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Original public-key encryption is viewed as a tool
to encrypt point-to-point communication. En-
crypted data is aimed at a particular user, where
a sender encrypts a message x under a specified
public key PK. In this case, only the owner of the
(unique) secret key corresponding to PK can de-
crypt the resulting ciphertext to recover the mes-
sage x. However, on some occasions, encryption is
necessary to implement more fine-grained control
of the encrypted data. For example, the sender
may hope that the receiver learns only partial in-
formation about the encrypted data rather than
the full information. To achieve this goal, the no-
tion of functional encryption is proposed and is
further developed [1]. At a high level, in a func-
tional encryption for some class F , a secret key
skf for any function f ∈ F can be derived from
the master secret key msk. Given a ciphertext ct
that encrypts message x, the user can decrypt ct
to obtain f(x) under the secret key skf but should
learn nothing else about x beyond f(x).

In the past few years, remarkable work in func-
tional encryption was accomplished by exploring
different security models [2] and constructions un-

der different assumptions [3]. Recently, several
studies began to focus on researching the classes of
functions that can be supported by functional en-
cryption. In function-oriented research, nearly all
work is dedicated to deterministic functions. By
contrast, for some special occasions, randomized
functions [4] are urgently necessary to implement
more functionalities.

In 2015, Goyal et al. [4] proposed a con-
struction of functional encryption for random-
ized functionalities that were secure against CCA
(chosen-ciphertext attacks). Subsequently, sev-
eral different types of functional encryptions
were proposed [5]. In this work, we pro-
vide a simulation-based LR-RRA-CCA (leakage-
resilient, related-randomness attacks, chosen-
ciphertext attacks) security definition of FE (func-
tional encryption) for randomized functionali-
ties and propose a construction consisting of
a trapdoor hash-proof system and lossy alge-
braic filter. This is proven to achieve chosen-
ciphertext security, leakage-resilient security, and
related-randomness security simultaneously un-
der the assumptions of different-input obfus-
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cation and a puncturable pseudorandom func-
tion. Our starting point is the LR-CCA secure
public-key encryption scheme of Qin et al. [6].
We subsequently develop our proposed scheme by
modifying this scheme step by step.

In the following, we explain some core assump-
tions used in the construction of our scheme.

Definition 1 (Differing-inputs circuits). A sam-
ple algorithm (C0, C1, z) ←$ Sam(1λ) that sam-
ples circuits from a circuit ensemble C = {Cλ}λ∈N

is said to be a differing-inputs distribution, if
for all PPT algorithms A, there is a negligible
function negl such that Pr[C0(x) 6= C1(x)] 6

negl(λ), where (C0, C1, z) ←$ Sam(1λ), x ←$

A(1λ, C0, C1, z).

Definition 2 (Differing-inputs obfuscation). A
PPT algorithmDIO is a differing-inputs obfuscator
for a differing-inputs distribution Sam (for circuit
ensemble {Cλ}λ∈N) if it satisfies: (1) Correctness.
For all λ ∈ N, C ∈ Cλ and x, we have Pr[C(x) =
C′(x) : C′ ←$ DIO(1λ, C)] = 1. (2) Security.
For any PPT distinguisher D and (C0, C1, z) ←$

Sam(1λ), there is a negligible function negl such
that AdvdioC0,C1,A(λ) = Pr[D(1λ,DIO(1λ, C0), z)]−

Pr[D(1λ,DIO(1λ, C1), z)] 6 negl(λ).

Definition 3. A puncturable pseudorandom
function PF=(PF.K, PF.Eval, PF.Punc) over Dλ

and Rλ is defined as follows.
• The key generation algorithm. K ←$

PF.K(1λ), where K ←$ Rλ.
• The punctured key generation algorithm.

KS ←$ PF.Punc(K,S), where KS ∈ Rλ.
• The evaluation algorithm. y ←$

PF.Eval(K,x), where K ∈ Rλ (punctured key
or PRF key), x ∈ Dλ, and y ∈ Rλ.

Definition 4 (Security). PF=(PF.K, PF.Eval,
PF.Punc) is secure if it satisfies as follows.

(1) Functionality preserved under puncturing.
For all x /∈ S, we have PF.Eval(K,x) =
PF.Eval(KS , x), where K ← PF.K(1λ), KS ←
PF.Punc(K,S).

(2) Pseudorandomness preserved at punctured
points. For any PPT adversary A′ = (A′

1,A
′
2)

such that A′
1(1

λ) defines a set S ⊂ Dλ, for all
x ∈ S, K ← PF.K(1λ), KS ← PF.Punc(K,S) and
y ←$ Rλ, then there exists a negligible function
negl such that

Adv
prf
PF,A′(λ) = Pr[A′

2(KS, x,PF.Eval(K,x)) = 1]

−Pr[A′
2(KS , x, y) = 1] 6 negl(λ).

(3) Pseudorandomness at non-punctured points.
For any PPT adversary A, all K ← PF.K(1λ),
x ∈ Dλ, then

Adv
prf
PF,A = Pr[A(1λ, y) = 1 : y = PFK(x)]

−Pr[A(1λ, y) = 1 : y ←$ Rλ] 6 negl(λ).

Lemma 1. Let X , Y , and Z be random vari-
ables. If Y has at most 2l possible values, then
H̃∞(X |(Y, Z)) > H̃∞(X |Z)− l.

Definition 5 (Randomness extractor). An effi-
cient function Ext : X × S → Y is an average-case
(ν, ǫ)-strong extractor if for all pairs of random

variables (X,Z) such thatX ∈ X and H̃∞(X |Z) >
ν, we have

SD((Z, s,Ext(X, s)), (Z, s, UY)) 6 ǫ2.

s←$ S and UY is uniform over Y.

Definition 6 (Correlated-input secure (CIS) Hash
functions). A CIS hash function hκ is a PPT algo-
rithm that is defined as y ←$ hκ(x). The security
requires that even given the hash values of multiple
correlated-input values hk(φ1(x)), . . . , hk(φq(x)),
the hash value y is still pseudorandom, where
the correlation functions φ1, . . . , φq may be ma-
liciously chosen and q = q(λ) is a polynomial
in λ. The advantage function is defined as
Adv

l-mk-sci-pr
H,A (λ).

Definition 7 (Trapdoor Hash proof system
(THPS)). A trapdoor hash proof system consists
of four PPT algorithms (THPS.Gen, THPS.Pub,
THPS.Priv, THPS.Invert).
• The parameter generation algorithm.

(pp, td) ← $THPS.Gen(1λ), where pp =
(Description, PK, SK, K, Λ(·) : C → K, µ : SK →
PK) and td ∈ T K is trapdoor.
• The public evaluation algorithm. K =

Λsk(C) ← $THPS.Pub(pk, C,w), where pk =
µ(sk), C ∈ V and w indicate C ∈ V .
• The private evaluation algorithm. K =

Λsk(C)← $THPS.Priv(sk, C).
• The inversion algorithm. w ←

$THPS.Invert(td, C), where C ∈ V and
THPS.Pub(pk, C,w) = THPS.Priv(sk, C) holds
with probability 1, but for C ∈ C\V,
THPS.Invert(td, C) outputs ⊥.

Furthermore, we require that the THPS must
satisfy ǫ1-universal and a subset membership
problem [6].

Definition 8 (Lossy algebraic filter [7]). An
(lLAF, n

′) lossy algebraic filter (LAF) consists of
three PPT algorithms LAF = (LAF.KG, LAF.Eval,
LAF.Ltag):
• Key Generation. (lpk, ltk) ←$ LAF.KG(1λ),

where lpk is the public key, ltk is a trapdoor that
will allow us to compute a lossy tag.
• Evaluation. The algorithm LAFlpk,t(X) ←$

LAF.Eval(lpk, t,X), where X ∈ Z
n′

p , t = (ta, tc) ∈
T .
• Lossy Tag Generation. The algorithm tc ←$

LAF.Ltag(ltk, ta), where t = (ta, tc) is lossy.
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• Lossiness. If t is injective, the function
LAFlpk,t(X) is injective. If t is lossy, then

LAFlpk,t(X) only depends on
∑n′

i=1 ωiXi mod p for
ωi ∈ Zp.

Furthermore, an LAF also satisfies the indistin-
guishability and evasiveness securities. Their ad-
vantage functions are AdvindLAF,A(λ) and AdvevsLAF,A

respectively.

Construction. We construct a simulation-based
LR-RRA-CCA secure public-key functional en-
cryption scheme rFE=(rFE.Setup, rFE.KG, rFE.E,
rFE.D) for randomized function family F . Our
construction needs the following building blocks.

(1) An l-mk-sci-pr secure keyed hash func-
tion description (CIH.K,CIH.D,CIH.R, h); (2) A ǫ1-
universal trapdoor hash proof system THPS =
(THPS.Gen, THPS.Pub, THPS.Priv, THPS.Invert);
(3) An (lLAF, n

′) lossy algebraic filter LAF =
(LAF.KG, LAF.Eval, LAF.Ltag); (4) An average-
case ((ν − (qlr − 1).m − qlr.lLAF − lL), ǫ2)-strong
extractor Ext : K × {0, 1}d → {0, 1}m; (5) A se-
cure differing-inputs obfuscator DIO.

The concrete construction is described as fol-
lows.

• Setup. The setup algorithm rFE.Setup(1λ) on
input 1λ. It first runs THPS.Gen(1λ) to generate
a public parameter pp and the trapdoor td, then
generates the key pair (lpk, ltk) ←$ LAF.KG(1λ).
Next, it picks k ←$ CIH.K(1λ), sk ←$ SK, and
sets pk = µ(sk). Finally, the master public key is
mpk = (pp, lpk, k, pk), and the master secret key
is msk = sk.

• Encryption. The encryption algorithm
rFE.E(mpk, x) on input a master public key
mpk and a message x ∈ {0, 1}m. It
first chooses r ←$ Rλ, and then samples
(C, s, tc) ← SampleV×{0,1}d×Tc

(PFhk(r)(mpk||x)),
where C has a witness w, s is a random seed,
and tc is a random core tag. Next, it computes
K ← THPS.Pub(pk, C,w), U = Ext(K, s)⊕x, π =
LAFlpk,t(K), where t = (ta, tc) with ta = (C, s, U).
Finally the ciphertext is set as ct = (C, s, U, π, tc).

• Key generation. The key generation algo-
rithm rFE.KG(msk, f) takes as its input a mas-
ter secret key msk and a function f ∈ F . It
chooses a random number r ←$ Rλ, then com-
putes r′ = PFhk(r)(mpk||f). Finally, the secret
key is set as skf = DIO(G[mpk,msk,r′,f ]), where the
function G[mpk,msk,r′,f ] is described in Figure 1.
Note that G[mpk,msk,r′,f ] has the master public key
mpk, the master secret keymsk, the random num-
ber r′, and the function f hardcoded in it.

• Decryption. With input ct, the decryption

Constants : mpk, msk, r′, f
Input : ct
1. Parse ct into C, s, U, π, tc and parse mpk into pp, lpk,

k, pk.
2. Compute K = THPS.Priv(sk, C), where msk = sk.
3. Compute π′ = LAFlpk,t(K), where t = (ta, tc),

ta = (C, s, U).
4. If π′ 6= π, output ⊥, else proceed the following steps.
5. Compute x = Ext(K, s) ⊕ U .
6. Compute r′′ = PF.Eval(r′, ct).
7. Compute y = f(x; r′′) and output y.

Figure 1 Functionality G[mpk,msk,r′,f ].

algorithm rFE.D(skf , ct) computes and outputs
y = skf (ct). Note that skf = DIO(G[mpk,msk,r′,f ])
and the circuit G[mpk,msk,r′,f ] are described in Fig-
ure 1).
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