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The building blocks of the original 3D block cipher
structure, first proposed by Nakahara [1] and gen-
eralized in [2], are four different invertible trans-
formations that are similar to AES (advanced en-
cryption standard [3]) but operate in a 3D ar-
rayA: RoundKeyAddition κi; ByteSubstitution γ;
ShiftRows θ0 and θ1, which are applied in alter-
nate rounds; and MixColumns π. Owing to the
alternate application of two different ShiftRows
transformations θ0 and θ1, the 3D block cipher [1]
achieves quick diffusion and guarantees enough ac-
tive S-boxes to resist differential and linear crypt-
analysis [4].

However, the alternate use of two different
round functions causes more expense with respect
to software and hardware implementation as com-
pared with the cipher that iterates the same round
function. In the software implementation, we re-
quire different code segments to implement the
alternately used round functions, which increases
the code size and memory consumption. In the
hardware implementation, we require different cir-
cuits to implement the alternately used round
functions, which increases the chip area. Fur-
thermore, a multiplexer of block size is required
to choose the transformation into which the data
should be input at different rounds, which in-
creases the chip area and time delay. The design of
a 3D structure that employs a non-alternate struc-

ture but retains the same cryptographic properties
as the original 3D structure and exhibits better
implementing performance than the original 3D
structure, is worth investigating.

Definition 1. Let the state cube A =
{ai,j,t}

n−1
i,j,t=0 = (ai,j,t), ai,j,t ∈ F2m , then for 0 6

i, j, t < n, ai,·,· = {ai,j,t}
n−1
j,t=0, a·,j,· = {ai,j,t}

n−1
i,t=0,

and a·,·,t = {ai,j,t}
n−1
i,j=0 are called an X-layer, a Y -

layer, and a Z-layer of cube A, respectively. Sim-
ilarly, ai,j,· = {ai,j,t}

n−1
t=0 , ai,·,t = {ai,j,t}

n−1
j=0 , and

a·,j,t = {ai,j,t}
n−1
i=0 are called a Z-column, a Y -

column, and an X-column of the cube A, respec-
tively.

New 3D structure. The transformations θ0 and
θ1 in the original 3D structure operate within each
X-layer and Y -layer, respectively, and thus, us-
ing them alternately can produce a good diffusion
effect. Daemen et al. [5] mentioned a “cube ro-
tation” transformation (see Figure 1), which may
be a better choice for the 3D structure: replac-
ing the two alternately used ShiftRows transfor-
mations with such a fixed “cube rotation” trans-
formation might result in the same diffusion effect
and resistance against differential and linear crypt-
analysis as that of the original 3D structure.

A general word permutation that changes the
positions of the words within the state cube A is
defined as follows.
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Figure 1 “Cube rotation” transformation for n = 4 [5].

Definition 2 (Word permutation). For a word
permutation θ, θ({ai,j,t}

n−1
i,j,t=0) = {aσ(i,j,t)}

n−1
i,j,t=0,

σ(i, j, t) = (σ1(i, j, t), σ2(i, j, t), σ3(i, j, t)), where
σ is a permutation defined over the index space
I = {(i, j, t) : 0 6 i, j, t < n}, and σ1, σ2, and σ3

are three component functions of σ. The inverse
of σ is denoted by σ−1.

Our target word permutations. Among all
the word permutations on a state cube A, we fo-
cus our attention on two classes of them, which
are denoted by τ1 and τ2: τ1 = {θ : σ(i, j, t) =
(σ1(t), σ2(i), σ3(j))} and τ2 = {θ : σ(i, j, t) =
(σ1(j), σ2(t), σ3(i))}. It should be noted that the
“cube rotation” transformation shown in Figure 1
can be written as σ(i, j, t) = (t, i, j) and belongs
to τ1. Furthermore, if θ ∈ τ1, then θ−1 ∈ τ2.

On choosing a permutation θ ∈ τ1
⋃
τ2 and re-

placing the two alternately used permutations θ1
and θ2 with θ, we obtain a new round function
ρ′r = π◦θ◦γ ◦κr. The iteration of this new round
function results in a new 3D structure.

With respect to the diffusion effect of the new
3D structure, we have the following theorem,
which is easy to verify.

Theorem 1. If the MixColumn transformation
adopts the MDS (maximum distance separable)
matrix, then three rounds of the new 3D structure
provide “full diffusion”.

Differential/linear security of the new 3D struc-
ture. The minimum number of differential and lin-
ear active S-boxes provides a measure of the prac-
tical security for a block cipher against differential
and linear cryptanalysis. By analyzing the lower
bounds on the number of active S-boxes in the
differential and linear trails of the new 3D struc-
ture, we prove that the new 3D structure possesses
the same resistance against differential and linear
cryptanalysis as the original 3D structure. A new
technique that is different from the one used in [4]

will be employed.
As the discussions on differential and linear ac-

tive S-boxes are similar, it is sufficient to treat the
differential trails. All the results also hold for the
linear trails.

It should be noted that we neglected the effect
of the round key addition transformation κr. The
differential branch number of the MixColumns is
denoted by Bd.

The bound for a four-round differential trail can
be easily deduced.

Theorem 2. The lower bound on the number of
active S-boxes in a four-round non-trivial differen-
tial trail of the new 3D structure is Bd

2.
Proof. This bound is a direct result of the “wide
trail” strategy [6].

However, for differential trails with more than
four rounds, obtaining tighter bounds on the num-
ber of active S-boxes becomes more difficult [7].
Simply using a bound on the four-round trail to
obtain a bound for a 4r-round trail (namely rBd

2)
would not result in a tighter bound on the 4r-
round trail of the 3D structure. Based on the
“wide trail” strategy, a few variables are used to
characterize the differential trail. The number of
active S-boxes of the trail could then be bounded
by a function of these variables. As the number of
variables is sufficiently small, we could manually
deduce bounds for the trail.

Notations. The input differences of 10 con-
secutive rounds are denoted by A1, A2, . . . , A10,
respectively. Then the front nine-round differen-
tial trail can be denoted by

A1 γ
∼A1

γ

π◦θ
−−→ A2 γ

∼A2
γ

π◦θ
−−→ A3 γ

∼A3
γ

π◦θ
−−→ A4 γ

∼A4
γ

π◦θ
−−→ A5 γ

∼A5
γ

π◦θ
−−→ A6 γ

∼A6
γ

π◦θ
−−→ A7 γ

∼A7
γ

π◦θ
−−→ A8 γ

∼A8
γ

π◦θ
−−→ A9 γ

∼A9
γ

π◦θ
−−→ A10.

As the order of θ and γ can be exchanged, the
above trail is equivalent to the following one:

A1
θ

γ
∼A1

γ,θ

π

−→ A2 γ
∼A2

γ

θ◦π◦θ
−−−−→ A3

θ

γ
∼A3

γ,θ

π

−→ A4 γ
∼A4

γ

θ◦π◦θ
−−−−→ A5

θ

γ
∼A5

γ,θ

π

−→ A6 γ
∼A6

γ

θ◦π◦θ
−−−−→ A7

θ

γ
∼A7

γ,θ

π

−→ A8 γ
∼A8

γ

θ◦π◦θ
−−−−→ A9

θ

γ
∼A9

γ,θ

π

−→ A10 (∗).

The following ten parameters are introduced in
order to characterize the trail (*):

(1) t1 = min{NXY (a
5,θ
·,j,·) : 0 6 j < n, a

5,θ
·,j,· 6= 0},

u = max{NXY (a
5,θ
·,j,·) : 0 6 j < n};

(2) t2 = min{NXY (a
6,γ
i,·,·) : 0 6 i < n, a

6,γ
i,·,· 6= 0},

v = max{NXY (a
6,γ
i,·,·) : 0 6 i < n};

(3) r = NZ(A
3
γ,θ), M = NZ(A

4), p = NZ(A
5
θ),

q = NZ(A
6), N = NZ(A

7
θ), h = NZ(A

8).
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Here, NXY (·) and NX(·) denote the number
of nonzero Z-columns and X-layers, respectively.
The meanings of NXZ(·), NY Z(·), NY (·), and
NZ(·) are similar.

It should be noted that trail (*) is symmetrical,
that is, the encryption direction and decryption
direction of the trail are similar. We need only
consider the situation where θ ∈ τ1, as we can ob-
tain a matching conclusion for θ ∈ τ2 by applying
the conclusion for θ ∈ τ1 to the inverse trail of the
trail (*). Therefore, the following discussion will
be limited to the condition that θ ∈ τ1; however,
the results are also valid for θ ∈ τ2.

For the trail (*), by the definitions of these ten
parameters, we obtain NX(A4) = p, NY (A

7
θ) =

q, NX(A5
θ) = NX(A6) = NZ(A

7
θ) = N , and

NZ(A
4) = NY (A

5
θ) = NY (A

6) = M .
There are some constraints on these ten param-

eters, and they must be taken into consideration,

p+ q > Bd, n > p > 1, n > q > 1, (a)

n > N > u > t1 > 1, n > M > v > t2 > 1, (b)

N + h > Bd, n > h > 1, (c)

M + r > Bd, n > r > 1. (d)

Further investigation shows that the lower
bound on the number of active S-boxes in a trail
can be expressed as a function of the above ten pa-
rameters, and the lower bound is then equivalent
to the conditional minimum value of this function
under the conditions (a) – (d). We can easily de-
rive the following theorems.

Theorem 3. The lower bounds on the number
of active S-boxes in six-round, eight-round, and
ten-round non-trivial differential trails of the new
3D structure are 3Bd(Bd − 1), 4Bd(Bd − 1), and
5Bd(Bd − 1), respectively.

Theorem 3 provides theoretical proof to confirm
the claim in [5] that there are at least 18 active
S-boxes in a six-round differential trail of the 3D
structure with n = 2 and Bd = 3, which was not
proved in [5].

By cutting a 2k(k > 3)-round differential trail
into some six-round, eight-round, and ten-round
subtrails, we could obtain the bound for a 2k(k >

3)-round trail.

Theorem 4. The lower bound of the number
of active S-boxes in a 2k(k > 3)-round non-
trivial differential trail of the new 3D structure is
kBd(Bd − 1), where Bd is the differential branch
number of the MixColumns transformation.

For the original 3D structure, Liu et al. [4]
proved that there are at least Bd

2 and kBd(Bd−1)
differential active S-boxes in four and 2k (k > 3)
consecutive rounds respectively, where Bd is the
differential branch number of the MixColumns
transformation. We obtain the same lower bounds
for the new 3D structure.

Conclusion. The 3D structure was designed for
use as building blocks for compression functions in
hash functions and block ciphers with a large block
size. 3D structures with n = 4 and m = 4, can
be used to construct block ciphers with a 256-bit
block. A 3D structure with n = 4 and m = 8 can
be used to construct compression functions with a
512-bit state. We propose a better round function
for the 3D structure.

Detailed proofs of all the above theorems can be
found in Appendixes A and B.
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