations, our protocols are featured with either lower rounds or stronger security guarantee.

Next, we discuss the protocols’ correctness and security as summarized in the following proposition and theorem.

Proposition 1. The accuracy of our privacy-preserving min or k-th computation protocols is exponentially approximate

to 1 if all users and the server follow the protocol on the assumption of semi-honest model.

Proof. We can see that the protocol’s accuracy is determined by users’ decryption, encryption, communication with the

server, and the server’s homomorphic evaluation computations. The failure of the encryption, decryption and evaluation

of the FHE scheme is negligible. On the condition of semi-honest model, all users and the server follow the execution

of protocol. Though they are curious about others’ private information, they cannot abort the process of the protocols’

execution or send wrong information in the execution. So, the accuracy is exponentially approximate to 1.

Theorem 2. Our privacy-preserving minimum or k-th minimum computation protocols are perfectly privacy-preserving

against all users and the server in the semi-honest model.

Proof. In our protocols, every user only receives the ciphertext of the minimum value, has only one secret key share of

the fully homomorphic encryption scheme, and can’t decrypt the ciphertext alone. Therefore, our protocols reveal no more

information to the users.

Similarly, the server only receives the encryptions of all users’ data, and performs homomorphic evaluation on the

ciphertexts. If the fully homomorphic encryption scheme is secure, the server can’t learn extra knowledge about all users’

data.
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